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HOPF’S RATIO FERGODIC THEOREM BY INDUCING

BY

ROLAND ZWEIMULLER (London)

Abstract. We present a very quick and easy proof of the classical Stepanov—Hopf
ratio ergodic theorem, deriving it from Birkhoff’s ergodic theorem by a simple inducing
argument.

During the last few years, there has been some interest in short and easy
proofs of (pointwise) ergodic theorems, naturally focussing on the most fun-
damental one, i.e. on Birkhoff’s result for probability preserving transfor-
mations (see e.g. [KW], [Ke], [P], and [Sh]). In [KK] a similar proof of an
important extension was given, which came shortly after the discovery of
the first ergodic theorems ([N] and [B]; see [Z] for historical comments): the
Stepanov—Hopf ratio ergodic theorem ([St], [H]), which is the proper version
of the pointwise ergodic theorem for infinite measure preserving transforma-
tions (there is no way to get a.e. convergence for ergodic sums normalized
by a sequence of constants; cf. [A, §2.4]). The aim of the present note is
to point out that this result can also be derived as a direct consequence of
Birkhoff’s theorem, via a (very) simple inducing argument (which does not
seem to be available or hinted at in the literature I know).

We are going to prove

THEOREM 1 (Hopf’s ratio ergodic theorem). Let T be a measure pre-
serving transformation on the o-finite measure space (X, A, u). Let f,g €
Li(p) with g >0 and . gdpu > 0. Then there exists a measurable function
Q(f,9) : X — R such that

Su(f) _ SicgfoT*
Sn(g) P hgoTk

On the conservative part the limit function Q(f, g) is measurable with respect
to the o-algebra T C A of T-invariant sets and satisfies

VQ(f.9)-gdu=\fdu forallI€T.
I I

— Q(f,9) a.e. on {supSy(g) >0} asn — co.
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In particular, if g > 0 a.e., then
f
Q(fa g) = Eug |:§ va ) where d/‘g = gd:ua

and if T is ergodic, then Q(f,g) =\ fdu/{y gdp a.e.

Proof. For the dissipative part of T', where ZZ;(I) foTkF < oo ae. for
any f € Lq(u), the assertion is trivial. We can therefore assume without
loss of generality that 7" is conservative. By linearity it is enough to consider
nonnegative f.

a) To emphasize the simplicity of the argument, we first consider the
special case of an ergodic map 7. The main step will be to prove that for
any Y € A with 0 < u(Y) < o0,

As the set {S,(f)/Sn(ly) — §y fdu/p(Y)} is T-invariant, we then see that
this convergence in fact holds a.e. on X. Applying the same to ¢ yields the
assertion of the theorem.

To verify (1), we consider the first return (or induced) map Ty : Y —
Y given by Tyz := T%®gz, where ¢(z) := min{n > 1 : Tz € Y} is
the first return time of Y (cf. [Ka]). According to basic classical results,
Ty is a measure preserving transformation on the finite measure space
(Y, ANY, ulany), ergodic since T is. Moreover, it is well known that p
can be reconstructed from p|any via

(2) wE)=> p(Yn{p>j}NTIE) forEcA
Jj=>0

a.e.on Y.

In other words, { 1pdy = SY(Z;’:& 1goT7) du. An obvious argument using
linearity and monotone convergence shows that this extends from indicator
functions 15 to arbitrary measurable f : X — [0,00), i.e. that

(3) \ fdu=1\ fvdu,

X Y

with fy : Y — [0, 00) defined by fy ::Zf:_ol foT =2 >0 lyn{e>s} (foT7).

We can therefore apply Birkhoff’s ergodic theorem to Ty and fy, thus

considering the ergodic sums SY (fy) := Zzzol fy o TE, m > 1, to see that
Y d d

(4) Sm(fY) N SYfY H _ SXf H
m n(Y) n(Y)

Let o, := SY (p) = ZZ"‘:_Ol @woTE m > 1, denote the mth return time to Y.

Then, on Y, S, (1y) = mforn € {¢m_1+1,...,0m} and Sy, (f) = Sk, (fv),

a.e.on Y.
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so that
Sy(fy) _ Sen(f)

= form>1 a.e. on'Y,
m Se. (1) B

showing that (4) is equivalent to (1) along the subsequence of indices n =
wm, m > 1. To prove convergence of the full sequence, we need only observe
that S,,(f) is nondecreasing in n since f > 0. Hence,

m— 1S4 () _ Su() _ Shfv)
m m—1 —S,(ly) = m

forn € {pm_1+1,...,0m}, m>1,ae onY, and (1) follows from (4).

b) If T is not necessarily ergodic, we first observe that as {sup,, S,,(g) >
0} is invariant, we may assume without loss of generality that it equals X.
Also, the set M on which S, (f)/Sn(g) does not converge to a function Q
with the advertised properties belongs to Z. Due to o-finiteness, every set
of positive measure has a subset Y with 0 < u(Y) < oo, and we prove
that (M) > 0 is impossible by showing that on any such Y the desired
convergence holds a.e.

Restricting our attention to the (smallest) invariant set generated by Y,
we suppose without loss of generality that X = J,,~, 7~ "Y. By the general
form of Birkhoff’s theorem, SY (fy)/m — E, -, [fy | Zy]/u(Y) a.e. on Y,
where Zy is the o-algebra of Ty-invariant sets in ANY'. It is a standard fact
about first return maps that Zy =ZNY ={INY : I € Z}. By exactly the
same argument as before we obtain the following parallel to (1):

(5) Sn(f) N ]EH‘.AOY [fY H IY]
and analogously for g. Observe now that

{Eupaey oy 1 2] > 0} = {sup Sy.(gy)>0}=Yn {supS(g) > 0}.

a.e.on vy,

Exploiting T-invariance of liminf and lim sup of the ratios S,,(f)/Sn(g), we
therefore conclude that their sequence converges a.e. on X to Q@ = Q(f, g),
the (unique) Z-measurable extension of E, ,  [fy [|Zy]/E, ., [9v [| Zv]
to X.

It remains to verify the property §, Q- gdup = §; f dyu for all I € Z, which
uniquely characterizes the T-invariant limit ). To do so, we notice that by
T-invariance, we have (Q - g)y = @ - gy, and hence, for any I € Z,

{Q gdu= " Q- gvdu= | Q-gvdp= | Q By, lov|Zy]du

1 ny ny o
S By any LIy [ Ty ] dp = S fy du = Sfd,u,
ny ny 7

as required. =
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REMARK 1. Assuming some familiarity with the dual operator T: Ly(p)
— L1(p), characterized by § Tq-f du = §$x g:(foT)dpforall g € Li(p) and
f € Loo(p), which extends to arbitrary measurable f,g > 0 in an obvious
way, we can avoid the approximation argument used to derive the important
relation (3): Observe that (2) becomes u(E) = | >j>0 T71y >} dp for
all F € A, meaning that ijo Ti lynfe>j} = 1 a.e. on X. This immediately
implies (3) via duality:

VAdn=\> lynges - (FoT?)du=| ijlm{@j} fdp =1\ fdp.
Y X j>0 X j=0 X
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