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THE LOCALISATION OF PRIMES
IN ARITHMETIC PROGRESSIONS OF IRRATIONAL MODULUS

BY

JÖRG BRÜDERN (Göttingen) and KOICHI KAWADA (Morioka)

Abstract. A new method for counting primes in a Beatty sequence is proposed, and
it is shown that an asymptotic formula can be obtained for the number of such primes in
a short interval.

1. Opening. The distribution of primes in arithmetic progressions is
an intensively investigated and important subject in the theory of numbers.
More recently and perhaps triggered by work of Long [8] on certain Hamil-
tonian systems, there has been a flurry of papers on primes near the general
linear sequence ξn+η in which ξ, η are given real numbers, ξ > 1, and n varies
over the natural numbers. When ξ and η are integers, ξn+η is an arithmetic
progression of modulus ξ. In all other cases, ξn+ η is not usually an integer.
Thus, we shall be concerned with primes p of the form p = [ξn + η]. When
ξ is a rational number, the values taken by [ξn+ η] are members of certain
traditional arithmetic progressions, so that the distribution of their prime
values is still part of the classical theory. Therefore, we assume henceforth
that ξ is a positive irrational. Although certainly better known as a Beatty
sequence, we refer to the values of [ξn + η] as an arithmetic progression of
modulus ξ.

A prime number theorem for these generalised progressions has been
provided by Ribenboim [9]. His work was recently extended by Banks and
Shparlinski [1]. We refer to [1] and [2] for further background on the problem.
In short, the main argument in [1] transfers the original problem into one in
diophantine approximation, and then solves the latter by a familiar Fourier
technique attributed to Vinogradov. Alternatively, one might observe that
p = [ξn+ η] is equivalent to the diophantine inequality

(1) 0 ≤ ξn+ η − p < 1,

which may be treated as a binary additive problem. Since ξn+η is a periodic
sequence, this is easily done by straightforward application of the Davenport–
Heilbronn Fourier transform method and an intersection estimate that the
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authors obtained in collaboration with Wooley [4]. This approach is very
flexible, and applies to a wide variety of questions. The sole purpose of the
present short note is to popularise its use, and to illustrate its performance
by counting the solutions of (1) when p is constrained to a short interval.
Thus, let π(x; ξ, η) be the number of primes p ≤ x that are representable as
p = [ξn+ η] with n ∈ N. We shall conclude as follows.

Theorem. Suppose that ξ > 1 is an irrational number. Let θ > 5/8.
Then, whenever xθ ≤ y ≤ x, one has

π(x+ y; ξ, η)− π(x; ξ, η) =
y

ξ log x
(1 + o(1)) (x→∞).

For comparison, when ξ is rational, one can evalutate the number of
primes in question in the wider range θ > 7/12. This follows from Huxley
and Iwaniec [7], for example.

If ξ < 1, then all large natural numbers occur as values of [ξn + η],
so counting primes in this set of values is the same as counting primes.
However, if one is prepared to count primes in the sequence [ξn + η] with
multiplicity, then our method yields the Theorem for ξ > 0. The hypothesis
that ξ > 1 makes these values distinct, but is not needed otherwise. For
further comments on possible extensions, we refer to the closing section of
this paper.

2. Initial transformation. Some notation is required before the attack
can be launched. For any positive real number τ , define the measure dτα on
R that relates to Lebesgue measure dα through

(2) dτα = τ

(
sinπτα
πτα

)2

dα.

Its Fourier transform is

(3)
∞�

−∞
e(−αβ) dτα = max(0, 1− |β|/τ)

where, as usual, e(α) = exp(2πiα). Let Λ be von Mangoldt’s function, and
consider the exponential sums

(4) f(α) =
∑

x<m≤x+y
Λ(m)e(αm), g(α) =

∑
x<ξn≤x+y

e(αξn).

For ζ ∈ R and x, y, τ, ξ as before, we shall study the integral

(5) Iτ = Iτ (x, y; ξ, ζ) =
∞�

−∞
f(α)g(−α)e(−αζ) dτα

by means of the Davenport–Heilbronn method, and prove the following.
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Proposition. Let ζ ∈ R. Then, uniformly for x, y as in the Theorem,
and 1/3 ≤ τ ≤ 2, one has

Iτ = ξ−1τy + o(y) as x→∞.

In the remainder of this section, we briefly indicate why this implies the
Theorem. The argument is largely standard, and very similar to the work in
Sections 2.1–2.2 of [4]. We are therefore very brief. Let

W (α) =
{

1 for −1/2 < α ≤ 1/2,
0 otherwise.

Whenever 0 < δ < 1/3, define the functions

W+(α) =


1 when |α| < 1/2,

1− |α| − 1/2
δ

when 1/2 ≤ |α| < 1/2 + δ,
0 when |α| ≥ 1/2 + δ,

W−(α) =


1 when |α| < 1/2− δ,

1− |α| − 1/2 + δ

δ
when 1/2− δ ≤ |α| < 1/2,

0 when |α| ≥ 1/2.

Then W−(α) ≤W (α) ≤W+(α) for all α ∈ R. Now consider

(6) P (x, y) =
∑

x<m≤x+y
x<ξn≤x+y

Λ(m)W
(
m− ξn− η +

1
2

)
.

Define P+(x, y), P−(x, y) similarly, but with W replaced by W+,W−, re-
spectively, so that

(7) P−(x, y) ≤ P (x, y) ≤ P+(x, y).

From (3), one readily obtains the identities

W±(α) =
(

1± 1
2δ

) ∞�

−∞
e(−αβ) d1/2±δβ ∓

1
2δ

∞�

−∞
e(−αβ) d1/2β,

whence, by (4) and (5),

P±(x, y) =
(

1± 1
2δ

)
I1/2±δ

(
x, y; ξ, η − 1

2

)
∓ 1

2δ
I1/2

(
x, y; ξ, η − 1

2

)
.

The Proposition ensures the existence of a function R(y) with R(y)→ 0 as
y →∞ and such that |Iτ − ξ−1τy| ≤ yR(y). It follows that

P±(x, y) =
y

ξ
(1± δ) +O(yδ−1R(y)).

We may choose δ =
√
R(y). Then, invoking (7), we infer the asymptotic
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formula

(8) P (x, y) =
y

ξ
+ o(y).

An inspection of (6) now reveals that P (x, y) counts solutions of 0 ≤ ξn +
η − m < 1, and hence of m = [ξn + η], with weight Λ(m), in the range
x < m ≤ x + y, x < nξ ≤ x + y. Since y ≥ x5/8, an elementary argument
suffices to show that prime powers m = pk with k ≥ 2 make a negligible
contribution to (8), and the weight log p from solutions with m = p may be
removed by partial summation. Thus, (8) implies the Theorem.

3. Amplifiers. In this section, we establish two estimates by standard
applications of the Hardy–Littlewood method. In the proof of the Proposi-
tion, they will serve as amplifiers, in the sense of Wooley [10] and Brüdern,
Kawada and Wooley [4].

Throughout this section, x, y, ξ are as in the Theorem. When 1 ≤ Q ≤
1
2

√
y, let N(Q) denote the disjoint union of all intervals |qα−a| ≤ Q/y with

1 ≤ a ≤ q < Q and (a, q) = 1. Let n(Q) = [Q/y, 1 +Q/y] \N(Q).

Lemma 1. Let 1 ≤ Q ≤ (log x)9. Then�

n(Q)

|f(α)|3 dα� y2Q−1.

Proof. By Parseval’s identity and the Brun–Titchmarsh inequality,
1�

0

|f(α)|2 dα =
∑

x<m≤x+y
Λ(m)2 � y log x.

We now apply Theorems 2 and 3 of Zhan [11]. These assert that there exists
a constant B such that

(9) sup
α∈n((log x)B)

|f(α)| � y(log x)−10.

Note that it is here that the condition θ > 5/8 in the lower bound for y is
needed. The rest of the argument works in the wider range θ > 7/12. On
combining the previous two bounds, we see that

(10)
�

n((log x)B)

|f(α)|3 dα� y2(log x)−9.

It will be convenient to write Q0 = (log x)B. Also, in the following argu-
ment, ϕ(q) is Euler’s totient function, and µ(q) is Möbius’ function. Then,
uniformly for x ≤ u ≤ x+ y, 1 ≤ a ≤ q ≤ Q0 and (a, q) = 1, one has∑

x≤m≤u
m≡amod q

Λ(m) =
u− x
ϕ(q)

+O(y(log x)−4B).
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This familiar result is a consequence of Huxley’s density estimate [6], and
indeed immediate from the work of Huxley and Iwaniec [7]. Now, sorting m
into residue classes, one finds that in the same ranges one has∑

x≤m≤u
Λ(m)e

(
am

q

)
=
µ(q)
ϕ(q)

(u− x) +O(qy(log x)−4B).

Hence, on summing by parts, one readily establishes that

(11) f

(
a

q
+ β

)
=
µ(q)
ϕ(q)

x+y�

x

e(βγ) dγ +O(y(log x)−3B(1 + y|β|))

uniformly for β ∈ R and a, q as before. The integral in (11) can be integrated
by parts, which gives the upper bound O(y(1+ y|β|)−1) for it. In particular,
when α ∈ N(Q0), (11) implies that∣∣∣∣f(aq + β

)∣∣∣∣� y

ϕ(q)
(1 + y|β|)−1,

and a routine estimation now yields the bound�

N(Q0)\N(Q)

|f(α)|3 dα� y2Q−1.

On combining this with (10), the conclusion in Lemma 1 is immediate.

The corresponding estimate for g is much easier to obtain.

Lemma 2. Let nξ(Q) = {α ∈ R : ξα ∈ n(Q)}. Then, for 1 ≤ Q ≤
(log x)9, one has �

nξ(Q)

|g(α)|3/2 dα� y1/2Q−1/2.

Proof. Of course, much more is true, but the following simple argument
suffices for our purposes. First substitute ξα = β. Then, on denoting the
distance of the real number β to the nearest integer by ‖β‖, the integral in
question is readily seen to be

�
�

n(Q)

∣∣∣ ∑
x≤ξn≤x+y

e(βn)
∣∣∣3/2 dβ � 1−(Q−1)/y�

(Q−1)/y

min(y3/2, ‖β‖−3/2) dβ

� y1/2Q−1/2,

as required.

For the application in the next section, one needs a slight variant of these
estimates. Let m(Q) = n(Q) + Z and M(Q) = N(Q) + Z be the 1-periodic
versions of minor and major arcs. Then, uniformly for 1/3 ≤ τ ≤ 2, one finds
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from (2) that whenever 1 ≤ Q ≤ (log x)9, one has
�

m(Q)

|f(α)|3 dτα� y2Q−1,(12)

�

ξα∈m(Q)

|g(α)|3/2 dτα� y1/2Q−1/2.(13)

4. The complementary compositum. Let z = (log x)9y−1, and split
the integral Iτ in (5) into one over the central interval |α| ≤ z and one over
the complementary compositum |α| > z. Accordingly, we write

(14) Iτ = I ′τ + I ′′τ

in which

(15) I ′τ =
z�

−z
f(α)g(−α)e(−ζα) dτα,

and I ′′τ is defined likewise, but with the integration extended over |α| > z.
In this section we show that I ′′τ is small. This is the core of the method; the
rest is essentially routine. Our approach is based on our version, developed
in collaboration with Wooley [4], of the Bentkus–Götze–Freeman device (see
[3], [5] and [4, Section 2.5] for a thorough discussion). The new variant is
an estimate purely within the theory of diophantine approximation, and
makes no reference at all to the exponential sums that occur in the Fourier
transform (5). We only need a very special case of our tool that we now
intend to formulate. Let

T (R) = max{r ≤ R : ‖ξr‖ < 1/r}.

Since ξ is irrational, T (R) is unbounded, and of course increasing. Let

Q̃ = min(T (
√
y)1/3, (log x)8),

and write
K = {α ∈ R : |α| ≥ z, α ∈M(Q̃), ξα ∈M(Q̃)}.

In Theorem 2.4 of [4] we take λ1 = ξ, λ2 = −1, N � y, Y = z and
Q(N) = Q1 = Q2 = Q̃ to infer that

(16)
�

K

dτα� y−1Q̃2T (
√
y)−1 = o(y−1).

The Brun–Titchmarsh inequality provides the upper bound |f(α)| ≤ f(0)
� y whereas g(α)� y is trivial. This already suffices to conclude that

�

K

|f(α)g(−α)| dτα = o(y).
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It remains to consider α with |α| ≥ z but α /∈ K. Then α ∈ m(Q̃) or
ξα ∈ m(Q̃). In the first case, we use (12) with Q = Q̃ and (13) with Q = 1.
Then, by Hölder’s inequality,

�

m(Q̃)

|f(α)g(−α)| dτα ≤
( �

m(Q̃)

|f(α)|3 dτα
)1/3( ∞�

−∞
|g(α)|3/2 dτα

)2/3

� yQ̃−1/3.

Reversing the roles in the previous argument also yields
�

ξα∈m(Q̃)

|f(α)g(−α)| dτα ≤
( ∞�
−∞
|f(α)|3 dτα

)1/3( �

ξα∈m(Q̃)

|g(α)|3/2 dτα
)2/3

� yQ̃−1/3.

We may sum the last three estimates to confirm that I ′′τ = o(y), and hence
by (14) that

(17) Iτ = I ′τ + o(y) as y →∞.

5. The central interval. The evaluation of I ′τ begins with the special
case of (11) where a = q = 1. Then, for |α| ≤ z, one has

(18) f(α) =
x+y�

x

e(αγ) dγ +O(y(log x)−10).

Also, by (4) and Euler’s summation formula, followed by an obvious substi-
tution,

(19) g(α) =
1
ξ

x+y�

x

e(αγ) dγ +O(1 + y|α|).

Now let

h(α) =
y�

0

e(αγ) dγ.

Then, by (18) and (19), again for |α| ≤ z one has

f(α)g(−α) = ξ−1|h(α)|2 +O(y2(log x)−10).

We integrate over |α| ≤ z to conclude from (15) that

I ′τ =
1
ξ

z�

−z
|h(α)|2e(−αζ) dτα+O(y(log y)−1)

uniformly for 1/3 ≤ τ ≤ 2. The upper bound h(α) � y(1 + y|α|)−1, which
in turn is readily confirmed by partial integration, is enough to complete the
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integral, with an error of O(y(log y)−9). But, by (3), one finds that
∞�

−∞
|h(α)|2e(−αζ) dτα =

y�

0

y�

0

max(0, 1− τ−1|t1 − t2 − ζ|) dt1 dt2,

and when ζ ∈ R is fixed and 1/3 ≤ τ ≤ 2, the integral on the right hand
side is τy +O(1), as one readily checks. Altogether, we find that

I ′τ = ξ−1τy +O(y(log y)−1),

and the Proposition follows from (17).

6. Closing. The analytic method that we have described here has cer-
tain advantages over the line of attack followed by previous writers, most
notably Banks and Shparlinski [1]. In particular, our method applies to all
irrational numbers ξ, and not only to irrationals “of finite type” (see [1]). On
the other hand, [1] gives an asymptotic formula for π(x, ξ, y) with an error
term that is as small one can expect, given our current knowledge about
zero free regions of the Riemann zeta function, but only for ξ of finite type.
Although our exposition might perhaps suggest that our method is limited
to weaker error terms, like o(y), this is definitely not the case. Indeed, when
ξ is of finite type, the bound (16) can be improved considerably, and with
a slightly wider choice for the central interval, the savings in (16) become a
power of y. This has been worked out in detail in Section 2.5 of [4], in par-
ticular Theorem 2.3. Thus, the results of Banks and Shparlinski are within
the scope of our method as well. Banks and Shparlinski also discuss primes
of the form q[ξn + η] + a in which q and a are given natural numbers. Our
method easily extends to this set-up, and is also capable of counting primes
p ≡ a mod q that are of the form p = [ξn+ η].

Finally, we repeat a comment that we made in Section 4. For rational
values of ξ, the appropriate analogue of our Theorem is known for θ > 7/12.
It is therefore natural to expect the same limitation for the irrational case.
However, the bottleneck here is the minor arc estimate for exponential sums
over primes from a short interval. Zhan [11] still holds the record (estimate
(9) above). If (9) could be established for θ > 7/12, then a corresponding
improvement can be made in our Theorem.
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