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ON MULTILINEAR GENERALIZATIONS OF THE
CONCEPT OF NUCLEAR OPERATORS

BY

DAHMANE ACHOUR (M’sila) and AHLEM ALOUANI (Tebessa)

Abstract. This paper introduces the class of Cohen p-nuclear m-linear operators
between Banach spaces. A characterization in terms of Pietsch’s domination theorem is
proved. The interpretation in terms of factorization gives a factorization theorem similar
to Kwapień’s factorization theorem for dominated linear operators. Connections with the
theory of absolutely summing m-linear operators are established. As a consequence of our
results, we show that every Cohen p-nuclear (1 < p ≤ ∞) m-linear mapping on arbitrary
Banach spaces is weakly compact.

1. Introduction and notation. The success of the theory of absolutely
summing linear operators has motivated the investigation of new classes
of multilinear mappings and polynomials between Banach spaces. The first
possible directions of a multilinear theory of absolutely summing multilinear
mappings were outlined by several authors (we mention, for example, [1, 2,
13–16, 19, 22, 23, 25, 26]).

The aim of this paper is to introduce and study a new class of multilin-
ear operators, the Cohen p-nuclear multilinear operators. The space Nm

p

of Cohen p-nuclear multilinear operators defined on Banach spaces is a
Banach space and this kind of m-linear operators satisfy a natural ana-
log of the Pietsch domination theorem. The original motivation for our re-
search is to give a multilinear version of Kwapień’s factorization theorem:
Nm
p = Dmp ◦ (Πp, . . . ,Πp) where Πp is the Banach space of all p-summing

linear operators and Dmp the Banach space of all Cohen strongly p-summing
multilinear operators. We also show that every Cohen p-nuclear (1 < p ≤ ∞)
m-linear mapping on arbitrary Banach spaces is weakly compact.

This paper is organized as follows. In Section 1, we give some basic
definitions and properties. In Section 2, we introduce a multilinear version
of Cohen p-nuclear operators for which the resulting vector space is a Ba-
nach space. We prove a natural analog of the Pietsch domination theorem
for such operators similar to the linear case. In Section 3, we characterize

2010 Mathematics Subject Classification: 47H60, 46G25, 46B25, 47L22.
Key words and phrases: absolutely p-summing m-linear operator, Cohen p-nuclear m-
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the class of Cohen p-nuclear m-linear operators as products of absolutely
p-summing and Cohen strongly p-summing m-linear operators, generalizing
a linear result of Kwapień. Finally, in Section 4, we obtain certain connec-
tions between the classes investigated in this paper (for other recent papers
comparing different classes of multilinear mappings related to summability,
we refer to [4–7, 20, 21]) and apply our results to prove that every Cohen
p-nuclear (1 < p ≤ ∞) m-linear mapping on arbitrary Banach spaces is
weakly compact.

Now, we fix the notation used in this paper. Let m ∈ N and X1, . . . , Xm,
Y be Banach spaces over K (real or complex scalar field). We denote by
L(X1, . . . , Xm;Y ) the Banach space of all continuousm-linear mappings from
X1×· · ·×Xm to Y , under the norm ‖T‖ = supxk∈BXk

‖T (x1, . . . , xm)‖,where
BXk

denotes the closed unit ball of Xk. If Y =K, we write L(X1, . . . , Xm).
In the case X1 = · · · = Xn = X, we simply write L(mX;Y ).

Let now X be a Banach space and 1 ≤ p <∞. We denote by lnp (X) the
space of all sequences (xi)1≤i≤n in X with the norm

‖(xi)1≤i≤n‖lnp (X) =
( n∑
i=1

‖xi‖p
)1/p

,

and by (lnp )ω(X) the space of all sequences (xi)1≤i≤n in X with the norm

‖(xi)1≤i≤n‖(lnp )ω(X) = sup
‖ξ‖X∗=1

( n∑
i=1

|〈xi, ξ〉|p
)1/p

,

where X∗ denotes the topological dual of X.
Let lp(X) be the Banach space of all absolutely p-summable sequences

(xi)∞i=1 in X with the norm

‖(xi)∞i=1‖lp(X) =
( ∞∑
i=1

‖xi‖p
)1/p

.

We denote by lωp (X) the Banach space of all weakly p-summable sequences
(xi)∞i=1 in X with the norm

‖(xi)∞i=1‖lωp (X) = sup
‖ξ‖X∗=1

‖(ξ(xi))∞i=1‖lp(X).

If p =∞ we consider bounded sequences and in l∞(X) we use the sup norm.
We know (see [12]) that lp(X) = lωp (X) for some 1 ≤ p < ∞ if, and

only if, dim(X) is finite. If p = ∞, we have l∞(X) = lω∞(X). If K is a
Hausdorff compact topological space, C(K) denotes the Banach space, un-
der the supremum norm, of all continuous functions on K. We denote by
Lf(X1, . . . , Xm;Y ) the space of all m-linear mappings of finite type, which
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is generated by the mappings of the special form

Ty⊗m
j=1x

∗
j

= x∗1 ⊗ · · · ⊗ x∗m ⊗ y : (x1, . . . , xm) 7→ x∗1(x1) . . . x∗m(xm)y

for some non-zero x∗j ∈ X∗j (1 ≤ j ≤ m) and y ∈ Y . In [16], the adjoint of
an m-linear operator is defined as follows: T ∗ : Y ∗ → L(X1, . . . , Xm), y∗ 7→
T ∗(y∗) : X1 × · · · ×Xm → K, with T ∗(y∗)(x1, . . . , xm) = y∗(T (x1, . . . , xm)).
Recall that a p-summing linear operator u : X → Y (notation: u∈Πp(X;Y ))
between Banach spaces transforms p-weakly summing sequences into p-
strongly summing sequences, i.e.

‖(u(xi))1≤i≤n‖lnp (X) ≤ C‖(xn)1≤i≤n‖(lnp )ω(X).

The infimum of the C defines a norm πp on Πp(X;Y ) (see [24, 12]).
• Following [23], an ideal of multilinear mappings (or multi-ideal) is a

subclass M of all continuous multilinear mappings between Banach spaces
such that for all m ∈ N and Banach spaces X1, . . . , Xm and Y , the compo-
nents M(X1, . . . , Xm;Y ) := L(X1, . . . , Xm;Y ) ∩M satisfy:

(i) M(X1, . . . , Xm;Y ) is a linear subspace of L(X1, . . . , Xm;Y ) which
contains the m-linear mappings of finite type.

(ii) The ideal property: If T ∈ M(G1, . . . , Gm;F ), uj ∈ L(Xj , Gj)
for j = 1, . . . ,m and v ∈ L(F, Y ), then v ◦ T ◦ (u1, . . . , um) is in
M(X1, . . . , Xm;Y ).

If ‖ · ‖M :M→ R+ satisfies

(i′) (M(X1, . . . , Xm;Y ), ‖ · ‖M) is a normed (Banach) space for all
Banach spaces X1, . . . , Xm and Y and all m,

(ii′′) ‖Tm : Km → K : Tm(x1, . . . , xm) = x1 . . . xm‖M = 1 for all m,
(iii′′′) if T ∈ M(G1, . . . , Gm;F ), uj ∈ L(Xj , Gj) for j = 1, . . . ,m and

v∈L(F, Y ), then ‖v◦T ◦(u1, . . . , um)‖M≤‖v‖ ‖T‖M‖u1‖ . . . ‖um‖,

then (M, ‖ · ‖M) is called a normed (Banach) multi-ideal.
We begin by presenting different classes of ideals of multilinear mappings

related to the concept of absolutely summing operator:
• Let m ∈ N. An m-linear operator T ∈ L(X1, . . . , Xm;Y ) is Cohen

strongly p-summing (1 < p ≤ ∞) if there exists a constant C > 0 such that
for any xj1, . . . , x

j
n ∈ Xj (1 ≤ j ≤ m) and any y∗1, . . . , y

∗
n ∈ Y ∗, we have

‖(〈T (x1
i , . . . , x

m
i ), y∗i 〉)1≤i≤n‖ln1 ≤ C

( n∑
i=1

m∏
j=1

‖xji‖
p
Xj

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗
.

Again the class of all Cohen strongly p-summing m-linear operators from
X1 × · · · × Xm into Y , denoted by Dmp (X1, . . . , Xm;Y ), is a Banach space
with the norm dmp (T ) which is the smallest constant C as above. For p = 1,
we have Dm1 (X1, . . . , Xm, Y ) = L(X1, . . . , Xm;Y ).
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It is well known (see [1, Theorem 2.4]) that T is Cohen strongly p-
summing (1 < p ≤ ∞) if, and only if, there exists a constant C > 0 and
a Radon probability measure µ on BY ∗∗ such that for all (x1, . . . , xm) ∈
X1 × · · · ×Xm and y∗ ∈ Y ∗, we have

(1) |〈T (x1, . . . , xm), y∗〉| ≤ C
m∏
j=1

‖xj‖
( �

BY ∗∗

|y∗(y∗∗)|p∗ dµ
)1/p∗

.

• A multilinear operator T ∈ L(X1, . . . , Xm;Y ) is r-dominated (1 ≤ r
< ∞) if there exists a constant C > 0 and Borel probabilities µj on BX∗j
(1 ≤ j ≤ m) such that

(2) ‖T (x1, . . . , xm)‖ ≤ C
m∏
j=1

( �

BX∗
j

|xj(x∗)|rdµj(x∗)
)1/r

for every xj ∈ Xj . Moreover, in this case we define

δr(T ) = inf{C > 0 : C satisfies (2)}.
Consequently, r1-dominated implies r2-dominated for r1 ≤ r2. We denote by
Lrd(X1, . . . , Xm;Y ) the vector space of all r-dominated m-linear operators
T from X1 × · · · × Xm into Y , which is a quasi-Banach space with the
quasi-norm δr(T ). If r > m, then δr(T ) is a norm.
• We say that an m-linear operator T ∈ L(X1, . . . , Xm;Y ) is absolutely

p-summing (1 ≤ p <∞) if there is a constant C > 0 such that for any n ∈ N
and (xji )1≤i≤n ⊂ Xj (1 ≤ j ≤ m), we have

(3)
( n∑
i=1

‖T (x1
i , . . . , x

m
i )‖p

)1/p
≤ C

m∏
j=1

‖(xji )1≤i≤n‖(lnp )ω(Xj).

The space of all absolutely p-summing m-linear mappings from X1×· · ·×Xm

into Y will be denoted by Las,p(X1, . . . , Xm;Y ), and the infimum of the C
for which (3) always holds defines a norm ‖T‖as,p on Las,p(X1, . . . , Xm;Y ).
• Let 1 ≤ p ≤ ∞. Then T ∈ L(X1, . . . , Xm;Y ) is strongly p-summing if

there exists a constant C > 0 such that for every xj1, . . . , x
j
n ∈ Xj (1 ≤ j

≤ m) we have

(4)
( n∑
i=1

‖T (x1
i , . . . , x

m
i )‖p

)1/p

≤ C sup
φ∈BL(X1,...,Xm)

( n∑
i=1

|φ(x1
i , . . . , x

m
i )|p

)1/p
.

Again the class of all strongly p-summing m-linear operators from X1 × · · ·
×Xm into Y , denoted by Lsas,p(X1, . . . , Xm;Y ), is a Banach space with the
norm ‖T‖sas,p which is the smallest constant C such that (4) holds.
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• An m-linear operator T : X1 × · · · × Xm → Y is fully (or multiple)
p-summing if there is a constant C > 0 such that for any xj1, . . . , x

j
n ∈ Xj

(1 ≤ j ≤ m) we have

(5)
( ∞∑
i1,...,im=1

‖T (x1
i1 , . . . , x

m
im)‖p

)1/p
≤ C

m∏
j=1

‖(xji )
∞
i=1‖lωp (Xj).

We denote the vector space of all such mappings by Lfas,p(X1, . . . , Xm;Y ),
and the smallest C satisfying (5) by ‖T‖fas,p. This defines a norm on
Lfas,p(X1, . . . , Xm;Y ).
• We say that T ∈ L(X1, . . . , Xm;Y ) is p-semi-integral (notation: T ∈

Lsi,p(X1, . . . , Xm;Y )) if there exists a constant C ≥ 0 and a regular prob-
ability measure µ on the Borel σ-algebra of BX∗1 × · · · × BX∗m endowed
with the product of the weak star topologies σ(X∗j , Xj), 1 ≤ j ≤ m, such
that

‖T (x1, . . . , xm)‖ ≤ C
( �

BX∗1
×···×BX∗m

|ϕ1(x1) . . . ϕm(xm)|pdµ(ϕ1, . . . , ϕm)
)1/p

for every xj ∈ Xj and j = 1, . . . ,m. The infimum of the C defines a norm
‖ · ‖si,p on the space of p-semi-integral mappings.

It is well known [7, Theorem 1] that T ∈ Lsi,p(X1, . . . , Xm;Y ) if and
only if there exists C ≥ 0 such that

(6)
( n∑
i=1

‖T (x1
i , . . . , x

m
i )‖p

)1/p

≤ C sup
φj∈BX∗

j
, j=1,...,m

( n∑
i=1

|φ1(x1
i ) . . . φ

m(xmi )|p
)1/p

.

Since Pietsch’s paper [23], several generalizations of absolutely summing
operators to the multilinear setting have been investigated. The ideal of Co-
hen strongly p-summing multilinear operators was introduced by of Achour–
Mezrag [1]. Dominated mappings were first explored by Geiss [14], Schneider
[26] and Matos [15]. The ideal of strongly p-summing multilinear opera-
tors was introduced by Dimant [13]. The ideal of multiple summing, also
called fully summing, multilinear mappings was first vaguely sketched by
Ramanujan and Schock [25], and introduced independently by Matos [16]
and Pérez-Garćıa and Villanueva [22], and exhaustively explored in recent
years (we mention, for example, [17, 20]). The semi-integral mappings were
introduced by Alencar–Matos [2].

2. Cohen p-nuclear mappings. We will extend to multilinear opera-
tors the class of p-nuclear operators introduced by Cohen [10] and general-
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ized to Cohen (p, q)-nuclear operators by Apiola [3]. We prove directly the
principal result of this section, which is the domination theorem.

For the convenience of the reader we start by recalling the linear case.
A linear operator T between Banach spaces X,Y is Cohen p-nuclear (for
1 < p < ∞) if there is a positive constant C such that for all n ∈ N,
x1, . . . , xn ∈ X and y∗1, . . . , y

∗
n ∈ Y ∗ we have∣∣∣ n∑

i=1

〈T (xi), y∗i 〉
∣∣∣ ≤ C sup

x∗∈BX∗
‖(x∗(xi))‖lnp sup

y∈BY

‖(y∗i (y))‖ln
p∗
.

The smallest constant C, denoted by np(T ), such that the above inequal-
ity holds, is called the Cohen p-nuclear norm on the space Np(X,Y ) of all
Cohen p-nuclear operators fromX into Y , which is a Banach space. For p = 1
and p =∞ we have N1(X,Y ) = Π1(X,Y ) and N∞(X,Y ) = D∞(X,Y ) (for
1 < p ≤ ∞, Dp(X,Y ) is the Banach space of all strongly p-summing linear
operators, see [10]).

We now give our definition.

Definition 2.1. An m-linear operator T : X1×· · ·×Xm → Y is Cohen
p-nuclear (1 < p < ∞) if there is a constant C > 0 such that for any
xj1, . . . , x

j
n ∈ Xj (1 ≤ j ≤ m) and any y∗1, . . . , y

∗
n ∈ Y ∗, we have

(7)
∣∣∣ n∑
i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣
≤ C

(
sup

xj∗∈BX∗
j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|p

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗
.

Again the class of all Cohen p-nuclear m-linear operators from X1×· · ·×
Xm into Y , which is denoted by Nm

p (X1, . . . , Xm;Y ), is a Banach space with
the norm nmp (T ), which is the smallest constant C such that (7) holds.

For p =∞, (7) becomes∣∣∣ n∑
i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣ ≤ C( sup
1≤i≤n

m∏
j=1

‖xji‖Xj

)
sup
y∈BY

‖(y∗i (y))‖ln1 .

It is clear that every T ∈ Nm
p (X1, . . . , Xm;Y ) is continuous and ‖T‖ ≤

nmp (T ).

Proposition 2.2.

(a) Nm
1 (X1, . . . , Xm;Y ) = Lsi,1(X1, . . . , Xm;Y ).

(b) Nm
∞(X1, . . . , Xm;Y ) = Dm∞(X1, . . . , Xm;Y ).
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Proof. (a) Let T ∈ Nm
1 (X1, . . . , Xm;Y ). Then∣∣∣ n∑

i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣
≤ nm1 (T )

(
sup

xj∗∈BX∗
j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|
)

sup
y∈BY

‖(y∗i (y))‖ln∞

≤ nm1 (T )
(

sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|
)

sup
i
‖y∗i ‖.

On the other hand, we have
n∑
i=1

‖T (x1
i , . . . , x

m
i )‖ = sup

{∣∣∣ n∑
i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣ : sup
i
‖y∗i ‖ ≤ 1

}
.

This implies
n∑
i=1

‖T (x1
i , . . . , x

m
i )‖ ≤ nm1 (T ) sup

xj∗∈BX∗
j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|.

Thus by (6), T is 1-semi-integral and ‖T‖si,1 ≤ nm1 (T ).
Conversely, let T be a 1-semi-integral m-linear operator. We have∣∣∣ n∑
i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣ ≤ sup
i
‖y∗i ‖

n∑
i=1

‖T (x1
i , . . . , x

m
i )‖

≤ ‖T‖si,1 sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉| sup

i
‖y∗i ‖

≤‖T‖si,1 sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉| sup

y∈BY

‖(y∗i (y))‖ln∞ .

Thus T is a Cohen 1-nuclear m-linear operator and nm1 (T ) ≤ ‖T‖si,1.
(b) is obvious.

Example 2.3. Let K be a compact Hausdorff space, let µ be a pos-
itive regular Borel measure on K and let 1 ≤ p < ∞. Each g ∈ Lp(µ)
defines an m-linear multiplication operator Tg ∈ L(mC(K);L1(µ)) with
Tg(f1, . . . , fm) = g ·f1 · · · · ·fm. This map is Cohen p-nuclear and nmp (Tg) =
‖g‖Lp(µ).

The next proposition asserts that (Nm
p (X1, . . . , Xm;Y ), nmp (T )) is a

normed (Banach) multi-ideal. We omit the proof.
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Proposition 2.4.

(i) Every m-linear mapping of finite type is Cohen p-nuclear, that is,
Lf(X1, . . . , Xm;Y ) ⊂ Nm

p (X1, . . . , Xm;Y ).
(ii) (Ideal property) If T ∈ Nm

p (X1, . . . , Xm;Y ), uj ∈ L(Ej , Xj), j =
1, . . . ,m, and w ∈ L(Y,Z), then w ◦ T ◦ (u1, . . . , um) is Cohen p-
nuclear and

nmp (w ◦ T ◦ (u1, . . . , um)) ≤ ‖w‖nmp (T )
m∏
j=1

‖uj‖.

(iii) nmp (Tm : Km → K : Tm(x1, . . . , xm) = x1 . . . xm) = 1 for all m.

This class satisfies a Pietsch domination theorem which is the principal
result of this section. For the proof we will use Ky Fan’s lemma (see [12,
p. 190]).

Ky Fan’s Lemma. Let E be a Hausdorff topological vector space, and
let C be a compact convex subset of E. Let M be a set of functions on C with
values in (−∞,∞] having the following properties:

(a) each f ∈M is convex and lower semicontinuous;
(b) if g ∈ conv(M), then there is an f ∈ M with g(x) ≤ f(x) for every

x ∈ C;
(c) there is an r ∈ R such that each f ∈ M has a value not greater

than r.

Then there is an x0 ∈ C such that f(x0) ≤ r for all f ∈M .

Theorem 2.5. For T ∈ L(X1, . . . , Xm;Y ) and 1 < p <∞, the following
conditions are equivalent:

(i) The operator T is Cohen p-nuclear.
(ii) No matter how we choose finitely many vectors xj1, . . . , x

j
n in Xj

(1 ≤ j ≤ m) and y∗1, . . . , y
∗
n in Y ∗, we have

n∑
i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉|

≤ nmp (T )
(

sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|p

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗
.

(iii) There exist Radon probability measures µj ∈ C(BX∗j )∗ (1 ≤ j ≤ m)
and λ ∈ C(BY ∗∗)∗ such that for all (x1, . . . , xm) ∈ X1 × · · · ×Xm

and y∗ ∈ Y ∗,
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(8) |〈T (x1, . . . , xm), y∗〉| ≤ C
m∏
j=1

‖xj‖Lp(BX∗
j
,µj)‖y

∗‖Lp∗ (BY ∗∗,λ).

Proof. The implication (i)⇒(ii) is trivial. The proof is omitted.
The main point of the proof, the implication (ii)⇒(iii), follows the ideas

of [14] and [1]. We consider the sets P (BX∗j ) (1 ≤ j ≤ m) and P (BY ∗∗)
of probability measures in C(BX∗j )∗ and C(BY ∗∗)∗, respectively. These are
convex sets which are compact when we endow C(BX∗j )∗ and C(BY ∗∗)∗

with their weak∗ topologies. We are going to apply Ky Fan’s lemma with
E = C(BX∗1 )∗×· · ·×C(BX∗m)∗×C(BY ∗∗)∗ and C = P (BX∗1 )×· · ·×P (BX∗m)×
P (BY ∗∗).

Consider the set M of all functions f : C → R for which there exist
xj1, . . . , x

j
n ∈ Xj (j = 1, . . . ,m) and y∗1, . . . , y

∗
n ∈ Y ∗ such that

f(µ1, . . . , µm, λ)

:=
n∑
i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉| −

C

p

n∑
i=1

m∏
j=1

�

BX∗
j

|〈xji , x
j∗〉|p dµj(x∗j)

− C

p∗

n∑
i=1

�

BY ∗∗

|〈y∗i , y∗∗〉|p
∗
dλ(y∗∗)

for all (µ1, . . . , µm, λ) ∈ C. It is clear that all such f are continuous and
affine and that the set M is a convex cone and consequently conditions (a)
and (b) of Ky Fan’s lemma are satisfied.

For condition (c), since BX∗j and BY ∗∗ are weak∗ compact and norming,

there exist for f ∈M elements x∗j0 ∈ BX∗j and y0 ∈ BY ∗∗ such that

sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|p =

n∑
i=1

m∏
j=1

|〈xji , x
j∗
0 〉|

p

and

sup
y∈BY

‖(y∗i (y))‖p
∗

ln
p∗

=
n∑
i=1

|〈y∗i , y0〉|p
∗
.

Using the elementary identity

(9) αβ = inf
ε>0

{
1
p

(
α

ε

)p
+

1
p∗

(εβ)p
∗
}
, ∀α, β ∈ R∗+,

we find by taking

α =
(

sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|p

)1/p
, β = sup

y∈BY

‖(y∗i (y))‖ln
p∗
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and ε = 1 that

f(δx∗10
, . . . , δx∗m0

, δy0)

=
n∑
i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉| −

C

p

(
sup

xj∗∈BX∗
j

≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|p

)

− C

p∗
sup
y∈BY

‖(y∗i (y))‖p
∗

ln
p∗

≤
n∑
i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉|

− C
(

sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

m∏
j=1

|〈xji , x
j∗〉|p

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗
,

where δx is the Dirac measure at x. The last quantity is less than or equal
to zero (by hypothesis (ii)) and hence condition (c) is satisfied with r = 0.
By Ky Fan’s lemma, there is (µ1, . . . , µm, λ) ∈ C with f(µ1, . . . , µm, λ) ≤ 0
for all f ∈M . Then, if f is generated by the single elements (x1, . . . , xm) ∈
X1 × · · · ×Xm and y∗ ∈ Y ∗,

|〈T (x1, . . . , xm), y∗〉|

≤ C

p

m∏
j=1

�

BX∗
j

|〈xji , x
∗j〉|pdµj(x∗j) +

C

p∗

�

BY ∗∗

|〈y∗i , y∗∗〉|p
∗
dλ(y∗∗).

Fix ε > 0. Replacing xj by ε−1/mxj , y∗ by εy∗ and taking the infimum over
all ε > 0 (using the elementary identity (9)), we find

|〈T (x1, . . . , xm), y∗〉|

≤ C
[

1
p

(( m∏
j=1

�

BX∗
j

|〈xji , x
∗j〉|p dµj(x∗j)

)1/p/
ε

)p

+
1
p∗

(
ε
( �

BY ∗∗

|〈y∗, y∗∗〉|p∗ dλ(y∗∗)
)1/p∗)p∗]

≤ C
m∏
j=1

( �

BX∗
j

|〈xj , x∗j〉|p dµj(x∗j)
)1/p( �

BY ∗∗

|〈y∗, y∗∗〉|p∗ dλ(y∗∗)
)1/p∗

.

Now we prove that (iii) implies (i). Let (x1
i , . . . , x

m
i ) ∈ X1×· · ·×Xm and

y∗i ∈ Y ∗. By (8), we have
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|〈T (x1
i , . . . , x

m
i ), y∗i 〉| ≤ C

m∏
j=1

‖xji‖Lp(BX∗
j
,µj)‖y

∗
i ‖Lp∗ (BY ∗∗,λ)

for all 1 ≤ i ≤ n, and so∣∣∣ n∑
i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣ ≤ n∑
i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉|

≤ C
n∑
i=1

( m∏
j=1

‖xji‖Lp(BX∗
j
,µj)‖y

∗
i ‖Lp∗ (BY ∗∗,λ)

)
.

We use Hölder’s inequality to obtain∣∣∣ n∑
i=1

〈T (x1
i ,...,x

m
i ),y∗i 〉

∣∣∣
≤C

( n∑
i=1

m∏
j=1

‖xji‖
p
Lp(BX∗

j
,µj)

)1/p( n∑
i=1

‖y∗i ‖Lp∗ (BY ∗∗,λ)
p∗
)1/p∗

=C
( n∑
i=1

�

BX∗1
×···×BX∗m

|x1∗(x1
i )...x

m∗(xmi )|pd(µ1⊗···⊗µm)(x1∗,...,xm∗)
)1/p

·
( n∑
i=1

�

BY ∗∗

|y∗i (y∗∗)|p
∗
dλ(y∗∗)

)1/p∗

≤C
(

sup
xj∗∈BX∗

j

1≤j≤m

n∑
i=1

|x1∗(x1
i )...x

m∗(xmi )|p
)1/p

sup
y∈BY

( n∑
i=1

|y∗i (y)|p∗
)1/p∗

.

Therefore T is Cohen p-nuclear and nmp (T ) ≤ C, as we wanted to prove.

3. Kwapień’s factorization theorem. Comparing condition (iii) of
Theorem 2.5 with condition (b) of [11, Corollary 19.2], it is legitimate to say
that Cohen p-nuclear multilinear operators are a generalization of (p; p∗)-
dominated linear operators. Therefore the following theorem can be regarded
as a multilinear version of Kwapień’s factorization theorem.

Theorem 3.1 (Kwapień’s Factorization Theorem). Let 1 < p < ∞.
Then T ∈ L(X1, . . . , Xm;Y ) is Cohen p-nuclear if and only if there ex-
ist Banach spaces G1, . . . , Gm, absolutely p-summing linear operators uj ∈
L(Xj , Gj) and a Cohen strongly p-summing m-linear mapping S∈L(G1, . . . ,
Gm;Y ) such that T = S(u1, . . . , um) Moreover,

nmp (T ) = sup
{
dmp (S)

m∏
j=1

πp(uj) : T = S ◦ (u1, . . . , um)
}

(i.e. Nm
p = Dmp ◦ (Πp, . . . ,Πp) isometrically).
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Proof. The “if” part follows from a straightforward combination of The-
orem 2.4 with Pietsch’s domination theorem for absolutely p-summing linear
operators.

To prove the “only if” part, take T ∈ Nm
p (X1, . . . , Xm;Y ). Then, by

(8), there exist Radon probability measures µj ∈ C(BX∗j )∗ (1 ≤ j ≤ m)
and λ ∈ C(BY ∗∗)∗ such that for all (x1, . . . , xm) ∈ X1 × · · · × Xm and
y∗ ∈ Y ∗,

|〈T (x1, . . . , xm), y∗〉| ≤ C
m∏
j=1

‖xj‖Lp(BX∗
j
,µj)‖y

∗‖Lp∗ (BY ∗∗,λ).

Let (x1, . . . , xm) ∈ X1 × · · · × Xm. Define u0
j (x

j) := 〈·, xj〉 ∈ C(BX∗j ) and
consider the diagram

X1

iX1��

× · · ·× Xm

iXm��

T // Y

iX1(X1)

��

× · · ·× iXm(Xm)

��

(I1,...,Im)
// G1 × · · ·×

S

OO

Gm

∩ ∩

C(BX∗1 ) × · · ·× C(BX∗m)
(I1,...,Im)

// Lp(µ1) × · · ·× Lp(µm)

where Ij : C(BX∗j )→ Lp(µj) is the canonical injection, iXj : Xj → C(Kj) is
the natural isometric injection and Gj is the closure of the space Ij ◦u0

j (Xj),
uj(xj) := Ij(u0

j (x
j)). Since πp(Ij) = 1 and ‖u0

j‖ = 1, it follows that
πp(uj) ≤ 1.

The operator S is defined on u1(X1)×· · ·×um(Xm), uj(Xj) = Ij(u0
j (x

j))
(1 ≤ j ≤ m), by

S(u1(x1), . . . , um(xm)) := T (x1, . . . , xm),

and this definition makes sense because

|〈S(u1(x1), . . . , um(xm)), y∗〉|

≤ nmp (T )
m∏
j=1

‖uj(xj)‖Gj

( �

BY ∗∗

|〈y∗, y∗∗〉|p∗dλ(y∗∗)
)1/p∗

.

It follows that S is continuous on u1(X1)× · · · × um(Xm) and has a unique
extension to u1(X1)×· · ·×um(Xm) = G1×· · ·×Gm; moreover, the inequality
implies that
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‖S∗(y∗)‖ = sup{|〈S∗(y∗), (u1(x1), . . . , um(xm))〉| : ‖uj(xj )‖ ≤ 1}

≤ nmp (T )
( �

BY ∗∗

|〈y∗, y∗∗〉|p∗dλ(y∗∗)
)1/p∗

,

which means that S∗ is absolutely p∗-summing. From [18, Theorem 2.7],
S is a Cohen strongly p-summing m-linear operator and dmp (S) = πp∗(S∗)
≤ nmp (T ). This ends the proof.

Example 3.2. The operator T : l1 × l1 → l1 given by T ((x1
k)k, (x

2
k)k) =

(x1
kx

2
k)k is 1-nuclear.

Proof. Let

S : l2 × l2 → l1, ((x1
k)k, (x

2
k)k) 7→ (x1

kx
2
k)k,

for all (x1
k)k, (x

2
k)k ∈ l2. Then, for all n ∈ N and all (xj1,k)k, . . . , (x

j
n,k)k ∈ l2

(1 ≤ j ≤ 2), y∗1, . . . , y
∗
n ∈ l∞, we have

n∑
i=1

|〈S((x1
i,k)k, (x

2
i,k)k), y

∗
i 〉|

≤
n∑
i=1

‖S((x1
i,k)k, (x

2
i,k)k)‖ ‖y∗i ‖

≤
n∑
i=1

( ∞∑
k=1

|x1
i,k|2

)1/2( ∞∑
k=1

|x2
i,k|2

)1/2
sup
i

sup
y∈Bl1

|y∗i (y)|

≤
n∑
i=1

2∏
j=1

‖(xji,k)k‖l2 sup
y∈Bl1

sup
i
|y∗i (y)|

≤
n∑
i=1

2∏
j=1

‖(xji,k)k‖l2 sup
y∈Bl1

‖y∗i (y)‖l∞ .

Thus S is Cohen strongly 1-summing. On the other hand, the canonical
operator Ij : l1 → l2 (1 ≤ j ≤ 2) is 1-summing. We conclude by Theorem 3.1
that T = S(I1, I2) : l1 × l1 → l1 is Cohen 1-nuclear.

4. Relations between different classes of summability. In this
section we will obtain certain inclusions between different classes investi-
gated in this paper and establish the position of Cohen p-nuclear mappings
with respect to other concepts. As a consequence of our results, we show
that every Cohen p-nuclear (1 < p ≤ ∞) m-linear mapping on arbitrary
Banach spaces is weakly compact.

We also need the definition of integral multilinear operators.
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Definition 4.1. [8] We say that T ∈ L(X1, . . . , Xm;Y ) is integral (no-
tation: T ∈ I(X1, . . . , Xm;Y )) if there exists a constant C ≥ 0 such that for
every m ∈ N, and all families (xji )1≤i≤n ⊂ Xj and (y∗i )1≤i≤n ⊂ Y ∗, we have∣∣∣ n∑

i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣ ≤ C sup
xj∗∈BX∗

j

1≤j≤m

∥∥∥ n∑
i=1

x1∗(x1
i ) . . . x

m∗(xmi )y∗i
∥∥∥
Y ∗
.

The infimum of the C defines a norm ‖ · ‖I on the space of integral
mappings. In the case Y = K, this definition was given in [23] (see also [14]).

In [27], the author introduces the ideal of integral multilinear mappings
as those satisfying a certain integral condition. Cilia and Gutiérrez [9] prove
that the various definitions of integral multilinear mappings are equivalent.

Theorem 4.2 ([7, Theorem 3]).

(i) Lpd(X1, . . . , Xm;Y ) ⊂ Lsi,p(X1, . . . , Xm;Y ).
(ii) Lsi,p(X1, . . . , Xm;Y )⊂Lfas,p(X1, . . . , Xm;Y )⊂Las,p(X1, . . . , Xm;Y ).

(iii) Lsi,p(X1, . . . , Xm;Y ) ⊂ Lsas,p(X1, . . . , Xm;Y ).

The following theorem yields inclusions of the class of Cohen p-nuclear
mappings in other classes of multilinear mappings investigated in this pa-
per.

Theorem 4.3. Let 1 < p <∞, let X1, . . . , Xm, Y be Banach spaces and
let T : X1 × · · · ×Xm → Y be an m-linear operator.

(i) If T ∈Nm
p (X1, . . . , Xm;Y ) then T ∈Dmp (X1, . . . , Xm;Y ) and dmp (T )

≤ nmp (T ).
(ii) If T ∈ Nm

p (X1, . . . , Xm;Y ) then T ∈ Lrd(X1, . . . , Xm;Y ) for all
r ≥ p and δr(T ) ≤ nmp (T ).

(iii) If 1 < p ≤ 2 and T ∈ Nm
p (X1, . . . , Xm;Y ), then T is absolutely

q-summing for all q.

Proof. (i) If T is Cohen p-nuclear, then

|〈T (x1, . . . , xm), y∗〉|

≤ nmp (T )
m∏
j=1

( �

BX∗
j

|〈xj , ξj〉|pdµj(ξj)
)1/p( �

BY ∗∗

|〈y∗∗, y∗〉|p∗dλ(y∗∗)
)1/p∗

≤ nmp (T )
m∏
j=1

( sup
ξj∈BX∗

j

|〈xj , ξj〉|)
( �

BY ∗∗

|〈y∗∗, y∗〉|p∗dµ(y∗∗)
)1/p∗

≤ nmp (T )
m∏
j=1

‖xj‖Xj

( �

BY ∗∗

|〈y∗∗, y∗〉|p∗dµ(y∗∗)
)1/p∗

.

Thus, by (1), T ∈ Dmp (X1, . . . , Xm;Y ) and dmp (T ) ≤ nmp (T ).
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(ii) If T is Cohen p-nuclear, then

‖T (x1, . . . , xm)‖
= sup

y∗∈BY ∗
|〈T (x1, . . . , xm), y∗〉|

≤ nmp (T )
m∏
j=1

‖xj‖Lp(BX∗
j
,µj) sup

y∗∈BY ∗

( �

BY ∗∗

|〈y∗∗, y∗〉|p∗dλ(y∗∗)
)1/p∗

≤ nmp (T )
m∏
j=1

‖xj‖Lp(BX∗
j
,µj) sup

y∗∈BY ∗
‖y∗‖

≤ nmp (T )
m∏
j=1

‖xj‖Lr(BX∗
j
,µj).

Thus, by (2), T is r-dominated and δr(T ) ≤ nmp (T ).
(iii) By (ii), T is 2-dominated (r = 2); hence Proposition 4.3 in [6] shows

that T is absolutely q-summing for all q.

Theorem 4.4. Every integral m-linear operator is Cohen p-nuclear.

Proof. Let T ∈ L(X1, . . . , Xm;Y ). If T is integral, we can use Hölder’s
inequality to write∣∣∣ n∑
i=1

〈T (x1
i , . . . , x

m
i ), y∗i 〉

∣∣∣
≤ ‖T‖I sup

x∗j∈BX∗
j

1≤j≤m

(
sup
y∈BY

∣∣∣ n∑
i=1

x1∗(x1
i ) . . . x

m∗(xmi )y∗i (y)
∣∣∣)

≤ ‖T‖I sup
x∗j∈BX∗

j

1≤j≤m

( n∑
i=1

|x1∗(x1
i ) . . . x

m∗(xmi )|p
)1/p

sup
y∈BY

( n∑
i=1

|y∗i (y)|p∗
)1/p∗

.

Thus T is Cohen p-nuclear.

Corollary 4.5.

(i) I(X1, . . . , Xm;Y ) ⊂ Nm
p (X1, . . . , Xm;Y ) ⊂ Lsi,p(X1, . . . , Xm;Y ) ⊂

Lsas,p(X1, . . . , Xm;Y ).
(ii) Nm

p (X1, . . . , Xm;Y ) ⊂ Las,p(X1, . . . , Xm;Y ).
(iii) I(X1, . . . , Xm;Y ) and Nm

p (X1, . . . , Xm;Y )⊂Lfas,p(X1, . . . , Xm;Y ).

As a consequence of Proposition 2.2(a) and [7, Remarks 1, 2 and Theo-
rem 4] we have
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Remark 4.6.

1) The inclusion Nm
1 (X1, . . . , Xm;Y ) ⊂ Lsas,1(X1, . . . , Xm;Y ) is some-

times strict.
2) The inclusion Nm

1 (X1, . . . , Xm;Y ) ⊂ Lfas,1(X1, . . . , Xm;Y ) is some-
times strict.

3) If Xj (1 ≤ j ≤ m) has cotype 2, then we have Nm
1 (X1, . . . , Xm;Y ) =

L1
d(X1, . . . , Xm;Y ) for every Y .

4) The inclusion Nm
1 (X1, . . . , Xm;Y ) ⊂ Las,1(X1, . . . , Xm;Y ) is some-

times strict.

A multilinear mapping T between Banach spaces is weakly compact if T
can be written as T = u ◦ R where R is a multilinear mapping and u is a
weakly compact linear operator. By Lw(X1, . . . , Xm;Y ) we denote the closed
subspace of L(X1, . . . , Xm;Y ) formed by the weakly compact mappings.

Let X1⊗̂π · · · ⊗̂πXm denote the completed projective tensor product of
X1, . . . , Xm. Recall that every m-linear operator T ∈ L(X1, . . . , Xm;Y ) has
an associated linear operator TL ∈ L(X1⊗̂π . . . ⊗̂πXm;Y ). For 1 < p ≤ ∞,
it is not difficult to prove that T is Cohen strongly p-summing if and only
if TL is strongly p-summing.

Since strongly p-summing linear operators are weakly compact [10, Cor-
ollary 2.2.5(i)], we conclude by Proposition 3.2(a) in [5] that every T ∈
Dmp (X1, . . . , Xm;Y ) is weakly compact.

Our main result of this section is the following corollary, which is a
straightforward consequence of Theorem 4.3(i) and [5, Proposition 5.7 and
Remark 5.9].

Corollary 4.7.

1) Every Cohen p-nuclear (1 < p ≤ ∞) m-linear mapping on arbitrary
Banach spaces is weakly compact.

2) Let K1, . . . ,Km be compact Hausdorff spaces. For m-linear mappings
from C(K1)× · · · × C(Km) to an arbitrary Banach space, we have

Nm
1 ⊆ Π ◦ L ⊆ Lsas,p ∩ Lw.

3) The statement of 1) is not true for p = 1.
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