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ON THE DISTRIBUTION OF THE EULER FUNCTION OF
SHIFTED SMOOTH NUMBERS

BY

STEFANIE S. LOIPERDINGER and IGOR E. SHPARLINSKI (Sydney)

Abstract. We give asymptotic formulas for some average values of the Euler function
on shifted smooth numbers. The result is based on various estimates on the distribution of
smooth numbers in arithmetic progressions which are due to A. Granville and É. Fouvry
& G. Tenenbaum.

1. Introduction. An integer n ≥ 1 is called y-smooth if every prime
factor p of n satisfies p ≤ y. For a detailed introduction to smooth numbers,
their properties and applications, see [1, 3, 4, 5, 7, 8, 9] and references
therein.

We denote by S(x, y) the set of numbers less than or equal to x that are
y-smooth, that is,

S(x, y) = {n : 1 ≤ n ≤ x and n is y-smooth}.
Furthermore let Ψ(x, y) = #S(x, y) be the counting function for smooth
numbers.

Also, as usual, we use ϕ(k) to denote the Euler function of an integer
k ≥ 1.

In this paper, we obtain asymptotic formulas for some average values of
the Euler function of shifted smooth numbers. Namely, for real x ≥ y ≥ 2,
we define

T (x, y) =
∑

a<n≤x
n∈S(x,y)

ϕ(n− a)
n− a

and V (x, y) =
1

Ψ(x, y)

∑
a<n≤x
n∈S(x,y)

ϕ(n− a),

where a 6= 0 is a fixed integer (throughout the paper, the implied constant
may depend on a).

2. Preparations. In what follows, we use U = O(V ), U � V , and
V � U as equivalents of the inequality |U | ≤ cV with some constant c > 0,
which may depend only on n.

2010 Mathematics Subject Classification: 11N25, 11N37.
Key words and phrases: Euler function, smooth numbers.

DOI: 10.4064/cm120-1-10 [139] c© Instytut Matematyczny PAN, 2010



140 S. S. LOIPERDINGER AND I. E. SHPARLINSKI

We recall that the Dickman–de Bruijn function ρ(u) is defined by

ρ(u) = 1, 0 ≤ u ≤ 1,

and

ρ(u) = 1−
u�

1

ρ(v − 1)
v

dv, u > 1.

Then, by [9, Chapter III.5, Corollary 9.3], we have

Lemma 1. For any ε > 0, the estimate

Ψ(x, y) = xρ(u)
(

1 +O

(
log(u+ 1)

log y

))
holds uniformly in the range

exp((log log x)5/3+ε) ≤ y ≤ x,

where

u =
log x
log y

.

The following asymptotic estimate on ρ(u) follows immediately from a
much more precise result of [9, Chapter III.5, Theorem 8].

Lemma 2. For any u→∞, we have

ρ(u) = exp(−(1 + o(1))u log u).

We note that the bound

(1) Ψ(x, y) = xu−u+o(u),

due to Canfield, Erdős and Pomerance [1, Corollary to Theorem 3.1], holds
in a much wider range than one can obtain from Lemmas 1 and 2; see
also [5, 7, 9].

Furthermore, the following upper bound on the derivative of ρ(u) is
a very weak form of a much more precise result [9, Chapter III.5, Corol-
lary 8.3].

Lemma 3. For any u > 0, we have

ρ′(u)� ρ(u) log(u+ 1).

For any integers a and d with gcd(a, d) = 1, let

Ψ(x, y; a, d) = #{n ∈ S(x, y) : n ≡ a (modd)}

and let
Ψd(x, y) = #{n ∈ S(x, y) : gcd(n, d) = 1}.
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In general, one expects that

Ψ(x, y; a, d) ∼ Ψd(x, y)
ϕ(d)

for sufficiently large x.
Granville [3] has proved the following bounds on the average of smooth

numbers lying in a fixed arithmetic progression.

Lemma 4. Let A be a fixed positive number. Then there exist positive
constants γ and δ, depending only on A, such that for

∆ = min
{

exp
(
γ

log y log log y
log log log y

)
,

√
x

(log x)δ

}
uniformly over y ≥ 100 we have∑

d≤∆
max
z≤x

max
gcd(a,d)=1

∣∣∣∣Ψ(z, y; a, d)− Ψd(z, y)
ϕ(d)

∣∣∣∣ = O

(
Ψ(x, y)
(log y)A

)
,

where the implied constant depends only on A.

Finally, Fouvry and Tenenbaum [2] give the following asymptotic formula
for the number of smooth numbers that are coprime to d.

Lemma 5. For any ε > 0 there exists x0(ε) such that for x ≥ x0(ε), the
estimate

Ψd(x, y) =
ϕ(d)
d

Ψ(x, y)
(

1 +O

(
log log(dy) log log x

log y

))
holds uniformly in the range

exp((log log x)5/3+ε) ≤ y ≤ x, log log(d+ 2) ≤
(

log y
log(u+ 1)

)1−ε
,

where

u =
log x
log y

.

3. Asymptotic formulas. We are now ready to obtain our main re-
sults.

Theorem 1. There exists an absolute constant C > 0 such that for a
sufficiently large x the bound

T (x, y) = Ψ(x, y)
(

6
π2

+O

(
log log x log log y

log y

))
holds uniformly in the range

x ≥ y ≥ exp(C
√

log x log log log x).
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Proof. Using the well known identity

ϕ(n) = n
∑
d|n

µ(d)
d

,

where µ(d) is the Möbius function (see [6, equation (16.3.1)]), and changing
the order of summation, we can rewrite T (x, y) in the following way:

T (x, y) =
∑

a<n≤x
n∈S(x,y)

∑
d|(n−a)

µ(d)
d

=
∑
d≤x

µ(d)
d

∑
a<n≤x
n∈S(x,y)

n≡a (mod d)

1 =
∑
d≤x

µ(d)
d

Ψ(x, y; a, d).

Let γ and δ be chosen as in Lemma 4, corresponding to A = 1. We now
define

∆ = min
{

exp
(
γ

log y log log y
log log log y

)
,

√
x/a

(log x/a)δ

}
,

and write

(2) T (x, y) =
∑
d≤x

µ(d)
d

Ψ(x, y; a, d) = Σ1 +Σ2,

where

Σ1 =
∑
d≤∆

µ(d)
d

Ψ(x, y; a, d); Σ2 =
∑

x≥d>∆

µ(d)
d

Ψ(x, y; a, d).

For Σ1 we have

(3) Σ1 =
∑
d≤∆

µ(d)Ψd(x, y)
dϕ(d)

+O(R),

where

R =
∑
d≤∆

1
d

∣∣∣∣Ψ(x, y; a, d)− Ψd(x, y)
ϕ(d)

∣∣∣∣.
Now, for each divisor f | a, we collect together the terms with gcd(a, d) = f ,
getting

(4) R =
∑
f |a

Rf ,

where

(5) Rf =
∑
d≤∆

gcd(a,d)=f

1
d

∣∣∣∣Ψ(x, y; a, d)− Ψd(x, y)
ϕ(d)

∣∣∣∣
=

∑
d≤∆

gcd(a,d)=f

1
d

∣∣∣∣Ψ(x/f, y; a/f, d/f)− Ψd(x, y)
ϕ(d)

∣∣∣∣,
provided that y > |a|. We now note that Lemma 5 implies
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(6)
Ψd/f (x/f, y)
ϕ(d/f)

=
1
d/f

Ψ(x/f, y)
(

1 +O

(
log log(dy) log log x

log y

))
=
f

d
Ψ(x/f, y)

(
1 +O

(
log log(dy) log log x

log y

))
.

Furthermore, denoting

uf =
log(x/f)

log y
= u+O

(
1

log y

)
,

where u = log x
log y , we see from Lemma 3 that

ρ(uf ) = ρ(u)
(

1 +O

(
log(u+ 1)

log y

))
.

Thus, by Lemma 1 we have

Ψ(x/f, y) =
1
f
Ψ(x, y)

(
1 +O

(
log(u+ 1)

log y

))
.

Therefore (6) can be rewritten as
Ψd/f (x/f, y)
ϕ(d/f)

=
1
d
Ψ(x, y)

(
1 +O

(
log log(dy) log log x

log y
+

log(u+ 1)
log y

))
=

1
d
Ψ(x, y)

(
1 +O

(
log log(dy) log log x

log y

))
(since u� log x). Applying Lemma 5 again, we obtain

Ψd(x, y)
ϕ(d)

=
Ψd/f (x/f, y)
ϕ(d/f)

(
1 +O

(
log log(dy) log log x

log y

))
.

Accordingly, since the series
∞∑
d=1

gcd(a,d)=f

1
dϕ(d/f)

<∞

converges, we now derive from (5) that

Rf =
∑
d≤∆

gcd(a,d)=f

1
d

∣∣∣∣Ψ(x/f, y; a/f, d/f)−
Ψd/f (x/f, y)
ϕ(d/f)

∣∣∣∣
+O

(
Ψ(x, y)

log log(∆y) log log x
log y

)
�

∑
d≤∆

gcd(a,d)=f

∣∣∣∣Ψ(x/f, y; a/f, d/f)−
Ψd/f (x/f, y)
ϕ(d/f)

∣∣∣∣
+Ψ(x, y)

log log(∆y) log log x
log y

.
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Moreover, in the considered range of x and y, for sufficiently large x, we
have

y ≤ ∆3,

hence

log log(∆y) ≤ log log(∆4) ≤ log
(

4γ log y log log y
log log log y

)
= O(log log y).

Since γ and δ in the definition of ∆ are chosen to correspond to A = 1
in Lemma 4, we obtain

Rf � Ψ(x, y)
log log x log log y

log y
,

which after substitution into (4) yields

(7) R� Ψ(x, y)
log log x log log y

log y
.

We see that for d ≤ ∆ the condition of Lemma 5:

log log(d+ 2) ≤
(

log y
log(u+ 1)

)1−ε

is satisfied (provided x is large enough), so we derive

(8)
∑
d≤∆

µ(d)Ψd(x, y)
dϕ(d)

= Ψ(x, y)
∑
d≤∆

µ(d)
d2

(
1 +O

(
log log(dy) log log x

log y

))

= Ψ(x, y)
(∑
d≤∆

µ(d)
d2

+O

(
log log x

log y

∑
d≤∆

log log(dy)
d2

))
.

We also have∑
d≤∆

µ(d)
d2

=
∞∑
d=1

µ(d)
d2

+O

(∑
d≥∆

1
d2

)
=

1
ζ(2)

+O

(
1
∆

)
(9)

=
6
π2

+O

(
1
∆

)
,

where ζ(s) is the Riemann zeta-function (see [6, Theorem 287 and equa-
tion (17.2.2)]). To estimate the error term in (8) we use the trivial inequality

(10)
∑
d≤∆

log log(dy)
d2

≤
∑
d≤∆

log log(∆y)
d2

� log log(∆y)� log log y.
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Thus, substituting (9) and (10) in (8), we derive

(11)
∑
d≤∆

µ(d)Ψd(x, y)
dϕ(d)

= Ψ(x, y)
(

6
π2

+O

(
log log x log log y

log y

))
.

Combining (7) and (11), we deduce from (3) that

(12) Σ1 = Ψ(x, y)
(

6
π2

+O

(
log log x log log y

log y

))
.

For Σ2 we have the trivial estimate

(13) |Σ2| ≤
∑

x≥d>∆

1
d

∑
a<n≤x
n∈S(x,y)

n≡a (mod d)

1 ≤
∑

x≥d>∆

1
d

∑
a<n≤x

n≡a (mod d)

1

≤
∑

x≥d>∆

1
d

(bx/dc+ 1) ≤ 2x
∑

x≥d>∆

1
d2

= O

(
x

∆

)
.

Substituting (12) and (13) in (2), we obtain

(14) T (x, y) = Ψ(x, y)
(

6
π2

+O

(
log log x log log y

log y

))
+O

(
x

∆

)
.

We now see from Lemmas 1 and 2 that for a sufficiently large C, under
the condition

x ≥ y ≥ exp(C
√

log x log log log x),

the bound (1) holds, and furthermore we have

Ψ(x, y)
log log x log log y

log y
≥ Ψ(x, y)

1
log y

≥ x exp
(
−2

log x
log y

log
log x
log y

− log log y
)

≥ x exp
(
−2

log x
log y

log log x
)

≥ max
{
x exp

(
−γ log y log log y

log log log y

)
, x1/2(log x)δ

}
=
x

∆
.

Therefore the term O(x/∆) can be removed from (14), which concludes the
proof.

Theorem 2. There exists an absolute constant C > 0 such that for a
sufficiently large x the bound

V (x, y) =
3x
π2

+O

(
x log log x log log y

log y

)
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holds uniformly in the range

x ≥ y ≥ exp(C
√

log x log log log x).

Proof. Using partial summation (see [9, Chapter I.0, Theorem 1]), we
can rewrite V (x, y) in the following way:

V (x, y) =
1

Ψ(x, y)

∑
a<n≤x
n∈S(x,y)

n≡a (mod d)

ϕ(n− a)
n− a

(n− a)

=
1

Ψ(x, y)

(
T (x, y)(x− a)−

x�

1

T (t, y) dt
)
.

For
t ≤ x and y ≥ exp(C

√
log x log log log x)

Theorem 1 implies that

T (t, y) = Ψ(t, y)
(

6
π2

+O

(
log log t log log y

log y

))
.

Therefore

V (x, y) =
1

Ψ(x, y)

(
xT (x, y)−

(
6
π2

+O

(
log log x log log y

log y

)) x�

1

Ψ(t, y) dt
)
.

Since Ψ(t, y) ≤ Ψ(x, y), this simplifies as

(15) V (x, y) =
1

Ψ(x, y)

(
xT (x, y)− 6

π2

x�

1

Ψ(t, y) dt
)

+O

(
x log log x log log y

log y

)
.

Let, as before,

u =
log x
log y

.

By Lemma 1 we have

Ψ(t, y) = tρ

(
log t
log y

)(
1 +O

(
log(u+ 1)

log y

))
= tρ

(
log t
log y

)
+O

(
xρ(u)

log(u+ 1)
log y

)
= tρ

(
log t
log y

)
+O

(
Ψ(x, y)

log(u+ 1)
log y

)
.

Thus from (15) we derive

(16) V (x, y) =
1

Ψ(x, y)

(
xT (x, y)− 6

π2
I(x, y)

)
+O

(
x log log x log log y

log y

)
,
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where

I(x, y) =
x�

1

tρ

(
log t
log y

)
dt.

Using integration by parts, we derive

I(x, y) =
1
2

x�

1

ρ

(
log t
log y

)
dt2 =

1
2
x2ρ

(
log x
log y

)
+O(1)− 1

2

x�

1

t2 dρ

(
log t
log y

)

=
1
2
x2ρ(u) +O(1)− 1

2 log y

x�

1

tρ′
(

log t
log y

)
dt.

By Lemma 3 we have
x�

1

tρ′
(

log t
log y

)
dt�

x�

1

tρ

(
log t
log y

)
dt log(u+ 1)� I(x, y) log(u+ 1).

Therefore

I(x, y) =
1
2
x2ρ(u) +O

(
1 + I(x, y)

log(u+ 1)
log y

)
,

which, together with Lemma 1, implies

I(x, y) =
1
2
x2ρ(u)

(
1 +O

(
log(u+ 1)

log y

))
=

1
2
xΨ(x, y)

(
1 +O

(
log(u+ 1)

log y

))
.

Inserting this asymptotic formula in (16) and using Theorem 1, we conclude
the proof.

4. Remarks. Certainly, improving the error term or obtaining similar
bounds in a wider range are natural directions for further investigation.

Studying average values of other number-theoretic functions on shifted
smooth numbers, such as

1
Ψ(x, y)

∑
a<n≤x
n∈S(x,y)

τ(n− a) and
1

Ψ(x, y)

∑
a<n≤x
n∈S(x,y)

ω(n− a),

where τ(m) and ω(m) are the number of positive integer divisors and the
number of prime divisors of m ≥ 1, respectively, is of ultimate interest too.
However, investigating these sums may require a very different approach.
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