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AN EXTENSION WHICH IS RELATIVELY TWOFOLD MIXING
BUT NOT THREEFOLD MIXING

BY

THIERRY DE LA RUE (Rouen)

Abstract. We give an example of a dynamical system which is mixing relative to
one of its factors, but for which relative mixing of order three does not hold.

1. Factors, extensions and relative mixing

1.1. Factors, extensions and Rokhlin cocycle. We are interested in dy-
namical systems (X,A , µ, T ), where T is an ergodic automorphism of the
Lebesgue space (X,A , µ). We will often designate such a system by sim-
ply the symbol T . A factor of T is a sub-σ-algebra H of A such that
H = T−1H .

The canonical example of a system with a factor is given by the skew
product , constructed from a dynamical system (XH ,AH , µH , TH) (called the
base of the skew product) and a measurable map x 7→ Sx from XH to the
group of automorphisms of some Lebesgue space (Y,B, ν) (such a map is
called a Rokhlin cocycle). The transformation is defined on the product space
(XH × Y,AH ⊗B, µH ⊗ ν) by

T̃ (x, y) = (THx, Sxy).

In this context, the sub-σ-algebra AH ⊗ {Y, ∅} is clearly a factor of T̃ .
Since the work of Abramov and Rokhlin [1], this kind of construction is

known to be the general model for a system with a factor: If H is a factor

of T , then there exists an isomorphism ϕ between T and a skew product T̃
constructed as above, with ϕ(H ) = AH ⊗ {Y, ∅}. In such a situation, we
say that T is an extension of TH .

1.2. Mixing relative to a factor. To understand precisely the way a factor
is embedded in the dynamical system, one is led to study the behaviour of
the system relative to the factor ; to this end, relative properties are defined
which are generalizations of absolute properties of dynamical systems. For
example, one can define weak mixing relative to a factor (see e.g. [2]), or the
property of being a K-system relative to a factor [4].
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In this work we are interested in the property of mixing relative to a
factor.

Definition 1.1. Let H be a factor of the system (X,A , µ, T ). Then T
is said to be H -relatively mixing if

(1) ∀A,B ∈ A , µ(A ∩ T−kB |H )− µ(A |H )µ(T−kB |H )
prob−−−−→

k→+∞
0.

As for absolute mixing, it is possible to define mixing relative to a factor
of any order n ≥ 2. The property described by (1) corresponds to relative
mixing of order 2 (twofold relative mixing); for relative mixing of order 3
(threefold relative mixing), (1) should be replaced by

(2) ∀A,B,C ∈ A ,

µ(A∩T−jB∩T−kC |H )−µ(A |H )µ(T−jB |H )µ(T−kC |H )
prob−−−−−−→

j,k−j→+∞
0.

Whether (absolute) twofold mixing implies threefold mixing is a well
known open problem in ergodic theory. The main goal of this work is to
show that as far as relative mixing is concerned, twofold does not necessarily
imply threefold.

Theorem 1.1. There is a dynamical system (X,A , µ, T ) with a fac-
tor H such that T is H -relatively twofold mixing but not H -relatively
threefold mixing.

2. An extension which is relatively twofold mixing but not rel-
atively threefold mixing

2.1. The base. The dynamical system announced in Theorem 1.1 is con-
structed as a skew product, whose base (XH ,AH , µH , TH) is obtained as
follows: Take XH := [0, 1[ equipped with the Lebesgue measure µH on the
Borel σ-algebra AH . The transformation TH can be viewed as a triadic
version of the von Neumann–Kakutani transformation; we now describe its
construction by the cutting and stacking method (see Figure 1).

We begin by splitting XH into three subintervals of length 1/3; we
set B1 := [0, 1/3[. The transformation TH translates B1 onto THB1 :=
[1/3, 2/3[, and translates THB1 onto T 2

HB1 := [2/3, 1[. At this first step, TH
is not yet defined on T 2

HB1. In general, after the nth step of the construc-
tion, XH has been split into 3n intervals of the same length: Bn, THBn, . . . ,
T 3n−1
H Bn. These intervals form a so-called Rokhlin tower with base Bn and

height 3n. Such a tower is usually represented by putting the intervals on top
of one another, the transformation TH mapping each point to the one ex-
actly above. At this step, the transformation is not yet defined on T 3n−1

H Bn.
Step n + 1 starts by chopping the base Bn into three subintervals of the
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same length, the first of which is denoted by Bn+1. The nth Rokhlin tower
is thus split into three columns, which are stacked together to get the n+1st
tower. This amounts to mapping T 3n−1

H Bn+1 onto the second piece of Bn
by a translation, and T 2×3n−1

H Bn+1 onto the third piece of Bn. TH is now

defined everywhere except on T 3n+1−1
H Bn+1.

The iteration of this construction for all n ≥ 1 defines TH everywhere on
XH . The transformation obtained in this way preserves Lebesgue measure,
and it is well known that the dynamical system is ergodic.

Bn

tower n cutting stacking tower n+ 1

Bn+1

T 3n−1
H Bn

Fig. 1. Construction of TH by cutting and stacking

2.2. The extension. In order to construct the extension of TH , we will
now define a Rokhlin cocycle x 7→ Sx from XH into the group of automor-
phisms of (Y,B, ν), where Y := {−1, 1}

�

, B is the Borel σ-algebra of Y ,
and ν is the probability measure on Y which makes the coordinates inde-
pendent and identically distributed, with ν(yk = 1) = ν(yk = −1) = 1/2 for
each k ≥ 0.

If y = (yk)k∈ � ∈ Y and 0 ≤ i ≤ j, we denote by y|ji the finite word
yiyi+1 . . . yj . For each n ≥ 0, we define an n-block to be a word of length

2n on the alphabet {−1, 1}. The first n-block of y is thus y|2n−1
0 . If w1 =

y0 . . . y2n−1 and w2 = z0 . . . z2n−1 are two n-blocks, we denote by w1w2 the
(n+ 1)-block obtained by the concatenation of w1 and by w2, and w1 .×w2

the n-block defined by the termwise product of w1 and w2:

w1w2 := y0 . . . y2n−1z0 . . . z2n−1, w1 .×w2 := (y0×z0) . . . (y2n−1×z2n−1).

For each n ≥ 1, we now define a transformation τn of Y which will
be useful for the construction of the Rokhlin cocycle. This transformation
only affects the first n-block of y: if this first n-block is w1w2 (where w1

and w2 are (n − 1)-blocks), then the first n-block of τny is w2(w1 .× w2).
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Coordinates with indices at least 2n of τny remain unchanged. The following
two properties of τn are easy to verify:

• τn preserves the probability ν,
• τ3

n = IdY .

For every x ∈ XH , we denote by n(x) the smallest integer n ≥ 1 such
that x does not belong to the top of tower n. In other words, n(x) is the
integer n ≥ 1 such that THx is defined at step n of the construction of TH .
We then set

Sx := τn(x) ◦ τn(x)−1 ◦ · · · ◦ τ1.

From the properties of τn, it is easy to derive that Sx is always an auto-
morphism of (Y,B, ν). From now on, we denote by T the skew product on
XH × Y equipped with the product measure µH ⊗ ν defined by

T (x, y) := (THx, Sxy).

Let H be the factor of T given by the σ-algebra AH ⊗ {Y, ∅}.

2.3. Relative twofold mixing which is not threefold. Let n ≥ 1, and
(x, y) ∈ XH × Y with x in the base Bn of the nth tower. For each k ≥ 0,

we denote by y(k) the point of Y defined by T k(x, y) = (T kHx, y
(k)). From

the construction of the Rokhlin cocycle, while T kHx has not reached the top
of tower n, y is only transformed by some τj with j ≤ n. Therefore, in

the sequence y(0), y(1), . . . , y(3n−1) (corresponding to the climb of x upward
tower n), only the first n-block is modified and these modifications do not
depend on the coordinates of y with indices at least 2n.

We are particularly interested in the sequence y
(0)
0 y

(1)
0 . . . y

(3n−1)
0 of coor-

dinates with zero index, which we see as a random colouring of the climb of
x upward tower n. From the preceding remark, this colouring only depends
on the first n-block of y. Therefore there exists some map γn : {−1, 1}2n →
{−1, 1}3n such that

y
(0)
0 y

(1)
0 . . . y

(3n−1)
0 = γn(y|2n−1

0 ).

Lemma 2.1. Assume further that x lies in the base of the first or second
column in tower n (i.e. x ∈ Bn+1 or x ∈ T 3n

H Bn+1). Then

y(3n) = τn+1y.

Proof. This is easily checked by induction on n, using the fact that
τ3
n = IdY .

Lemma 2.1 gives a relation between γn and γn+1. Indeed, if x lies in
Bn+1, the climbing of x upward tower n+ 1 can be seen as three successive
climbings of x upward tower n, whose colourings are given by y(0) = y,
y(3n) = τn+1y and y(2×3n) = τ2

n+1y. It follows that the colouring of the first
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climbing of x upward tower n is coded by the first n-block y|2n−1
0 of y, the

colouring of the second climbing of x upward tower n is coded by the second

n-block y|2n+1−1
2n , and the colouring of the third climbing of x upward tower

n is coded by their termwise product y|2n−1
0 .× y|2n+1−1

2n . Hence, if w is an
(n+ 1)-block which is the concatenation of the two n-blocks w1w2, we have

(3) γn+1(w) = γn(w1)γn(w2)γn(w1 .× w2).

Therefore, the sequence (γn)n≥1 of coding maps is entirely determined by

γ1 : ab 7→ ab(a× b)
and the recurrence relation (3). The proof of the following lemma follows
easily:

Lemma 2.2. Let w1 and w2 be two n-blocks. Then

γn(w1 .× w2) = γn(w1) .× γn(w2).

From the preceding observations, we can deduce some properties of the
conditional law of the colouring process knowing x.

Proposition 2.1. Let x ∈ XH and n ≥ 1. Let j ≥ 0 be the smallest

integer such that T−jH x ∈ Bn+1. Denote by Cn1 , Cn2 and Cn3 the random
colourings of the three successive climbings of x upward tower n. The con-
ditional law of (Cn1 , C

n
2 , C

n
3 ) knowing H has the following properties:

• Cn1 , Cn2 and Cn3 are identically distributed ;
• Cn1 , Cn2 and Cn3 are pairwise independent ;
• Cn3 = Cn1 .× Cn2 .

Proof. Since H is a T -invariant σ-algebra, we can always assume to sim-
plify notation that j = 0 (i.e. x ∈ Bn+1). It follows from what has been seen

before that Cn1 , Cn2 and Cn3 are given respectively by γn(y|2n−1
0 ), γn(y|2n+1−1

2n )

and γn(y|2n−1
0 .× y|2n+1−1

2n ). But the three n-blocks y|2n−1
0 , y|2n+1−1

2n and

y|2n−1
0 .× y|2n+1−1

2n are identically distributed and pairwise independent.
Therefore, the three colourings are themselves identically distributed and
pairwise independent. The equality Cn

3 = Cn1 .× Cn2 is a straightforward
consequence of Lemma 2.2.

It follows easily from Proposition 2.1 that the property (1) character-
izing twofold mixing relatively to the factor H is true when A and B are
measurable with respect to a finite number of coordinates of the colouring
process (y0 ◦T k)k∈ � . Indeed, in that case we can find an integer n (depend-
ing on x) such that A and B are measurable with respect to one of the
blocks Cni (i = 1, 2 or 3) defined in the previous proposition. Then, as soon
as k ≥ 3n, A and T−kB are given by two blocks Cmj (for some m ≥ n) which
are independent under the conditional law knowing H .
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Next, (1) extends by density to any sets A and B measurable with respect
to the σ-algebra generated by H and the colouring process (y0 ◦ T k)k∈ � .
But this σ-algebra is easily shown to be the whole AH⊗B, since knowing x
and (y0 ◦ T k)k∈ � we can always recover each coordinate yn, n ∈ �

. (Details
are left to the reader.) It follows that the system is H -relatively twofold
mixing.

However, the system is not H -relatively threefold mixing: If

A = B = C := {(x, y) : y0 = 1},
we have

µ(A |H ) = µ(B |H ) = µ(C |H ) = 1/2,

but for each n ≥ 1 and each x in the first column of tower n,

µ(A ∩ T−3nB ∩ T−2×3nC |H ) = 1/4.

3. Comments and questions

Joinings. The question of the existence of a system which is twofold but
not threefold mixing is strongly connected with the following question: Does
there exist a joining of three copies of some weakly mixing, zero-entropy dy-
namical system which is pairwise independent but which is not the product
measure? In [3], Lemańczyk, Mentzen and Nakada answer positively the
relative version of this problem: They construct a relatively weakly mixing
extension T of an ergodic rotation TH , and a 3-joining λ of T identifying the
three copies of TH , which is pairwise but not threewise independent relative
to TH . However their construction does not seem to come from an extension
which is twofold but not threefold relatively mixing.

Mixing in the base? The example which we have presented above can
easily be modified in order to make the dynamical system in the base weakly
mixing. Indeed, we can replace the triadic von Neumann–Kakutani by Cha-
con’s transformation, whose construction is similar with only the following
difference: In each step of the construction we add a supplementary spacer
interval between the second and third column. The sequence (hn) of the
heights of the successive towers thus satisfies hn+1 = 3hn+1. It is well known
that Chacon’s transformation is weakly, but not strongly, mixing. Defining
Sx in a similar way when x does not lie in some spacer, and Sx := Id in any
spacer, we get the same conclusion concerning twofold but not threefold rel-
ative mixing. The lack of threefold relative mixing is checked by considering,
for x in the first column of tower n, µ(A ∩ T−hnB ∩ T−(2hn+1)C |H ).

Then it is natural to look for a similar result with the dynamical system
in the base strongly mixing. Indeed, it is easily shown that if TH is mixing
and if T is H -relatively mixing, then T is mixing. This would give some hope
to get a transformation that is twofold but not threefold mixing. However,
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there seem to be serious obstacles to achieving the same kind of construction
with a mixing base.

On the definition of relative mixing. In the present work we have used
the notion of relative mixing defined by the convergence to zero in proba-
bility (or equivalently in L1) of the sequence

(4) µ(A ∩ T−kB |H )− µ(A |H )µ(T−kB |H ).

Another possible definition of relative mixing is used by Rahe in his work
on factors of Markov processes [5]: In that paper, a process (xk)k∈ � (with
xk = x0 ◦ T k) is called H -relatively mixing if, for all A and B measurable
with respect to a finite number of cooordinates of the process (xk), the
convergence of (4) to zero holds almost surely.

The difference between these two definitions is discussed in a recent
work of Rudolph [6], where it is shown that there exists a system which
is relatively mixing with respect to one of its factors in the L1 sense, but
not in the almost sure sense. Rudolph also shows that checking almost sure
convergence of (4) to zero for a dense class of subsets A and B (as in Rahe’s
definition) implies that the same convergence holds for every A and B.

It is not difficult to see that, for the example we presented here, the same
results concerning twofold and threefold relative mixing hold if we replace
L1 convergence by almost sure convergence.
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