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HOPF’S RATIO ERGODIC THEOREM BY INDUCING

BY

ROLAND ZWEIMÜLLER (London)

Abstract. We present a very quick and easy proof of the classical Stepanov–Hopf
ratio ergodic theorem, deriving it from Birkhoff’s ergodic theorem by a simple inducing
argument.

During the last few years, there has been some interest in short and easy
proofs of (pointwise) ergodic theorems, naturally focussing on the most fun-
damental one, i.e. on Birkhoff’s result for probability preserving transfor-
mations (see e.g. [KW], [Ke], [P], and [Sh]). In [KK] a similar proof of an
important extension was given, which came shortly after the discovery of
the first ergodic theorems ([N] and [B]; see [Z] for historical comments): the
Stepanov–Hopf ratio ergodic theorem ([St], [H]), which is the proper version
of the pointwise ergodic theorem for infinite measure preserving transforma-
tions (there is no way to get a.e. convergence for ergodic sums normalized
by a sequence of constants; cf. [A, §2.4]). The aim of the present note is
to point out that this result can also be derived as a direct consequence of
Birkhoff’s theorem, via a (very) simple inducing argument (which does not
seem to be available or hinted at in the literature I know).

We are going to prove

Theorem 1 (Hopf’s ratio ergodic theorem). Let T be a measure pre-
serving transformation on the σ-finite measure space (X,A, µ). Let f, g ∈
L1(µ) with g ≥ 0 and

�
X g dµ > 0. Then there exists a measurable function

Q(f, g) : X → R such that

Sn(f)
Sn(g)

=
∑n−1

k=0 f ◦ T k∑n−1
k=0 g ◦ T k

→ Q(f, g) a.e. on {sup
n

Sn(g) > 0} as n→∞.

On the conservative part the limit function Q(f, g) is measurable with respect
to the σ-algebra I ⊆ A of T -invariant sets and satisfies

�

I

Q(f, g) · g dµ =
�

I

f dµ for all I ∈ I.
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In particular , if g > 0 a.e., then

Q(f, g) = Eµg
[
f

g

∥∥∥∥ I
]
, where dµg := g dµ,

and if T is ergodic, then Q(f, g) =
�
X f dµ/

�
X g dµ a.e.

Proof. For the dissipative part of T , where
∑n−1

k=0 f ◦ T k < ∞ a.e. for
any f ∈ L1(µ), the assertion is trivial. We can therefore assume without
loss of generality that T is conservative. By linearity it is enough to consider
nonnegative f .

a) To emphasize the simplicity of the argument, we first consider the
special case of an ergodic map T . The main step will be to prove that for
any Y ∈ A with 0 < µ(Y ) <∞,

Sn(f)
Sn(1Y )

→
�
X f dµ

µ(Y )
a.e. on Y.(1)

As the set {Sn(f)/Sn(1Y )→
�
X f dµ/µ(Y )} is T -invariant, we then see that

this convergence in fact holds a.e. on X. Applying the same to g yields the
assertion of the theorem.

To verify (1), we consider the first return (or induced) map TY : Y →
Y given by TY x := Tϕ(x)x, where ϕ(x) := min{n ≥ 1 : T nx ∈ Y } is
the first return time of Y (cf. [Ka]). According to basic classical results,
TY is a measure preserving transformation on the finite measure space
(Y,A ∩ Y, µ|A∩Y ), ergodic since T is. Moreover, it is well known that µ
can be reconstructed from µ|A∩Y via

µ(E) =
∑

j≥0

µ(Y ∩ {ϕ > j} ∩ T−jE) for E ∈ A.(2)

In other words,
�
X 1E dµ =

�
Y (
∑ϕ−1

j=0 1E◦T j) dµ. An obvious argument using
linearity and monotone convergence shows that this extends from indicator
functions 1E to arbitrary measurable f : X → [0,∞), i.e. that

�

X

f dµ =
�

Y

fY dµ,(3)

with fY : Y → [0,∞) defined by fY :=
∑ϕ−1

j=0 f ◦T j =
∑

j≥0 1Y ∩{ϕ>j} (f ◦T j).
We can therefore apply Birkhoff’s ergodic theorem to TY and fY , thus

considering the ergodic sums SYm(fY ) :=
∑m−1

k=0 fY ◦ T kY , m ≥ 1, to see that

SYm(fY )
m

→
�
Y fY dµ

µ(Y )
=

�
X f dµ

µ(Y )
a.e. on Y.(4)

Let ϕm := SYm(ϕ) =
∑m−1

k=0 ϕ◦T kY , m ≥ 1, denote the mth return time to Y .
Then, on Y , Sn(1Y ) = m for n ∈ {ϕm−1+1, . . . , ϕm} and Sϕm(f) = SYm(fY ),
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so that
SYm(fY )
m

=
Sϕm(f)
Sϕm(1Y )

for m ≥ 1 a.e. on Y,

showing that (4) is equivalent to (1) along the subsequence of indices n =
ϕm, m ≥ 1. To prove convergence of the full sequence, we need only observe
that Sn(f) is nondecreasing in n since f ≥ 0. Hence,

m− 1
m

SYm−1(fY )
m− 1

≤ Sn(f)
Sn(1Y )

≤ SYm(fY )
m

for n ∈ {ϕm−1 + 1, . . . , ϕm}, m ≥ 1, a.e. on Y , and (1) follows from (4).
b) If T is not necessarily ergodic, we first observe that as {supn Sn(g) >

0} is invariant, we may assume without loss of generality that it equals X.
Also, the set M on which Sn(f)/Sn(g) does not converge to a function Q
with the advertised properties belongs to I. Due to σ-finiteness, every set
of positive measure has a subset Y with 0 < µ(Y ) < ∞, and we prove
that µ(M) > 0 is impossible by showing that on any such Y the desired
convergence holds a.e.

Restricting our attention to the (smallest) invariant set generated by Y ,
we suppose without loss of generality that X =

⋃
n≥0 T

−nY . By the general
form of Birkhoff’s theorem, SYm(fY )/m → Eµ|A∩Y [fY ‖ IY ]/µ(Y ) a.e. on Y ,
where IY is the σ-algebra of TY -invariant sets in A∩Y . It is a standard fact
about first return maps that IY = I ∩ Y = {I ∩ Y : I ∈ I}. By exactly the
same argument as before we obtain the following parallel to (1):

Sn(f)
Sn(1Y )

→
Eµ|A∩Y [fY ‖ IY ]

µ(Y )
a.e. on Y,(5)

and analogously for g. Observe now that

{Eµ|A∩Y [gY ‖ IY ] > 0} = {sup
m

SYm(gY ) > 0} = Y ∩ {sup
n

Sn(g) > 0}.

Exploiting T -invariance of lim inf and lim sup of the ratios Sn(f)/Sn(g), we
therefore conclude that their sequence converges a.e. on X to Q = Q(f, g),
the (unique) I-measurable extension of Eµ|A∩Y [fY ‖ IY ]/Eµ|A∩Y [gY ‖ IY ]
to X.

It remains to verify the property
�
I Q ·g dµ =

�
I f dµ for all I ∈ I, which

uniquely characterizes the T -invariant limit Q. To do so, we notice that by
T -invariance, we have (Q · g)Y = Q · gY , and hence, for any I ∈ I,

�

I

Q · g dµ =
�

I∩Y
(Q · g)Y dµ =

�

I∩Y
Q · gY dµ =

�

I∩Y
Q · Eµ|A∩Y [gY ‖ IY ] dµ

=
�

I∩Y
Eµ|A∩Y [fY ‖ IY ] dµ =

�

I∩Y
fY dµ =

�

I

f dµ,

as required.
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Remark 1. Assuming some familiarity with the dual operator T̂ : L1(µ)
→ L1(µ), characterized by

�
X T̂ g·f dµ =

�
X g·(f◦T ) dµ for all g ∈ L1(µ) and

f ∈ L∞(µ), which extends to arbitrary measurable f, g ≥ 0 in an obvious
way, we can avoid the approximation argument used to derive the important
relation (3): Observe that (2) becomes µ(E) =

�
E

∑
j≥0 T̂

j1Y ∩{ϕ>j} dµ for

all E ∈ A, meaning that
∑

j≥0 T̂
j1Y ∩{ϕ>j} = 1 a.e. on X. This immediately

implies (3) via duality:
�

Y

fY dµ =
�

X

∑

j≥0

1Y ∩{ϕ>j} · (f ◦ T j) dµ =
�

X

∑

j≥0

T̂ j1Y ∩{ϕ>j} · f dµ =
�

X

f dµ.
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