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CARDINALITY OF SOME CONVEX SETS
AND OF THEIR SETS OF EXTREME POINTS

BY

ZBIGNIEW LIPECKI (Wrocław)

Abstract. We show that the cardinality n of a compact convex setW in a topological
linear space X satisfies the condition that nℵ0 = n. We also establish some relations
between the cardinality of W and that of extrW provided X is locally convex. Moreover,
we deal with the cardinality of the convex set E(µ) of all quasi-measure extensions of a
quasi-measure µ, defined on an algebra of sets, to a larger algebra of sets, and relate it to
the cardinality of extrE(µ).

1. Introduction. The main body of the paper (∗) falls into two parts.
The first part, Sections 2 and 3, is concerned with abstract convex sets

in a topological linear space. In Section 2 we show that the cardinality of a
compact convex set is an ω-power and so is its algebraic dimension if it is
infinite (Theorem 2; a cardinal n ≥ 1 is called an ω-power if nℵ0 = n). This
result is deduced from an analogous one concerning closed convex sets in a
complete metric linear space (Theorem 1), the dimension part of which is an
extension of a result of [16]. In Section 3 we establish some relations between
the cardinality of a compact convex set in a locally convex space and that
of its set of extreme points (Propositions 1 and 2), and formulate a relevant
open problem.

The second part, Sections 4–6, continues the author’s study of the convex
set E(µ) of all quasi-measure extensions of a quasi-measure µ, i.e., a positive
additive function on an algebra M of subsets of a set Ω, to a larger algebra
R of subsets of Ω, and that of the set extrE(µ) of its extreme points (see
[13]–[15], [17]–[20]). The results of the first part apply here, as E(µ) is a
weak∗ compact subset of the dual Banach lattice ba(R). In addition, we use
many results from the author’s previous papers, especially [15], [18] and [20].
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The relations between the cardinalities of E(µ) and extrE(µ) established in
Section 6 (Theorems 5 and 7) involve, in one way or another, a subalgebra
N of R, which, jointly with M, generates R as an algebra. In this context,
we also relate the cardinality of E(µ) to that of M(µ), the quotient Boolean
algebra of M modulo the ideal of µ-null sets (Theorem 6 and Corollary 2).

The notation and terminology used in the second part (as well as in many
previous papers by the author, including [13]–[15], [17]–[20]) are explained
in Section 4. This section also contains some auxiliary results.

2. Cardinality and dimension of some convex sets. The cardinality
of the set I is denoted by |I|. Following [4, p. 452], we say that a cardinal
n ≥ 1 is an ω-power if n = mℵ0 for some cardinal m; equivalently, nℵ0 = n
(see [3] for relevant information).

Given a subset W of a linear space Y , we denote by dimW the algebraic
dimension of linW , the linear span of W in Y . The topological linear spaces
we consider in this section and the next one are over R or C and are assumed
to be Hausdorff spaces.

In the proof of our first result, Theorem 1, we shall apply the folowing
proposition from general topology: If X is a complete metric space such
that every nonempty open subset of X has weight m, then |X| = mℵ0 . This
proposition goes back to F. K. Schmidt (1932); see [25, Lemma 3.1], [3,
p. 184] or [12, p. 52]. In fact, we shall need an equivalent form of it with
“weight” replaced by “density character”. (We denote by d(X) the density
character of X.) That those cardinal functions coincide for arbitrary metric
spaces is well known (see [6, Theorem 4.1.15]).

Theorem 1. Let W be a closed convex set in a complete metric linear
space X. Then

(a) |W | is an ω-power;
(b) dimW is either finite or an ω-power.

Proof. (a): We assume that |W | > 1. Let U be a nonempty (relatively)
open subset of W . We claim that d(U) ≥ d(W ). This implies the asser-
tion, by the proposition formulated above. To establish the claim, assume
additionally that 0 ∈ U . (This can be achieved using a suitable translation
of W .) We then have N · U ⊃ W . Indeed, for each x ∈ W the mapping
[0, 1] 3 t 7→ tx ∈W is continuous and its value at t = 0 belongs to U . Hence
(1/n)x is in U for n large enough. It follows that U is infinite and

d(U) = d(N · U) ≥ d(W ).

Thus, the claim is established.
(b): Suppose dimW ≥ ℵ0. Then, by [16, Theorem 6], dimW ≥ 2ℵ0 .

Consequently, dimW = |W | and an application of (a) completes the proof.
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The special case of Theorem 1(a) with W = X appears in [12, p. 51,
Theorem]. For this special case and X a Banach space see also [1, p. 347,
Theorem], [3, p. 184, Theorem] or [11, Lemma 2].

Theorem 2. Let W be a compact convex set in a topological linear
space X. Then

(a) |W | is an ω-power;
(b) dimW is either finite or an ω-power.

Proof. Without loss of generality, we additionally assume that |W | > 1,
linW = X and W is absolutely convex. As for this last assumption, note
that if W is compact and convex, then so are the sets W −W and [0, 1] ·W ,
and they both have the same cardinality and dimension as W .

Under these additional assumptions, the gauge of W defines a Banach
space topology on X stronger than the original one; see [21, Proposition
3.2.2 and Corollary 3.2.5]. (The standing local convexity assumption made
in [21] is not used in the proofs of those results.) Thus, (a) and (b) follow
from the corresponding parts of Theorem 1.

We note that every ω-power n ≥ 1 is the cardinality and the dimen-
sion of some Banach or even Hilbert space (see [1, p. 348], [3, p. 186] or
[11, Lemma 2 and Corollary 2.4]). This shows that Theorem 1 is, in some
sense, best possible, and so is Theorem 2, in view of the Banach–Alaoglu
theorem. In the latter connection see also Remark 3 in Section 3, and [15,
Proposition 1(a)] and Remark 4 in Section 4.

3. Relations between the cardinality of a compact convex set
and that of its set of extreme points. We shall establish some inequali-
ties and equalities involving the cardinalities in question and present an open
problem.

Proposition 1. LetW be a compact convex set in a locally convex space.
Then

(a) |extrW |ℵ0 ≤ |W | ≤ 22ℵ0·|extr W | ;
(b) |W | ≤ 2ℵ0·|extrW |;
(c) |extrW |ℵ0 = |W | if W is metrizable;
(d) |extrW |ℵ0 = |W | if extrW is a continuous image of a separable

metric space (in particular, if extrW is countable).

Proof. (a): The first inequality is seen from Theorem 2(a). By the Krein–
Milman theorem,W contains a dense subset of cardinality ℵ0·|extrW |. Thus,
the second inequality of (a) follows from a cardinal inequality for general
Hausdorff spaces (see [6, Theorem 1.5.3]).
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(b): By [22, Proposition 1.2],

|W | ≤ |S(extrW )|,
where S(extrW ) stands for the set of Radon probability measures on extrW ,
and so the result follows from Proposition 3(a) below.

(c) follows from (a) and the Krein–Milman theorem.
(d) follows from (c), since the additional assumption on extrW implies

that W is metrizable due to a result of Corson and Haydon (see [9, Theo-
rem 4.6]). In the countable case, one can alternatively apply the result that
W then coincides with the σ-convex hull of extrW (see [8, Theorem 2]).

Proposition 2. If W is a weakly compact convex set in a Banach space,
then |extrW |ℵ0 = |W |.

Proof. In view of Theorem 2(a), we only need to show the inequality
“≥”. Combining the Krein–Milman theorem and a theorem due essentially
to Mazur (see [5], Theorem V.3.13), we get that W coincides with the norm
closure of conv extrW . It follows that

|W | ≤ |conv extrW |ℵ0 ≤ (2ℵ0 · |extrW |)ℵ0 = |extrW |ℵ0

provided |W | > 1.

Example 1. For every cardinal m ≥ 1 there exists a weakly compact
convex set W in a Hilbert space such that |extrW | = m. This is plain if m
is finite. In the opposite case, let Ω be a set of cardinality m, and denote by
eω, ω ∈ Ω, the elements of the standard orthonormal basis of l2(Ω). Set

W =
{∑
ω∈Ω

tωeω : tω ≥ 0 and
∑
ω∈Ω

tω ≤ 1
}
.

Clearly,W is a convex subset of the unit ball of l2(Ω). Moreover, it is seen to
be weakly closed, and so weakly compact, by the Banach–Alaoglu theorem.
Finally, we have

extrW = {eω : ω ∈ Ω} ∪ {0}.
Recall that a topological space is said to be scattered if it contains no

dense-in-itself nonempty subset (see [24, p. 147]). Given a compact (Haus-
dorff) space Z, we denote by S(Z) the set of all probability Radon measures
on Z. This notation follows essentially [24, Section 18.2.3].

Proposition 3. Let Z be a compact space. Then

(a) |Z|ℵ0 ≤ |S(Z)| ≤ 2ℵ0·|Z|;
(b) |Z|ℵ0 = |S(Z)| if Z is scattered.

For part (a) see [7, p. 172]. Part (b) follows from the fact that a compact
space Z is scattered if and only if every Radon measure on Z is atomic (see
[24, Theorem 19.7.6]).
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Fremlin and Plebanek [7, Theorem 3A] construct, under Martin’s axiom,
a (zero-dimensional) compact space Z such that |Z| = 2ℵ0 and |S(Z)| = 22ℵ0 .
This shows that the equality of Proposition 3(b) does not hold in general.

Remark 1. By the Riesz representation theorem (see [24, Section 18]),
S(Z) can be identified with a compact convex subset of the dual Banach
space C(Z)∗ equipped with its weak∗ topology. Moreover, extrS(Z) can
be identified with Z (cf. [5, Lemma V.8.6]). Thus, the first inequality of
Proposition 3(a) is, in fact, a special case of the corresponding inequality
of Proposition 1(a) while Proposition 1(b) is an extension of the second
inequality of Proposition 3(a).

Theorem 2(a) and Propositions 1–3 suggest the following problem. For
which pairs m, n of cardinals does there exist a compact convex set W in a
locally convex space such that

|W | = n and |extrW | = m?

The following restrictions on m and n are either obvious or are direct conse-
quences of Proposition 1(a) and Theorem 2(a):

1 ≤ m ≤ n ≤ 22ℵ0·m and nℵ0 = n.

By Remark 4 in Section 4 and [15, Proposition 1(a)], each pair m, mℵ0 , where
m ≥ 1, has the property in question. So does, under Martin’s axiom, the
pair 2ℵ0 , 22ℵ0 , according to the Fremlin–Plebanek example mentioned above
(cf. Remark 1). Thus, m = 2ℵ0 does not determine the desired n uniquely.
However, if 1 ≤ m ≤ ℵ0, then n = mℵ0 (for m = ℵ0 see Proposition 1(d)).

The problem formulated above seems to be open even in various spe-
cialized forms. For example, one can restrict attention to unit balls of dual
Banach spaces or to sets E(µ) considered in the rest of the paper (see the
next section for definition). However, in two important special cases a com-
plete answer can be given without difficulty.

Remark 2. Let W be a metrizable compact convex set in a locally
convex space and let m and n be as above. Then either n = 1 or n = 2ℵ0 .
In the former case m = 1 while in the latter case m is either finite and > 1
or ℵ0 or 2ℵ0 . (This is because extrW is then a Gδ-set, see [22, Proposition
1.3].) Moreover, all those possibilities can occur, even for subsets of R2.

Remark 3. Let W be a weakly compact convex set in a Banach space
and let n and m be as in the paragraph following Remark 1. Then n = mℵ0

and each m ≥ 1 can occur (see Proposition 2 and Example 1).

4. Notation, terminology and auxiliary results on quasi-meas-
ures. Throughout the rest of the paper, Ω stands for a nonempty set. The
algebra of subsets of Ω generated by E ⊂ 2Ω is denoted by Eb.
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Let M be an algebra of subsets ofΩ, and denote by ba(M) the Banach lat-
tice of all real-valued bounded additive functions on M (see [2, Section 2.2]).
As usual, |ϕ| stands for the modulus of ϕ ∈ ba(M) and ∧ for the minimum
operation in ba(M).

If M is a σ-algebra, we set

ca(M) = {ϕ ∈ ba(M) : ϕ is countably additive}.

Let µ ∈ ba+(M). We denote by M(µ) the quotient Boolean algebra of
M modulo the ideal of µ-null sets. We set

[0, µ] = {ν ∈ ba+(M) : ν ≤ µ}.

We say that µ is (purely) atomic if there exist a (at most) two-valued
µi ∈ ba+(M) such that µ =

∑∞
i=1 µi (see [2, p. 213]). We say that µ is

nonatomic provided for every ε>0 there exists an M-partition {M1, . . . ,Mn}
of Ω with µ(Mi) < ε for all i (see [2, Definition 5.1.4], where the term strongly
continuous is used).

We set

pa(M) = {µ ∈ ba+(M) : µ(Ω) = 1},
ult(M) = {µ ∈ pa(M) : µ is two-valued}.

For µ, ν ∈ ba+(M) we write ν � µ if ν is absolutely continuous with
respect to µ, i.e., the familiar ε–δ condition holds (see [2, Definition 6.1.1]).

In the proof of Theorem 6 in Section 6 we shall need the following lemma.

Lemma 1. For every µ ∈ ba+(M) we have

|[0, µ]| = |M(µ)|ℵ0 .

Proof. For every N ∈M define µN in [0, µ] by

µN (M) = µ(M ∩N), M ∈M.

Given N1, N2 ∈M, we then have

µN1 − µN2 = µN1\N2
− µN2\N1

,

and so
‖µN1 − µN2‖ = µ(N1 4 N2).

This shows that
|{µN : N ∈M}| = |M(µ)|.

Given ν ∈ [0, µ] and ε > 0, there exist N1, . . . , Nn ∈ M and rational
numbers t1, . . . , tn such that∥∥∥ν − n∑

i=1

tiµNi

∥∥∥ < ε
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(see [2, Theorem 6.3.4, (i)⇒(iii)]). This implies that

|{µN : N ∈M}|ℵ0 ≥ |[0, µ]|.
In view of Theorem 1(a), the converse inequality also holds, and so the
assertion follows.

Let R be an algebra of subsets of Ω with M ⊂ R and let µ ∈ ba+(M).
We set

E(µ) = {% ∈ ba+(R) : %|M = µ}.
Occasionally, we shall use the more comprehensive notation E(µ,R) instead
of E(µ).

Recall that E(µ) is always nonempty. In fact, we even have

(C) extrE(µ) 6= ∅
(see [15, pp. 351–352] for references). In the proof of Lemma 2 below we shall
apply the following extremality criterion due to Plachky [23, Theorem 1]; see
[15, p. 352] for more references.

(D) Let % ∈ E(µ). Then % ∈ extrE(µ) if and only if for every R ∈ R
and every ε > 0 there exists M ∈M with %(R 4M) < ε.

A direct consequence of (D) is

(D)′ If µ is two-valued, then extrE(µ) = {% ∈ E(µ) : %(R) = µ(M)}.
Note that for M = {∅, Ω} and µ(Ω) = 1 we have E(µ) = pa(R), and so

(D)′ then takes the following form:

(D)′′ extr pa(R) = ult(R)

(see [23, Remark 1 on Theorem 1]). This equality will be used in the proofs
of Proposition 3′ and Theorem 3 in the next section.

Throughout the rest of the paper, M and R stand for algebras of subsets
of Ω with M ⊂ R.

Part (a) of the next result will be used in the proof of Theorem 5 in
Section 6. Some conditions sufficient for the inequality of (a) to turn into
equality are given in the next two sections (see Theorem 3(b), Remark 7 and
Theorem 5(a)).

Corollary 1. For every µ ∈ ba+(M) we have

(a) |E(µ)| ≥ |extrE(µ)|ℵ0 ;
(b) |E(µ)| = |extrE(µ)| is an ω-power if E(µ) is weakly compact and

extrE(µ) is infinite.

Proof. Part (a) is a direct consequence of Theorem 1(a), since E(µ)
is closed in the Banach space ba(R). Part (b) follows from Proposition 2
and [19, Corollary 1(b)].
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Remark 4 (cf. Proposition 3′(b) below). For every cardinal m ≥ 1 there
exist Ω, M, R and µ as above such that

|E(µ)| = mℵ0 and |extrE(µ)| = m.

Indeed, let m > 1 and let Ω be a set with |Ω| = m. Take for R the algebra
of finite subsets of Ω and their complements, and note that |pa(R)| = mℵ0

and |ult(R)| = m. Let M = {∅, Ω} and µ(Ω) = 1, and apply (D)′′.

Remark 5 (cf. Remarks 2 and 3). Let E(µ), where µ ∈ ba+(M), be
weakly compact, and set

n = |E(µ)| and m = |extrE(µ)|.

Then either 1 < m < ℵ0 and n = 2ℵ0 (by Proposition 2) or m is an ω-power
and n = m (by Corollary 1(b)). Moreover, all those possibilities can occur
(see Remark 4, and [18, Example 3] and [15, Theorem 1(a)]). In the special
case where E(µ) is strongly compact we have either m = n = 1 or 1 < m < ℵ0

and n = 2ℵ0 or m = n = 2ℵ0 , and all those possibilities can occur (see [19,
Remark 1]).

The following two lemmas seem to be of some interest in themselves.
Lemma 2 will be applied in the proof of Lemma 3. The latter will be applied,
in turn, in the proof of Theorem 4(b) in Section 6.

Lemma 2. Let µ, ν ∈ ba+(M) satisfy ν ≥ µ. If π ∈ extrE(µ), then there
exists σ ∈ extrE(µ) with σ ≥ π.

Proof. We first establish the assertion under the additional assumption
that ν � µ. Setting

dπ(R1, R2) = π(R1 4 R2), R1, R2 ∈ R,

we define a pseudometric on R. By (D), M is dense in R with respect to
dπ. Moreover, ν is uniformly continuous on (R, dπ), since ν � µ is assumed.
Let σ be a (unique) continuous extension of ν to (R, dπ). Clearly, σ is in
ba+(R), σ � π and σ ≥ π. In view of (D), σ is in extrE(ν).

In the general case, according to the Lebesgue decomposition theorem
(see [2, Theorem 6.2.5]), there exist ν1, ν2 ∈ ba+(M) with

ν = ν1 + ν2, ν1 � µ and ν2 ∧ µ = 0.

We then have ν1 ∧ ν2 = 0 and ν1 ≥ µ, by Remark 6.1.20(ii) and Theo-
rem 2.2.1(b) of [2], respectively. Applying what we have proved so far, we
get σ1 in extrE(ν1) with σ1 ≥ π. Choose σ2 in extrE(ν2) arbitrarily (see
(C)), and set σ = σ1 + σ2. In view of [15, Lemma 2(b)], σ is in extrE(ν).
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Lemma 3. Let µ1, µ2 ∈ ba+(M) and let π1 ∈ extrE(µ1). Then there
exists π2 ∈ extrE(µ2) such that

‖π2 − π1‖ = ‖µ2 − µ1‖.

Proof. Set µ = µ1 ∧ µ2 and µ′i = µi − µ, i = 1, 2. By [15, Lemma 2(a)],
there exist π′1 ∈ extrE(µ′1) and π ∈ extrE(µ) with π1 = π′1 + π. Choose π2

in extrE(µ2) with π2 ≥ π (see Lemma 2), and set π′2 = π2 − π. Clearly, π′2
is in E(µ′2). In view of [2, Theorem 2.2.1(7)], π′1 ∧ π′2 = 0, since µ′1 ∧ µ′2 = 0.
It follows that

‖π′2 − π′1‖ = ‖π′2‖+ ‖π′1‖ = ‖µ′2‖+ ‖µ′1‖ = ‖µ′2 − µ′1‖

(see [2, Theorems 1.5.4(21) and 2.2.2(7)]). This implies the assertion.

Recall that an algebra N of sets is said to be superatomic if every subal-
gebra of N is atomic (see [10, Proposition 17.5] or [2, Definition 5.3.4]). This
notion appears below in Proposition 3′(b), Remark 7 and Theorem 5, and
in the proof of Theorem 3.

5. E(µ) for atomic µ. Recall that, as before, M and R denote alge-
bras of subsets of Ω with M ⊂ R. We shall need the following version of
Proposition 3.

Proposition 3′. We have

(a) |ult(R)|ℵ0 ≤ |pa(R)| ≤ 2ℵ0·|ult(R)|;
(b) |ult(R)|ℵ0 = |pa(R)| if R is superatomic.

Proof. We shall establish both assertions in two different ways.
1. Denote by Z the Stone space of R. By [10, Remark 17.2], R is super-

atomic if and only if Z is scattered. In view of [20, Proposition 1(a)], pa(R)
and S(Z) are, in particular, equipotent. Thus, (a) and (b) follow from the
corresponding parts of Proposition 3.

2. The first inequality of (a) follows from the injectivity of the mapping

(πn) 7→
∞∑
n=1

2
3n
πn

of (ult(R))N into pa(R). As for the second one, we have |R| ≤ ℵ0 · |ult(R)|,
by a standard result (see [10, Theorem 5.31]), and so

|pa(R)| ≤ |RR| ≤ 2ℵ0·|ult(R)|.

The assumption of (b) implies that every element of pa(R) is atomic (see
[2, Theorem 5.3.6]). Thus, (b) follows from (a).

The next result extends a part of Proposition 3′.
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Theorem 3. Let µ ∈ ba+(M).

(a) If µ is atomic, then

|E(µ)| ≤ 2ℵ0·|extrE(µ)|.

(b) If each element of E(µ) is atomic, then

|E(µ)| = |extrE(µ)|ℵ0 .

Proof. Under the assumption of (a), E(µ) is affinely isomorphic to the
countable Cartesian product

∏
j pa(Rj), where Rj are algebras of sets, by

[20, Theorem 1(a)]. Under the assumption of (b), those algebras can be
chosen, in addition, superatomic, by [20, Theorem 3, (ii)⇒(iv)]. In view of
(D)′′, (a) and (b) now follow from the corresponding parts of Proposition 3′.

Alternatively, in view of [15, Proposition 1(a) and Theorem 2(a)], Theo-
rem 3(a) is a consequence of Proposition 1(b).

Remark 6. The inequality of Theorem 3(a) and the corresponding in-
equality of Propositon 3′(a) cannot be improved, at least under Martin’s
axiom, due to the Fremlin–Plebanek example mentioned after the proof of
Proposition 3. As for the latter, this is seen from its first proof. Now, the
former is, in fact, an extension of the latter. For the same reason, Theorems 6
and 7 in Section 6 cannot be improved either.

Remark 7. The equality of Theorem 3(b) also holds if E(µ) is weakly
compact or extrE(µ) is countable. The former assertion is a special case
of Proposition 2 while the latter follows from Proposition 1(d) combined
with [15, Proposition 1(a)]. Alternatively, we can deduce the latter from [17,
Theorem 5] and Proposition 3′(b), since every algebra R of sets with ult(R)
countable is superatomic (see [24, Proposition 8.5.7] and [10, Remark 17.2]).
For two other conditions sufficient for the equality of Theorem 3(b) to hold
see Theorem 5 in Section 6.

6. E(µ) for arbitrary µ. Throughout this section, N denotes an algebra
of subsets of Ω with (M ∪N)b = R.

Part (a) of our next result is an extension of the author’s version of a
theorem due to R. Bierlein (see [13, Theorem 3] and [14, Theorem 3(d)]). It
is applied in the proof of part (b) thereof, which is, in turn, applied in the
proof of Theorem 5(a).

Theorem 4. Let µ ∈ ba+(M) and % ∈ E(µ).

(a) If %(N) is finite, then there exist ti > 0 and πi ∈ extrE(µ) such that∑∞
i=1 ti = 1 and % =

∑∞
i=1 tiπi.

(b) If %|N is atomic, then % is in the strong closure of conv extrE(µ).
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Proof. (a): Set

I = {N ∈ N : %(N) = 0}, MI = (M ∪ I)b and %I = %|MI.

Clearly, I is an ideal in N and

MI = {M 4 N : M ∈M and N ∈ I}.
By (D), %I is in extrE(µ,MI). The assumption on % implies that the quotient
Boolean algebra N/I is finite. Therefore, there exists a finite partition E of
Ω such that

N = (E ∪ I)b,

and so R = (MI∪E)b. By [13, Theorem 3] or [14, Theorem 3(d)], there exist
ti > 0 and πi ∈ extrE(%I,R) with

∞∑
i=1

ti = 1 and % =
∞∑
i=1

tiπi.

Clearly, πi is in extrE(µ).
(b): By assumption, there exist at most two-valued νj ∈ ba+(N) such

that

%|N =
∞∑
j=1

νj .

In view of [15, Lemma 2(a)], we can find %j ∈ E(νj ,R) with % =
∑∞

j=1 %j .
Fix ε > 0, and choose n so that∥∥∥%− n∑

j=1

%j

∥∥∥ < ε.

Set

%′ =
n∑
j=1

%j , µj = %j |M and µ′ =
n∑
j=1

µj .

We have %′ ∈ E(µ′) and %′(N) is finite. It now follows from (a) that there
exist ti > 0 and π′i ∈ extrE(µ′) such that

∞∑
i=1

ti = 1 and %′ =
∞∑
i=1

tiπ
′
i.

According to Lemma 3, we can find πi ∈ extrE(µ) with

‖πi − π′i‖ = ‖µ− µ′‖ < ε.

It follows that∥∥∥%− ∞∑
i=1

tiπi

∥∥∥ ≤ ‖%− %′‖+
∥∥∥ ∞∑
i=1

ti(πi − π′i)
∥∥∥ < 2ε.

This implies the assertion.
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Theorem 5. Let µ ∈ ba+(M) and let N be superatomic or countable.
Then

(a) |E(µ)| = |extrE(µ)|ℵ0;
(b) |E(µ)| = |extrE(µ)| if µ is nonatomic.

Proof. (a): In view of Corollary 1(a), we only need to show the inequality
“≤”. For N superatomic this inequality is a consequence of Theorem 4(b) and
[2, Theorem 5.3.6]. Suppose then N is countable, and denote its elements by
N1, N2, . . . . Set

Ri = (M ∪ {N1, . . . , Ni})b.
Clearly, the mapping

% 7→ (%|Ri)∞i=1

of E(µ) into
∏∞
i=1E(µ,Ri) is injective. Moreover, we have∣∣∣ ∞∏

i=1

E(µ,Ri)
∣∣∣ ≤ ∞∏

i=1

|extrE(µ,Ri)|ℵ0 ≤ |extrE(µ)|ℵ0 ,

with the first inequality following from [13, Theorem 3], an extension of
which is Theorem 4(a) above, or [15, Theorem 1(a)] and Proposition 2, and
the second one being a consequence of (C). This completes the proof of (a).

(b): This follows from (a) and [18, Theorem 1].

Recall that the equality of Theorem 5(b) also holds if E(µ) is weakly
compact and extrE(µ) is infinite (see Corollary 1(b)). Here is one more
example where this equality holds.

Example 2. Let Ω = [0, 1] and R = 2Ω. Moreover, let M be the σ-
algebra of Lebesgue measurable subsets of Ω and let µ be the Lebesgue
measure on M. Both E(µ) and extrE(µ) then have cardinality 22c (see [18,
Example 2] for details).

Theorem 6. For every µ ∈ ba+(M) we have

|E(µ)| ≤ |M(µ)|ℵ0·|N|.
Proof. We consider two cases. First, let N be finite. We can then find a

partition E1, . . . , En of Ω with

N = {E1, . . . , En}b.
It follows that

R =
{ n⋃
i=1

Mi ∩ Ei : Mi ∈M, i = 1, . . . , n
}
.

For % ∈ E(µ) we define %i, i = 1, . . . , n, by

%i(M) = %(M ∩ Ei), M ∈M
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(cf. [14, Theorem 3(b)]). We have

%i(M) ≤ %(M) = µ(M), M ∈M,

and so %i is in [0, µ]. The mapping

% 7→ (%1, . . . , %n)

of E(µ) into [0, µ]n is injective. Indeed, fix %, %′ ∈ E(µ) with % 6= %′. Then

%
( n⋃
i=1

Mi ∩ Ei
)
6= %′

( n⋃
i=1

Mi ∩ Ei
)

for some M1, . . . ,Mn ∈ M. Consequently, %(Mi ∩ Ei) 6= %′(Mi ∩ Ei) for at
least one i, that is, %i 6= %′i. An application of Lemma 1 now yields

|E(µ)| ≤ |M(µ)|ℵ0 ,

which shows that the assertion holds for finite N.
Let now N be infinite, and set

P = {(M ∪ E)b : E is a finite subfamily of N}.

We have |P| ≤ |N|. Moreover, the mapping

% 7→ (%|P)P∈P

of E(µ) into
∏

P∈P E(µ,P) is injective. Using the finite case of the assertion
established above, we get∣∣∣∏

P∈P
E(µ,P)

∣∣∣ ≤ |M(µ)|ℵ0·|P| = |M(µ)||N|

and the infinite case follows.

Corollary 2. Let M be a σ-algebra, let N be countable, and let µ ∈
ca+(M) have infinite range. Then

|E(µ)| ≤ |M(µ)|.

Proof. Under our assumptions, M(µ) is a complete Boolean algebra.
Moreover, it is infinite. Thus, |M(µ)| is an ω-power, according to a theo-
rem of R. S. Pierce (see [4, Corollary 11.6]). An application of Theorem 6
completes the proof.

Proposition 3 of [18] shows that the inequality of Corollary 2 can turn
into equality even if N consists of only four sets.

Theorem 7. Let µ ∈ ba+(M) and let M ∩ N 6= ∅ for all M ∈ M with
µ(M) > 0 and nonempty N ∈ N. Then

|E(µ)| ≤ 2ℵ0·|extrE(µ)|.
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Proof. We may assume that µ(Ω) = 1 and there is an N0 in N with
N0 6= ∅, Ω. In view of [18, Proposition 3], we then have

|extrE(µ, (M ∪ {N0})b)| ≥ |M(µ)|.
This implies |extrE(µ)| ≥ |M(µ)|, by (C). On the other hand, |extrE(µ)| ≥
|ult(N)|, by [18, Proposition 2], and so

ℵ0 · |extrE(µ)| ≥ |N|,
by [10, Theorem 5.31]. Using Theorem 6, we conclude that

|E(µ)| ≤ 2|M(µ)|·ℵ0·|N| ≤ 2ℵ0·|extrE(µ)|.
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