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SOME GENERALIZATION
OF STEINHAUS’ LATTICE POINTS PROBLEM

BY

PAWE L ZWOLEŃSKI (Katowice)

Abstract. Steinhaus’ lattice points problem addresses the question of whether it is
possible to cover exactly n lattice points on the plane with an open ball for every fixed
nonnegative integer n. This paper includes a theorem which can be used to solve the
general problem of covering elements of so-called quasi-finite sets in Hilbert spaces. Some
applications of this theorem are considered.

1. Introduction. Hugo Steinhaus, Polish mathematician and popu-
lariser of mathematics, published in [4] a collection of interesting problems in
elementary mathematics (see also [3]). Several of these problems are strictly
connected with geometry, and some relate to lattice points on the plane. The
inspiration for this paper is the following question: for a fixed nonnegative
integer n, is it always possible to find a circle on the plane such that exactly
n of the lattice points are within this circle?

It turns out that this question has a positive answer. An elementary
solution by H. Steinhaus, which involves some basic arguments from number
theory and analytic geometry, can be found in [3] or [4]. We solve this
problem in a more general setting.

Definition 1.1. Let X be a metric space. A set A ⊂ X is called quasi-
finite if A is countable and the intersection of A with any open ball B in X
is finite.

In particular every finite subset of a metric space is quasi-finite. Also the
set of lattice points in the Euclidean space Rn is an example of a quasi-finite
set (the case n = 2 is considered in Corollary 3.2).

Now we present the main result of this paper:

Main Theorem 1.2. Let A be a quasi-finite set in a Hilbert space X
over a field K (= R,C). Then the set YA of all points y ∈ X such that for
every nonnegative integer n there exists an open ball centered at y containing
exactly n elements of A, is dense in X.
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We prove the Main Theorem in the next section.
The last section of this paper includes some applications. Firstly, we

show an alternative solution for the classical version of Steinhaus’ problem.
Secondly, we present some criterion for Hilbert spaces, which can be used
in some cases instead of the parallelogram identity.

Remark 1.3. More complicated lattice points problems of H. Steinhaus
are an inspiration for intensive research. For example, in [2] the authors
consider the problem of existence of a set which has exactly one point in
common with every subset of the plane which is congruent to the set of all
lattice points. Also, in [1] some generalizations of solutions of Steinhaus’
lattice points problem are considered.

2. The proof of the Main Theorem. Enumerate A = {x1, x2, . . .}
and for i 6= j let

Ai
j = {x ∈ X : ‖x− xi‖ = ‖x− xj‖}.

We will show that Ai
j is closed and nowhere dense in X for i 6= j.

Fix positive integers i, j such that i 6= j. To deduce that Ai
j is closed,

take φ : X → K given by the formula

φ(x) = ‖x− xi‖ − ‖x− xj‖.
From the continuity of the norm φ is a continuous map. So, Ai

j is closed
since φ−1({0}) = Ai

j .

To show that Ai
j has an empty interior we define a map ψ : X → X by

ψ(x) = x+
xi + xj

2
and denote w = (xi − xj)/2. Clearly w 6= 0. If

B = {x ∈ X : ‖w − x‖ = ‖w + x‖},
then ψ(B) = Ai

j . Since the function ψ is a translation it is sufficient to show
that B has an empty interior. Take an arbitrary x ∈ B. Then

〈w − x |w − x〉 = 〈w + x |w + x〉,
‖w‖2 − 〈w |x〉 − 〈x |w〉+ ‖x‖2 = ‖w‖2 + 〈w |x〉+ 〈x |w〉+ ‖x‖2,

〈w |x〉 = −〈x |w〉,
〈x |w〉+ 〈x |w〉 = 0.

From the above equalities we find that B = {x ∈ X : Re〈x |w〉 = 0}. It is
easy to notice that B is a linear subspace of X. If a ball is contained in B,
then B = X. In particular 〈w |w〉 = 0, a contradiction. Consequently, B
and hence Ai

j has an empty interior.
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It follows from the Baire Category Theorem that the set
⋃

i 6=j A
i
j has

an empty interior. If we denote its complement by YA, then YA is a dense
subset of X.

Fix an arbitrary nonnegative integer n and y ∈ YA. As A is quasi-finite,
we obtain A ⊂

⋃∞
k=1B(y, k), where B(y, k) is the open ball of radius k

centered at y. Hence there exists some k0 such that B(y, k0) has at least n
elements common with A. We denote these elements by y1, . . . , yN for some
N ≥ n and write di for ‖y − yi‖. Without loss of generality, we can assume

d1 < · · · < dN .

If we additionally define d0 := 0 and dN+1 := k0, then we can choose r > 0
satisfying dn < r < dn+1. Finally, the open ball of radius r centered at y
contains exactly n points of A, which was to be demonstrated.

3. Some applications. Firstly, we recall the formal definition of a lat-
tice point.

Definition 3.1. A lattice point is an element of a finite-dimensional
linear space over R or C with a fixed basis all of whose coefficients are
integers.

Now we use the Main Theorem to solve the classical version of Steinhaus’
problem (the case of the Euclidean space Rn is analogous).

Corollary 3.2 (Steinhaus’ classical lattice points problem). For every
k ∈ N there is an open ball on the plane which contains exactly k lattice
points.

Proof. By the Main Theorem it is sufficient to show that the set L of
lattice points on the plane is quasi-finite. It is obvious that L is countable.
If r < k for some positive integer k, then every ball of radius r contains at
most 4k2 lattice points.

We proceed to further applications. The Main Theorem is useful to prove
that some Banach spaces are not unitary: if it is possible to find a quasi-finite
subset A and a positive integer m such that no open ball contains a collection
of m elements of A, then the space cannot be unitary. This method is used
in the following corollaries.

Corollary 3.3. The space Rn with the norm ‖x‖ = max1≤i≤n |xi|,
where x = (x1, . . . , xn), is not unitary for n > 1.

Proof. Let L denote the set of lattice points in Rn. Any open interval of
fixed length includes either k − 1 or k integers for some k ∈ N. Hence every
n-dimensional cube contains

(3.1) kl(k − 1)n−l
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lattice points for some k, l ∈ N. No prime p > 2 can be written in the form
(3.1). This means that the set YL of points with the property mentioned in
the Main Theorem is empty in that case.

Remark 3.4. A similar proof can be used to obtain the analogous result
for Rn (n > 1) with the norm ‖(x1, . . . , xn)‖ =

∑n
i=1 |xi|.

The method can also be applied to the space of all continuous functions:

Corollary 3.5. The space C[0, 1] of all continuous functions on [0, 1]
with the norm ‖f‖ = maxt∈[0,1] |f(t)| is not unitary.

Proof. Assume that C[0, 1] is a Hilbert space. Then the subspace

Y = {ax+ b : a, b ∈ R}
is also a Hilbert space. Consider now the set A = {ax + b : a, b ∈ Z}. It is
easy to see that A is quasi-finite in Y . Every f ∈ A is uniquely determined
by the condition f(0), f(1) ∈ Z. If B is an arbitrary ball in Y of radius r > 0
centered at g, then the intervals (g(0)− r, g(0) + r) and (g(1)− r, g(1) + r)
contain k or k + 1 integers for some k ∈ N. If f(0) and f(1) have to be
integers, then f can be chosen in k2 or k(k+ 1) different ways. Obviously, if
we choose f in one of these ways, then f is also an element of B. Hence an
arbitrary ball in Y can contain only k2 or k(k + 1) elements of A for some
k ∈ N.
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