CYCLE-FINITE ALGEBRAS WITH ALMOST ALL INDECOMPOSABLE MODULES OF PROJECTIVE OR INJECTIVE DIMENSION AT MOST ONE

BY

ADAM SKOWYRSKI (Toruń)

Abstract

We describe the structure of artin algebras for which all cycles of indecomposable modules are finite and almost all indecomposable modules have projective or injective dimension at most one.

1. Introduction and the main result. Throughout the paper by an algebra we mean an artin algebra over a fixed commutative artin ring K, which we will assume to be basic and indecomposable. For an algebra A, we denote by $\bmod A$ the category of finitely generated right A-modules and by ind A the full subcategory of $\bmod A$ formed by all indecomposable modules.

The Jacobson radical rad_{A} of $\bmod A$ is the ideal generated by all noninvertible homomorphisms between indecomposable modules, and the infinite radical $\operatorname{rad}_{A}^{\infty}$ of $\bmod A$ is the intersection of all powers $\operatorname{rad}_{A}^{i}, i \geq 1$, of rad_{A}. By a result of Auslander [5], $\operatorname{rad}_{A}^{\infty}=0$ if and only if A is of finite representation type, that is, ind A admits only a finite number of pairwise non-isomorphic modules (see [17] for an alternative proof). On the other hand, if A is of infinite representation type then $\left(\operatorname{rad}_{A}^{\infty}\right)^{2} \neq 0$, by a result proved in [9] (see [10] for the structure of module categories $\bmod A$ of algebras A with $\left(\operatorname{rad}_{A}^{\infty}\right)^{3}=0$ and [17], 34] for other results and open problems concerning the Jacobson radical power series of module categories).

We denote by Γ_{A} the Auslander-Reiten quiver of A, and by τ_{A} and τ_{A}^{-1} the Auslander-Reiten translations $D \operatorname{Tr}$ and $\operatorname{Tr} D$, respectively. We identify a module in ind A with the corresponding vertex of Γ_{A}.

A prominent rôle in the representation theory of algebras is played by cycles of modules, or more generally cycles of complexes of modules. Recall that a cycle in the module category $\bmod A$ of an algebra A is a sequence

$$
X_{0} \xrightarrow{f_{1}} X_{1} \rightarrow \cdots \rightarrow X_{r-1} \xrightarrow{f_{r}} X_{r}=X_{0}
$$

[^0]of non-zero non-isomorphisms in ind A, and such a cycle is said to be finite if the homomorphisms f_{1}, \ldots, f_{r} do not belong to $\operatorname{rad}_{A}^{\infty}$. Following Ringel [32], a module in ind A which does not lie on the cycle in $\bmod A$ is called directing. It has been proved independently by Peng and Xiao [29] and Skowroński [39] that every Auslander-Reiten quiver Γ_{A} has at most finitely many $\tau_{A^{-}}$ orbits containing directing modules. Moreover, by a result of Ringel [32], the support algebra of a directing module is a tilted algebra. On the other hand, the support algebras of non-directing indecomposable modules depend on properties of cycles containing these modules.

Following Assem and Skowroński [3], an algebra is said to be cycle-finite if all cycles in $\bmod A$ are finite. The class of cycle-finite algebras is wide and contains the following classes of algebras: algebras of finite representation type, tame tilted algebras [16], 32], tame double tilted algebras [30], tame generalized double tilted algebras [31, tubular algebras [32, [33], tame quasitilted algebras [19], 45], tame coil and multicoil algebras [3], 4], tame generalized multicoil algebras [26], and strongly simply connected algebras of polynomial growth [43]. It has also been proved in [2] that the class of algebras A for which the derived category $D^{b}(\bmod A)$ of bounded complexes over $\bmod A$ is cycle-finite coincides with the class of piecewise hereditary algebras of Dynkin, Euclidean, and tubular type, and consequently these algebras are also cycle-finite.

Moreover, frequently an algebra A admits a Galois covering $R \rightarrow R / G$ $=A$, where R is a cycle-finite locally bounded category and G is an admissible group of automorphisms of R, which allows the representation theory of A to be reduced to the representation theory of cycle-finite algebras which are convex subcategories of R (see [28] and [44] for some general results). For example, every finite-dimensional selfinjective algebra A of polynomial growth over an algebraically closed field K admits a canonical standard form \bar{A} (geometric socle deformation of A) such that \bar{A} has a Galois covering $R \rightarrow$ $R / G=\bar{A}$, where R is a cycle-finite selfinjective locally bounded category and G is an admissible infinite cyclic group of automorphisms of R, and the Auslander-Reiten quiver $\Gamma_{\bar{A}}$ is the orbit quiver Γ_{R} / G with respect to the induced action of G (see [48]).

We are concerned with the problem of describing the structure of algebras A for which all but finitely many isomorphism classes of modules X in ind A have projective dimension $\operatorname{pd}_{A} X \leq 1$ or injective dimension $\mathrm{id}_{A} X \leq 1$. This class contains all algebras A of small homological dimension (briefly, shod algebras) for which every module X in ind A satisfies $\operatorname{pd}_{A} X \leq 1$ or id $A \leq 1$ (see [8]). It is known ([14]) that any shod algebra A has gl.dim $A \leq 3$. Moreover, it has been shown by Happel, Reiten and Smalø[14] that A is a shod algebra with gl. $\operatorname{dim} A \leq 2$ if and only if A is a quasitilted algebra, that is, $A=\operatorname{End}_{\mathcal{H}}(T)$ for a tilting object T in an abelian hereditary K-category \mathcal{H}.

Following [14], denote by \mathcal{L}_{A} the full subcategory of ind A formed by all modules X such that $\mathrm{pd}_{A} Y \leq 1$ for every predecessor Y of X in ind A, and by \mathcal{R}_{A} the full subcategory of ind A formed by all modules X such that $\operatorname{id}_{A} Z \leq 1$ for every successor Z of X in ind A. Coelho and Lanzilotta [8] proved that A is a shod algebra if and only if ind $A=\mathcal{L}_{A} \cup \mathcal{R}_{A}$.

An important class of quasitilted algebras is formed by tilted algebras, that is, algebras of the form $\operatorname{End}_{H}(T)$, where T is a tilting object in the module category $\bmod H$ of a hereditary algebra H [15]. It has been proved by Happel and Reiten [13] (in the tame case by Skowronski [45]) that the remaining class of quasitilted algebras is formed by quasitilted algebras of canonical type (see also [11, [19], 45] for the representation theory of this class of algebras). Further, Reiten and Skowroński proved in [30] that A is a shod algebra with gl. $\operatorname{dim} A=3$ if and only if A is a strictly double tilted algebra. Characterizations of tilted and double tilted algebras using homological properties of directing modules have been established in [46]. This completes the classification of algebras with small homological dimension (equivalently, with ind $A=\mathcal{L}_{A} \cup \mathcal{R}_{A}$).

In 31 a wide class of algebras A with the property that $\mathcal{L}_{A} \cup \mathcal{R}_{A}$ is cofinite in ind A, called generalized double tilted algebras, has been introduced and investigated. In particular, Skowroński [47] proved that, for an algebra A, $\mathcal{L}_{A} \cup \mathcal{R}_{A}$ is cofinite in ind A if and only if A is a generalized double tilted algebra or a quasitilted algebra. Moreover, the following problem was raised by Skowroński in 47]:

Problem 1.1. Let A be an algebra such that for all but finitely many isomorphism classes of modules X in ind A, we have $\operatorname{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$. Is then $\mathcal{L}_{A} \cup \mathcal{R}_{A}$ cofinite in ind A ?

We note that this was proved in [40, Theorems 3.1 and 3.2] to be the case if for all but finitely many isomorphism classes of modules X in ind A, we have $\operatorname{pd}_{A} X \leq 1$ (respectively, $\operatorname{id}_{A} X \leq 1$).

The aim of this paper is to provide a positive solution of Problem 1.1 for cycle-finite algebras. The main result of this paper is the following theorem.

Theorem 1.2. For a cycle-finite algebra A, the following statements are equivalent:
(i) For all but finitely many isomorphism classes of modules X in ind A, we have $\operatorname{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$.
(ii) A is a generalized double tilted algebra or a quasitilted algebra of canonical type.

For basic background on the representation theory of algebras we refer the reader to the books [1], 6], [32], 35], [36], [50].
2. Preliminaries. We recall some notation and concepts on algebras and modules needed in our further considerations.

Let A be an algebra and e_{1}, \ldots, e_{n} a set of pairwise orthogonal primitive idempotents of A with $1_{A}=e_{1}+\cdots+e_{n}$. Then:

- $P_{i}=e_{i} A, i \in\{1, \ldots, n\}$, is a complete set of pairwise non-isomorphic indecomposable projective modules in $\bmod A$.
- $I_{i}=D\left(A e_{i}\right), i \in\{1, \ldots, n\}$, is a complete set of pairwise non-isomorphic indecomposable injective modules in $\bmod A$.
- $S_{i}=\operatorname{top}\left(P_{i}\right)=e_{i} A / e_{i} \operatorname{rad} A, i \in\{1, \ldots, n\}$, is a complete set of pairwise non-isomorphic simple modules in $\bmod A$.
- $S_{i}=\operatorname{soc}\left(I_{i}\right)$, for any $i \in\{1, \ldots, n\}$.

Moreover, $F_{i}:=\operatorname{End}_{A}\left(S_{i}\right) \cong e_{i} A e_{i} / e_{i}(\operatorname{rad} A) e_{i}$, for $i \in\{1, \ldots, n\}$, are division algebras. The quiver Q_{A} of A is the valued quiver defined as follows:

- The vertices of Q_{A} are the indices $1, \ldots, n$ of the chosen set e_{1}, \ldots, e_{n} of primitive idempotents of A.
- Given a pair of vertices i and j in Q_{A}, there is an arrow $i \rightarrow j$ from i to j in Q_{A} if and only if $e_{i}(\operatorname{rad} A) e_{j} / e_{i}(\operatorname{rad} A)^{2} e_{j} \neq 0$. Moreover, one equips the arrow $i \rightarrow j$ in Q_{A} with the valuation $\left(d_{i j}, d_{i j}^{\prime}\right)$, so we have in Q_{A} the valuated arrow

$$
i \xrightarrow{\left(d_{i j}, d_{i j}^{\prime}\right)} j
$$

where

$$
\begin{aligned}
d_{i j} & =\operatorname{dim}_{F_{j}} e_{i}(\operatorname{rad} A) e_{j} / e_{i}(\operatorname{rad} A)^{2} e_{j} \\
d_{i j}^{\prime} & =\operatorname{dim}_{F_{i}} e_{i}(\operatorname{rad} A) e_{j} / e_{i}(\operatorname{rad} A)^{2} e_{j}
\end{aligned}
$$

An algebra A is called triangular if its quiver Q_{A} is acyclic (i.e. there is no oriented cycle in Q_{A}). We identify an algebra A with the associated category A^{*} whose objects are the vertices of the quiver $Q_{A}, \operatorname{Hom}_{A^{*}}(i, j)=e_{j} A e_{i}$ for any objects i and j of A^{*}, and the composition of morphisms in A^{*} is given by multiplication in A. For a module M in $\bmod A$, we denote by $\operatorname{supp}(M)$ the full subcategory of $A=A^{*}$ given by all objects i such that $M e_{i} \neq 0$, and call it the support of M. More generally, for a family $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ of components of Γ_{A}, we denote by $\operatorname{supp}(\mathcal{C})$ the full subcategory of A given by all objects i such that $X e_{i} \neq 0$ for some indecomposable module X in \mathcal{C}, and call it the support of \mathcal{C}. Then a module M in $\bmod A$ (respectively, a family of components \mathcal{C} in Γ_{A}) is said to be sincere if $\operatorname{supp}(M)=A$ (respectively, if $\operatorname{supp}(\mathcal{C})=A$). Finally, a full subcategory B of A is said to be convex if every path in Q_{A} with source and target in Q_{B} lies entirely in Q_{B}. Observe that, for every convex subcategory B of A, there is a fully faithful embedding of $\bmod B$ into $\bmod A$ such that $\bmod B$ is the full subcategory of $\bmod A$
consisting of all modules M with $M e_{i}=0$ for all vertices i of Q_{A} which are not vertices of Q_{B}.

We will use the following lemma.
Lemma 2.1. Let R and S be algebras, M an S - R-bimodule, $A=\left[\begin{array}{cc}S & M \\ 0 & R\end{array}\right]$ the matrix algebra defined by the bimodule ${ }_{S} M_{R}$, and Y a module in $\bmod A$ represented by a triple $\left(Y_{0}, Y_{1}, \varphi\right)$ with $\varphi \neq 0$. Then, for every indecomposable direct summand Z of an R-module Y_{1}, we have $\operatorname{Hom}_{R}(M, Z) \neq 0$.

Proof. This follows immediately from the arguments in the proof of 36, Lemma XV.1.8].
3. Auslander-Reiten components. We introduce various types of components of Auslander-Reiten quivers and prove a result on the shape of Auslander-Reiten components with infinite cyclic part, needed in the proof of the main theorem.

Let A be an algebra. We recall that a component \mathcal{C} of Γ_{A} is called regular if \mathcal{C} contains neither a projective module nor an injective module, and semiregular if \mathcal{C} does not contain both a projective and an injective module. It has been proved in [20] and [51] that a regular component \mathcal{C} of Γ_{A} contains an oriented cycle if and only if \mathcal{C} is a stable tube, that is, \mathcal{C} is of the form $\mathbb{Z} \mathbb{A}_{\infty} /\left(\tau^{r}\right)$ for some $r \geq 1$. Moreover, Liu proved in [21] that a semiregular component \mathcal{C} of Γ_{A} contains an oriented cycle if and only if \mathcal{C} is a semiregular tube, that is, a ray tube (obtained from a stable tube by a finite number (possibly zero) of ray insertions) or a coray tube (obtained from a stable tube by a finite number (possibly zero) of coray insertions). A component \mathcal{P} of Γ_{A} is called postprojective if \mathcal{P} is acyclic (without oriented cycles) and every module in \mathcal{P} lies in the τ_{A}-orbit of a projective module. Dually, a component \mathcal{Q} of Γ_{A} is called preinjective if \mathcal{Q} is acyclic and every module in \mathcal{Q} lies in the τ_{A}-orbit of an injective module. Following [25], a full translation subquiver Γ of Γ_{A} is said to be coherent if the following two conditions are satisfied:
(C1) For each projective module P in Γ, there is an infinite sectional path $P=X_{1} \rightarrow X_{2} \rightarrow \cdots$.
(C2) For each injective module I in Γ, there is an infinite sectional path $\cdots \rightarrow Y_{2} \rightarrow Y_{1}=I$.

Further, a component \mathcal{C} of Γ_{A} is called almost cyclic if all but finitely many modules in \mathcal{C} lie on oriented cycles in Γ_{A}. We note that the stable tubes, ray tubes and coray tubes of Γ_{A} are semiregular, almost cyclic, and coherent. Following Skowroński [38, a component \mathcal{C} of Γ_{A} is said to be generalized standard if $\operatorname{rad}_{A}^{\infty}(X, Y)=0$ for all modules X and Y from \mathcal{C}. It has been proved in [38, Theorem 2.3] that every generalized standard component \mathcal{C}
of Γ_{A} is almost periodic, that is, all but finitely many τ_{A}-orbits in \mathcal{C} are periodic.

A family $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ of components of Γ_{A} is said to be a separating family in $\bmod A$ if all components in Γ_{A} split into three disjoint families \mathcal{P}^{A}, $\mathcal{C}^{A}=\mathcal{C}$ and \mathcal{Q}^{A} such that the following conditions are satisfied:
(S1) \mathcal{C}^{A} is a sincere family of pairwise orthogonal generalized standard components.
(S2) $\operatorname{Hom}_{A}\left(\mathcal{Q}^{A}, \mathcal{P}^{A}\right)=0, \operatorname{Hom}_{A}\left(\mathcal{Q}^{A}, \mathcal{C}^{A}\right)=0, \operatorname{Hom}_{A}\left(\mathcal{C}^{A}, \mathcal{P}^{A}\right)=0$.
(S3) Any homomorphism from \mathcal{P}^{A} to \mathcal{Q}^{A} in $\bmod A$ factorizes through $\operatorname{add}\left(\mathcal{C}^{A}\right)$.

Moreover, if (S1), (S2) and the condition
$\left(\mathrm{S3}^{*}\right)$ any homomorphism from \mathcal{P}^{A} to \mathcal{Q}^{A} in $\bmod A$ factorizes through $\operatorname{add}\left(\mathcal{C}_{i}\right)$ for any $i \in I$,
are satisfied, then \mathcal{C} is said to be a strongly separating family $\operatorname{in} \bmod A$ (see [26], [27], 32]).

For a component \mathcal{C} of Γ_{A}, we denote by ${ }_{l} \mathcal{C}$ the left stable part of \mathcal{C}, obtained by deleting from \mathcal{C} all τ_{A}-orbits containing projective modules, and by ${ }_{r} \mathcal{C}$ the right stable part of \mathcal{C}, obtained by deleting from \mathcal{C} all τ_{A}-orbits containing injective modules. Finally, we denote by ${ }_{c} \Gamma_{A}$ the cyclic part of Γ_{A}, obtained by removing from Γ_{A} all acyclic modules and the arrows attached to them. The connected components of ${ }_{c} \Gamma_{A}$ are called the cyclic components of Γ_{A} (see [25]).

A prominent role in the proof of the main theorem is played by the following proposition.

Proposition 3.1. Let A be a cycle-finite algebra such that, for all but finitely many isomorphism classes of modules X in ind A, we have $\operatorname{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$. Then every infinite cyclic component \mathcal{D} of Γ_{A} is the cyclic part ${ }_{c} \mathcal{C}$ of a semiregular tube \mathcal{C} of Γ_{A}.

Proof. Let \mathcal{D} be an infinite cyclic component of Γ_{A}, and \mathcal{C} be the component of Γ_{A} containing the translation quiver \mathcal{D}. Since \mathcal{D} is infinite and cyclic, it follows from [24, Corollary 2.8] that ${ }_{l} \mathcal{C}$ or ${ }_{r} \mathcal{C}$ contains a connected component Γ containing an oriented cycle and infinitely many modules of \mathcal{D}. We will prove that \mathcal{C} is a semiregular tube of Γ_{A}, by considering three cases.
(1) Assume first that Γ is contained in the stable part ${ }_{s} \mathcal{C}={ }_{l} \mathcal{C} \cap{ }_{r} \mathcal{C}$ of \mathcal{C}. Then Γ is an infinite stable translation quiver containing an oriented cycle, and hence Γ is a stable tube, by the main result of [51]. We claim that $\mathcal{C}=\Gamma$. Suppose that $\mathcal{C} \neq \Gamma$. Then \mathcal{C} contains a finite τ_{A}-orbit

$$
P, \tau_{A}^{-1} P, \ldots, \tau_{A}^{-r+1} P, \tau_{A}^{-r} P=I
$$

with $r \geq 0, P$ a projective module, I an injective module, and such that an immediate predecessor X of P and an immediate successor Y of I lie in Γ. Hence, there are infinite sectional paths in Γ of the forms

$$
\Sigma: \cdots \rightarrow X_{1} \rightarrow X_{0}=X, \quad \Omega: Y=Y_{0} \rightarrow Y_{1} \rightarrow \cdots
$$

Since Γ is a stable tube, these two paths intersect in infinitely many modules of Γ. So there are pairwise distinct modules $Z_{k}, k \in \mathbb{N}$, in Γ such that $\tau_{A} Z_{k}$ lies on Ω and $\tau_{A}^{-1} Z_{k}$ lies on Σ, for any $k \in \mathbb{N}$. Therefore, for any $k \in \mathbb{N}$, we have $\operatorname{Hom}_{A}\left(D(A), \tau_{A} Z_{k}\right) \neq 0$ and $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} Z_{k}, A\right) \neq 0$, because there are sectional paths in \mathcal{C} of the forms $I \rightarrow Y \rightarrow \cdots \rightarrow \tau_{A} Z_{k}$ and $\tau_{A}^{-1} Z_{k} \rightarrow \cdots \rightarrow X \rightarrow P$. Applying [1, Lemma IV.2.7], we conclude that $\operatorname{pd}_{A} Z_{k} \geq 2$ and $\operatorname{id}_{A} Z_{k} \geq 2$, for all $k \in \mathbb{N}$, which contradicts the assumption on A. Hence $\mathcal{C}=\Gamma$. Obviously \mathcal{C} is then a stable tube and $\mathcal{C}={ }_{c} \mathcal{C}=\mathcal{D}$.
(2) Assume that Γ is a component of ${ }_{l} \mathcal{C}$ containing at least one injective module. Then it follows from [21, (2.2) and (2.3)] that Γ contains an infinite sectional path

$$
\cdots \rightarrow \tau_{A}^{2 r} X_{1} \rightarrow \tau_{A}^{r} X_{s} \rightarrow \cdots \rightarrow \tau_{A}^{r} X_{1} \rightarrow X_{s} \rightarrow \cdots \rightarrow X_{1}
$$

where $r>s \geq 1, X_{i}$ is injective for some $i \in\{1, \ldots, s\}$, and each module in Γ belongs to the τ_{A}-orbit of one of the modules X_{1}, \ldots, X_{s}. Hence, there exists a non-negative integer t such that $\tau_{A}^{-t} X_{s}$ is an injective module I in Γ, and Γ admits an infinite sectional path of the form

$$
\Omega: I=V_{0} \rightarrow V_{1} \rightarrow \cdots
$$

We denote by Γ^{*} the full translation subquiver of Γ given by all modules which are the targets of infinite sectional paths of Γ. We claim that no module in Γ^{*} is an immediate predecessor of a projective module of \mathcal{C}. Indeed, otherwise Γ admits an infinite sectional path

$$
\Sigma: \cdots \rightarrow U_{1} \rightarrow U_{0}=R,
$$

with R a direct predecessor of a projective module P in \mathcal{C}. Then the infinite sectional paths Ω and Σ intersect in infinitely many modules of Γ, and we conclude as in (1) that there are pairwise distinct modules Z_{k} in Γ with $\operatorname{pd}_{A} Z_{k} \geq 2$ and $\operatorname{id}_{A} Z_{k} \geq 2$, for all $k \in \mathbb{N}$, a contradiction. Therefore, we conclude that Γ^{*} is a left stable full translation subquiver of \mathcal{C} which is closed under predecessors. Moreover, \mathcal{D} is the cyclic part ${ }_{c} \Gamma^{*}$ of Γ^{*}, because ${ }_{c} \Gamma^{*}$ contains all modules of \mathcal{D}, and \mathcal{D} is a component of ${ }_{c} \Gamma_{A}$.

Observe also that Γ^{*} is a maximal almost cyclic and coherent full translation subquiver of \mathcal{C}. Since Γ^{*} contains no projective module, applying [25, Theorem A], we conclude that Γ^{*}, viewed as a translation quiver, can be obtained from a stable tube by an iterated application of admissible operations of types (ad $\left.1^{*}\right)$. Finally, using the fact that Γ^{*} does not contain immediate
predecessors of projective modules in \mathcal{C}, we conclude that $\mathcal{C}=\Gamma^{*}$ is a coray tube (with at least one injective module) and \mathcal{D} is its cyclic part ${ }_{c} \mathcal{C}$.
(3) Assume finally that Γ is a component of ${ }_{r} \mathcal{C}$ containing at least one projective module. Applying arguments dual to those in (2), we find that \mathcal{C} is a ray tube (with at least one projective module) and \mathcal{D} is its cyclic part.
4. Cycle-finite quasitilted algebras of canonical type. In this section we recall the structure of the Auslander-Reiten quivers of representa-tion-infinite tilted algebras of Euclidean type and tubular algebras, and then describe the structure of the Auslander-Reiten quivers of cycle-finite quasitilted algebras of canonical type. At the end of the section we recall the notion of a coherent sequence of cycle-finite quasitilted algebras of canonical type and present some theorems on the structure of the Auslander-Reiten quivers of algebras associated to such sequences (see [7] for more details).

By a tame concealed algebra we mean a tilted algebra $C=\operatorname{End}_{H}(T)$, where H is a hereditary algebra of Euclidean type $\tilde{\mathbb{A}}_{11}, \tilde{\mathbb{A}}_{12}, \tilde{\mathbb{A}}_{m}, \tilde{\mathbb{B}}_{m}, \widetilde{\mathbb{C}}_{m}$, $\widetilde{\mathbb{B C}}_{m}, \widetilde{\mathbb{B D}}_{m}, \widetilde{\mathbb{C D}}_{m}, \tilde{\mathbb{D}}_{m}, \tilde{\mathbb{E}}_{6}, \tilde{\mathbb{E}}_{7}, \tilde{\mathbb{E}}_{8}, \tilde{\mathbb{F}}_{41}, \tilde{\mathbb{F}}_{42}, \widetilde{\mathbb{G}}_{21}$, or $\tilde{\mathbb{G}}_{22}$ (see [12]) and T is a (multiplicity-free) tilting H-module from the additive category of the postprojective component of Γ_{H}. The Auslander-Reiten quiver Γ_{C} of a tame concealed algebra C is of the form

$$
\Gamma_{C}=\mathcal{P}^{C} \cup \mathcal{T}^{C} \cup \mathcal{Q}^{C},
$$

where \mathcal{P}^{C} is a postprojective component containing all indecomposable projective C-modules, \mathcal{Q}^{C} is a preinjective component containing all indecomposable injective C-modules, and \mathcal{T}^{C} is an infinite family of pairwise orthogonal generalized standard stable tubes strongly separating \mathcal{P}^{C} from \mathcal{Q}^{C} (see [36, Theorem XVII.3.5]).

More generally, by a tilted algebra of Euclidean type we mean a tilted algebra $B=\operatorname{End}_{H}(T)$, where H is a hereditary algebra of Euclidean type and T is a (multiplicity-free) tilting module in $\bmod H$. Assume that B is a representation-infinite tilted algebra of Euclidean type. Then one of the following holds:
(1) B is a domestic tubular (branch) extension of a tame concealed algebra C and

$$
\Gamma_{B}=\mathcal{P}^{B} \cup \mathcal{T}^{B} \cup \mathcal{Q}^{B},
$$

where $\mathcal{P}^{B}=\mathcal{P}^{C}$ is the postprojective component of $\Gamma_{C}, \mathcal{T}^{B}$ is an infinite family of pairwise orthogonal generalized standard ray tubes, obtained from \mathcal{T}^{C} by ray insertions, \mathcal{Q}^{B} is a preinjective component containing all indecomposable injective B-modules, and \mathcal{T}^{B} strongly separates \mathcal{P}^{B} from \mathcal{Q}^{B};
(2) B is a domestic tubular (branch) coextension of a tame concealed algebra C and

$$
\Gamma_{B}=\mathcal{P}^{B} \cup \mathcal{T}^{B} \cup \mathcal{Q}^{B},
$$

where \mathcal{P}^{B} is a postprojective component containing all indecomposable projective B-modules, \mathcal{T}^{B} is an infinite family of pairwise orthogonal generalized standard coray tubes, obtained from \mathcal{T}^{C} by coray insertions, $\mathcal{Q}^{B}=\mathcal{Q}^{C}$ is the preinjective component of Γ_{C}, and \mathcal{T}^{B} strongly separates \mathcal{P}^{B} from \mathcal{Q}^{B}.

By a tubular algebra we mean a tubular (branch) extension (equivalently, tubular (branch) coextension) of a tame concealed algebra with Euler quadratic form positive semidefinite of corank 2 (see [18], [32], [33]). By general theory, a tubular algebra B admits two different tame concealed convex subcategories C_{0} and C_{∞} such that B is a tubular (branch) extension of C_{0} and a tubular (branch) coextension of C_{∞}, and

$$
\Gamma_{B}=\mathcal{P}_{0}^{B} \cup \mathcal{T}_{0}^{B} \cup\left(\bigcup_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{B}\right) \cup \mathcal{T}_{\infty}^{B} \cup \mathcal{Q}_{\infty}^{B},
$$

where $\mathcal{P}_{0}^{B}=\mathcal{P}^{C_{0}}$ is the postprojective component of $\Gamma_{C_{0}}, \mathcal{T}_{0}^{B}$ is an infinite family of pairwise orthogonal generalized standard ray tubes with at least one projective module, obtained from the family $\mathcal{T}^{C_{0}}$ of stable tubes of $\Gamma_{C_{0}}$ by ray insertions, $\mathcal{Q}_{\infty}^{B}=\mathcal{Q}^{C_{\infty}}$ is the preinjective component of $\Gamma_{C_{\infty}}, \mathcal{T}_{\infty}^{B}$ is an infinite family of pairwise orthogonal generalized standard coray tubes with at least one injective module, obtained from the family $\mathcal{T}^{C \infty}$ of stable tubes of $\Gamma_{C_{\infty}}$ by coray insertions, and, for each $q \in \mathbb{Q}^{+}$(the set of positive rational numbers) \mathcal{T}_{q}^{B} is an infinite family of pairwise orthogonal generalized standard stable tubes. Moreover, for any $q \in \mathbb{Q}^{+} \cup\{0, \infty\}$, the family \mathcal{T}_{q}^{B} strongly separates $\mathcal{P}^{B} \cup \bigcup_{p<q} \mathcal{T}_{p}^{B}$ from $\bigcup_{p>q} \mathcal{T}_{p}^{B} \cup \mathcal{Q}^{B}$. We also mention that, for a tubular algebra B, the convex subcategories C_{0} and C_{∞} have a common vertex in Q_{A}.

The following characterization of tame concealed and tubular algebras has been established in [42, Theorem 4.1].

Theorem 4.1. Let A be an algebra. The following statements are equivalent:
(i) A is a cycle-finite algebra and Γ_{A} admits a sincere stable tube.
(ii) A is either a tame concealed or a tubular algebra.

An algebra is said to be minimal representation-infinite if A is representa-tion-infinite but every proper convex subcategory of A is of finite representation type. We have the following characterization of minimal represen-tation-infinite cycle-finite algebras given in [42, Corollary 4.4].

Theorem 4.2. Let A be an algebra. The following statements are equivalent:
(i) A is a minimal representation-infinite and cycle-finite algebra.
(ii) A is a tame concealed algebra.

In particular, every representation-infinite cycle-finite algebra A admits a tame concealed convex subcategory C.

Let C be a tame concealed algebra and \mathcal{T}^{C} the family of all stable tubes in Γ_{C}. By a semiregular branch enlargement of C we mean an algebra of the form

$$
B=\left[\begin{array}{ccc}
F & M & 0 \\
0 & C & D(N) \\
0 & 0 & G
\end{array}\right],
$$

where

$$
B^{(r)}=\left[\begin{array}{cc}
F & M \\
0 & C
\end{array}\right] \quad \text { and } \quad B^{(l)}=\left[\begin{array}{cc}
C & D(N) \\
0 & G
\end{array}\right]
$$

are respectively a tubular extension of C and a tubular coextension of C in the sense of [32, (4.7)], and no tube in \mathcal{T}^{C} admits both a direct summand of M and a direct summand of N (see [19], [45]). Then B is a quasitilted algebra, and $B^{(r)}$ and $B^{(l)}$ are called the right part and the left part of B, respectively. Moreover, following [45], B is said to be a tame semiregular branch enlargement of C (or a tame quasitilted algebra of canonical type) if $B^{(r)}$ and $B^{(l)}$ are tilted algebras of Euclidean type or tubular algebras.

The following characterization of cycle-finite quasitilted algebras of canonical type follows from [19, Theorem 2.3] and [45, Theorem A].

Theorem 4.3. Let A be an algebra. The following statements are equivalent:
(i) A is cycle-finite and quasitilted of canonical type.
(ii) A is a tame semiregular branch enlargement of a tame concealed algebra C.
(iii) A is cycle-finite and Γ_{A} admits a separating family of semiregular tubes.
(iv) A is cycle-finite and Γ_{A} admits a strongly separating family of semiregular tubes.

As a consequence, we obtain the following theorem on the structure of the Auslander-Reiten quiver of a tame quasitilted algebra of canonical type.

Theorem 4.4. Let B be a tame quasitilted algebra of canonical type. Then the Auslander-Reiten quiver Γ_{B} is a disjoint union

$$
\Gamma_{B}=\mathcal{P}^{B} \vee \mathcal{T}^{B} \vee \mathcal{Q}^{B},
$$

where:
(1) \mathcal{T}^{B} is a sincere family of pairwise orthogonal generalized standard semiregular tubes strongly separating \mathcal{P}^{B} from \mathcal{Q}^{B}.
(2) If $B^{(l)}$ is a tilted algebra of Euclidean type, then \mathcal{P}^{B} is the unique postprojective component $\mathcal{P}^{B^{(l)}}$ of $\Gamma_{B^{(l)}}$ containing all indecomposable projective $B^{(l)}$-modules.
(3) If $B^{(l)}$ is a tubular algebra, then

$$
\mathcal{P}^{B}=\mathcal{P}_{0}^{B^{(l)}} \cup \mathcal{T}_{0}^{B^{(l)}} \cup\left(\bigcup_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{B^{(l)}}\right)
$$

and contains all indecomposable projective $B^{(l)}$-modules.
(4) If $B^{(r)}$ is a tilted algebra of Euclidean type, then \mathcal{Q}^{B} is the unique preinjective component $\mathcal{Q}^{B^{(r)}}$ of $\Gamma_{B^{(r)}}$ containing all indecomposable injective $B^{(r)}$-modules.
(5) If $B^{(r)}$ is a tubular algebra, then

$$
\mathcal{Q}^{B}=\left(\bigcup_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{B^{(r)}}\right) \cup \mathcal{T}_{\infty}^{B^{(r)}} \cup \mathcal{Q}_{\infty}^{B^{(r)}}
$$

and contains all indecomposable injective $B^{(r)}$-modules.
(6) Every indecomposable projective B-module belongs to $\mathcal{P}^{B} \cup \mathcal{T}^{B}$.
(7) Every indecomposable injective B-module belongs to $\mathcal{T}^{B} \cup \mathcal{Q}^{B}$.

Let $\mathbb{B}=\left(B_{1}, \ldots, B_{n}\right)$ be a sequence of algebras, $n \geq 1$. Following [7, Section 3], \mathbb{B} is said to be a coherent sequence of tame quasitilted algebras of canonical type provided that:
(1) B_{1}, \ldots, B_{n} are tame quasitilted algebras of canonical type,
(2) if $n \geq 2$, then $B_{i}^{(r)}=B_{i+1}^{(l)}$ is a tubular algebra for all $i \in\{1, \ldots$, $n-1\}$.

For a coherent sequence $\mathbb{B}=\left(B_{1}, \ldots, B_{n}\right)$ of tame quasitilted algebras of canonical type, we define the algebra $A(\mathbb{B})$ in the following way: $A(\mathbb{B})=B_{1}$ for $n=1$, and $A(\mathbb{B})$ is the pushout sum

$$
B_{1} \underset{B_{1}^{(r)}}{\sqcup} \cdots \underset{B_{n-1}^{(r)}}{\sqcup} B_{n}=B_{1} \underset{B_{2}^{(l)}}{\sqcup} \cdots \underset{B_{n}^{(l)}}{\sqcup} B_{n}
$$

for $n \geq 2$.
The following recent result [7, Theorem 1.1] gives a characterization of cycle-finite algebras with all Auslander-Reiten components semiregular.

Theorem 4.5. Let A be an algebra. Then the following statements are equivalent:
(i) A is a cycle-finite algebra and every component of Γ_{A} is semiregular.
(ii) A is isomorphic to the algebra $A(\mathbb{B})$ associated to a coherent sequence $\mathbb{B}=\left(B_{1}, \ldots, B_{n}\right)$ of tame quasitilted algebras of canonical type.
As a direct consequence of [7, Theorem 3.5], we obtain the following theorem, which describes the structure of the Auslander-Reiten quiver Γ_{A} of
the algebra $A=A(\mathbb{B})$ associated to a coherent sequence \mathbb{B} of tame quasitilted algebras of canonical type.

TheOrem 4.6. Let $\mathbb{B}=\left(B_{1}, \ldots, B_{n}\right)$ be a coherent sequence of tame quasitilted algebras of canonical type and $A=A(\mathbb{B})$ the associated algebra. Then:
(i) A is a cycle-finite algebra and every component of Γ_{A} is semiregular.
(ii) Γ_{A} has the disjoint union form

$$
\Gamma_{A}=\mathcal{P}^{\mathbb{B}} \cup\left(\bigcup_{q \in \overline{\mathbb{Q}}_{n}^{1}} \mathcal{T}_{q}^{\mathbb{B}}\right) \cup \mathcal{Q}^{\mathbb{B}}
$$

where $\overline{\mathbb{Q}}_{n}^{1}=[1, n] \cap \mathbb{Q}$ and:
(a) If $B_{1}^{(l)}$ is a tilted algebra of Euclidean type, then $\mathcal{P}^{\mathbb{B}}=\mathcal{P}^{B_{1}^{(l)}}$ is a unique postprojective component of Γ_{A}.
(b) If $B_{1}^{(l)}$ is a tubular algebra, then

$$
\mathcal{P}^{\mathbb{B}}=\mathcal{P}_{0}^{B_{1}^{(l)}} \cup \mathcal{T}_{0}^{B_{1}^{(l)}} \cup\left(\bigcup_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{B_{1}^{(l)}}\right)
$$

and $\mathcal{P}_{0}^{B_{1}^{(l)}}$ is a unique postprojective component of Γ_{A}.
(c) If $B_{n}^{(r)}$ is a tilted algebra of Euclidean type, then $\mathcal{Q}^{\mathbb{B}}=\mathcal{Q}^{B_{n}^{(r)}}$ is a unique preinjective component of Γ_{A}.
(d) If $B_{n}^{(r)}$ is a tubular algebra, then

$$
\mathcal{Q}^{\mathbb{B}}=\left(\bigcup_{q \in \mathbb{Q}^{+}} \mathcal{T}_{q}^{B_{n}^{(r)}}\right) \cup \mathcal{T}_{\infty}^{B_{n}^{(r)}} \cup \mathcal{Q}_{\infty}^{B_{n}^{(r)}}
$$

and $\mathcal{Q}_{\infty}^{B_{n}^{(r)}}$ is a unique preinjective component of Γ_{A}.
(e) For each $r \in\{1, \ldots, n\}, \mathcal{T}_{r}^{\mathbb{B}}=\mathcal{T}^{B_{r}}$ is a family $\left(\mathcal{T}_{r, \lambda}^{\mathbb{B}}\right)_{\lambda \in \Lambda_{r}}$ of pairwise orthogonal generalized standard semiregular tubes.
(f) For each $q \in \overline{\mathbb{Q}}_{n}^{1} \backslash\{1, \ldots, n\}, \mathcal{T}_{q}^{\mathbb{B}}$ is a family $\left(\mathcal{T}_{q, \lambda}^{\mathbb{B}}\right)_{\lambda \in \Lambda_{q}}$ of pairwise orthogonal generalized standard stable tubes.
(g) For each $q \in \overline{\mathbb{Q}}_{n}^{1}$, we have

$$
\operatorname{Hom}_{A}\left(\left(\bigcup_{p>q} \mathcal{T}_{p}^{\mathbb{B}}\right) \cup \mathcal{Q}^{\mathbb{B}}, \mathcal{P}^{\mathbb{B}} \cup\left(\bigcup_{p<q} \mathcal{T}_{p}^{\mathbb{B}}\right)\right)=0
$$

(h) For each $q \in \overline{\mathbb{Q}}_{n}^{1}$, every homomorphism from $\mathcal{P}^{\mathbb{B}} \cup\left(\bigcup_{p<q} \mathcal{T}_{p}^{\mathbb{B}}\right)$ to $\left(\bigcup_{p>q} \mathcal{T}_{p}^{\mathbb{B}}\right) \cup \mathcal{Q}^{\mathbb{B}}$ factorizes through $\operatorname{add}\left(\mathcal{T}_{q, \lambda}^{\mathbb{B}}\right)$ for any $\lambda \in \Lambda_{q}$.
5. Proof of the main theorem: semiregular case. The following theorem implies Theorem 1.2 in the semiregular case.

Theorem 5.1. Let A be a cycle-finite algebra such that every component of Γ_{A} is semiregular. Then the following statements are equivalent:
(i) For all but finitely many isomorphism classes of modules X in ind A, we have $\operatorname{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$.
(ii) A is a tame quasitilted algebra of canonical type.

Proof. The implication $($ ii $) \Rightarrow$ (i) follows from the homological characterization of quasitilted algebras given in [14.

To prove (i) \Rightarrow (ii), applying Theorem 4.5, we may assume that $A=A(\mathbb{B})$ for a coherent sequence $\mathbb{B}=\left(B_{1}, \ldots, \overline{B_{n}}\right)$ of tame quasitilted algebras of canonical type. By Theorem 4.3, B_{i} is a semiregular branch enlargement of a tame concealed algebra C_{i}, for any $i \in\{1, \ldots, n\}$.

Suppose that A is not a quasitilted tilted algebra of canonical type. Then Theorems 4.3, 4.4 and 4.6 imply that $n \geq 2$ and there exists $i \in\{1, \ldots, n-1\}$ such that, in the notation of Theorem 4.6,

$$
\Gamma_{A}=\mathcal{P}_{i}^{\mathbb{B}} \cup \mathcal{T}_{i}^{\mathbb{B}} \cup \bigcup_{q \in \mathbb{Q} \cap(i, i+1)} \mathcal{T}_{q}^{\mathbb{B}} \cup \mathcal{T}_{i+1}^{\mathbb{B}} \cup \mathcal{Q}_{i+1}^{\mathbb{B}},
$$

where:

- $\mathcal{P}_{i}^{\mathbb{B}}=\mathcal{P}^{\mathbb{B}} \cup \bigcup_{q \in \mathbb{Q} \cap[1, i)} \mathcal{T}_{q}^{\mathbb{B}}$.
- $\mathcal{Q}_{i+1}^{\mathbb{B}}=\bigcup_{q \in \mathbb{Q} \cap(i+1, n]} \mathcal{T}_{q}^{\mathbb{B}} \cup \mathcal{Q}^{\mathbb{B}}$.
- $\mathcal{T}_{i}^{\mathbb{B}}$ is a family $\left(\mathcal{T}_{i, \lambda}^{\mathbb{B}}\right)_{\lambda \in \Lambda_{i}}$ of semiregular tubes, containing an indecomposable projective module and an indecomposable injective module.
- $\mathcal{T}_{i+1}^{\mathbb{B}}$ is a family $\left(\mathcal{T}_{i+1, \lambda}^{\mathbb{B}}\right)_{\lambda \in \Lambda_{i+1}}$ of semiregular tubes, containing an indecomposable projective module and an indecomposable injective module.
- For each $q \in \mathbb{Q} \cap(i, i+1), \mathcal{T}_{q}^{\mathbb{B}}$ is a family $\left(\mathcal{T}_{q, \lambda}^{\mathbb{B}}\right)_{\lambda \in \Lambda_{q}}$ of stable tubes from the Auslander-Reiten quiver of the tubular algebra $B_{i}^{(r)}=B_{i+1}^{(l)}$.
Take now a coray tube $\mathcal{T}_{i, \xi}^{\mathbb{B}}$ with $\xi \in \Lambda_{i}$, containing an indecomposable injective module, a ray tube $\mathcal{T}_{i+1, \mu}^{\mathbb{B}}$ with $\mu \in \Lambda_{i+1}$, containing an indecomposable projective module, and a stable tube $\mathcal{T}_{q, \eta}^{\mathbb{B}}$ with $q \in \mathbb{Q} \cap(i, i+1)$ and $\eta \in \Lambda_{q}$. We note that $\mathcal{T}_{i, \xi}^{\mathbb{B}}$ is obtained from the stable tube $\mathcal{T}_{\xi}^{C_{i}}$ of the unique separating family $\mathcal{T}^{C_{i}}=\left(\mathcal{T}_{\lambda}^{C_{i}}\right)_{\lambda \in \Lambda_{i}}$ of stable tubes of $\Gamma_{C_{i}}$ by a finite number of coray insertions. Similarly, $\mathcal{T}_{i+1, \mu}^{\mathbb{B}}$ is obtained from the stable tube $\mathcal{T}_{\mu}^{C_{i+1}}$ of the unique separating family $\mathcal{T}^{C_{i+1}}=\left(\mathcal{T}_{\lambda}^{C_{i+1}}\right)_{\lambda \in \Lambda_{i+1}}$ of stable tubes of $\Gamma_{C_{i+1}}$ by a finite number of ray insertions. Then the coray tube $\mathcal{T}_{i, \xi}^{\mathbb{B}}$ contains an indecomposable injective module I and an indecomposable module M from $\mathcal{T}_{\xi}^{C_{i}}$ such that M is a direct summand of $I / \operatorname{soc} I$, and hence there is an epimorphism $I \rightarrow M$. Further, the ray tube $\mathcal{T}_{i+1, \mu}^{\mathbb{B}}$ contains an indecomposable
projective module P and an indecomposable module N from $\mathcal{T}_{\mu}^{C_{i+1}}$ such that N is a direct summand of $\operatorname{rad} P$, and hence there is a monomorphism $N \rightarrow P$.

Consider now an injective envelope $f: M \rightarrow I(M)$ of M in $\bmod A$. Since M is an indecomposable C_{i}-module, $I(M)$ has no direct summand lying in $\mathcal{T}_{i}^{\mathbb{B}}$, and hence all indecomposable direct summands of $I(M)$ are in $\mathcal{T}_{i+1}^{\mathbb{B}} \cup \mathcal{Q}_{i+1}^{\mathbb{B}}$. Now, Theorem 4.6 implies that $f: M \rightarrow I(M)$ factorizes through a module in $\operatorname{add}\left(\mathcal{T}_{q, \eta}^{\mathbb{B}}\right)$. Hence $\operatorname{Hom}_{A}(M, U) \neq 0$ for an indecomposable module U in $\mathcal{T}_{q, \eta}^{\mathbb{B}}$. Clearly then $\operatorname{Hom}_{A}(I, U) \neq 0$, because we have an epimorphism $I \rightarrow M$. Applying now 41, Lemma 3.9], we conclude that $\operatorname{Hom}_{A}(I, X) \neq 0$ for all indecomposable modules X in $\mathcal{T}_{q, \eta}^{\mathbb{B}}$ of quasi-length $\geq r_{q, \eta}$, where $r_{q, \eta}$ is the rank of $\mathcal{T}_{q, \eta}^{\mathbb{B}}$.

Dually, consider a projective cover $g: P(N) \rightarrow N$ of N in $\bmod A$. Since N is an indecomposable C_{i+1}-module, $P(N)$ has no direct summand lying in $\mathcal{T}_{i+1}^{\mathbb{B}}$, and hence all indecomposable direct summands of $P(N)$ are in $\mathcal{P}_{i}^{\mathbb{B}} \cup \mathcal{T}_{i}^{\mathbb{B}}$. Applying Theorem 4.6 again, we conclude that $g: P(N) \rightarrow N$ factorizes through a module in $\operatorname{add}\left(\mathcal{T}_{q, \eta}^{\mathbb{B}}\right)$. Then $\operatorname{Hom}_{A}(V, N) \neq 0$ for an indecomposable module V in $\mathcal{T}_{q, \eta}^{\mathbb{B}}$. As before, we also have $\operatorname{Hom}_{A}(V, P) \neq 0$, because there is a monomorphism $N \rightarrow P$. Therefore, by [41, Lemma 3.9] again, $\operatorname{Hom}_{A}(X, P) \neq 0$ for all indecomposable modules X in $\mathcal{T}_{q, \eta}^{\mathbb{B}}$ of quasilength $\geq r_{q, \eta}$.

Summing up, for all indecomposable modules X in $\mathcal{T}_{q, \eta}^{\mathbb{B}}$ of quasi-length $\geq r_{q, \eta}$, we have $\operatorname{Hom}_{A}\left(I, \tau_{A} X\right) \neq 0$ and $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} X, P\right) \neq 0$, and consequently $\operatorname{pd}_{A} X \geq 2$ and $\operatorname{id}_{A} X \geq 2$ (see [1, Lemma IV.2.7]). This shows that for infinitely many indecomposable modules X in $\mathcal{T}_{q, \eta}^{\mathbb{B}}$, we have $\operatorname{pd}_{A} X \geq 2$ and $\operatorname{id}_{A} X \geq 2$. Hence (i) implies (ii).
6. Proof of the main theorem: non-semiregular case. This section is devoted to proving the main theorem in the remaining case, where Γ_{A} admits a non-semiregular component. First, we prove some preparatory lemmas on hereditary and tilted algebras.

Lemma 6.1. Let H be a hereditary algebra of Euclidean type and E a module on the mouth of a stable tube of Γ_{H}. Moreover, assume that the valued quiver Q_{H} of H is a tree (oriented canonically, as in [12]). Then, for every infinite path
(*)

$$
\cdots \rightarrow Y_{1} \rightarrow Y_{0}
$$

in the preinjective component \mathcal{Q}^{H} of Γ_{H}, there is an infinite sqeuence $n_{0}<n_{1}<n_{2}<\cdots$ of non-negative integers such that $\operatorname{Hom}_{H}\left(E, Y_{n_{k}}\right) \neq 0$ for all $k \geq 0$.

Proof. Denote by $r \geq 1$ the rank of the stable tube \mathcal{T} of Γ_{H} containing E. We denote by Σ the section in \mathcal{Q}^{H} formed by all indecomposable injective
modules in $\bmod H$. Recall that $\Sigma \cong Q_{H}^{\mathrm{op}}$ as valued quivers. Moreover, we denote by Q^{0} the set of all vertices of Q_{H}, and by I_{a} the indecomposable injective module in $\bmod H$ corresponding to a vertex a in Q^{0}.

Consider the set $\mathcal{S}(E)$ formed by all modules X of \mathcal{Q}^{H} with $\operatorname{Hom}_{H}(E, X)$ $\neq 0$. Observe that, if $r=1(\mathcal{T}$ is a homogeneous tube), then E is a sincere H-module, thus $\operatorname{Hom}_{H}\left(\tau_{H}^{s} E, I_{a}\right)=\operatorname{Hom}_{H}\left(E, I_{a}\right) \neq 0$ for all $s \geq 0$ and $a \in Q^{0}$. Therefore $\mathcal{S}(E)$ contains all modules of \mathcal{Q}^{H}, and the claim follows. Hence, we assume that the stable tube \mathcal{T} has rank $r \geq 2$.

First we investigate the case where one of the mouth modules of \mathcal{T}, say $E^{\prime}=\tau_{H}^{-s} E$ with $s \geq 0$, is a sincere H-module. Then, as H is a hereditary algebra, $\operatorname{Hom}_{H}\left(E, \tau_{H}^{s} I_{a}\right) \cong \operatorname{Hom}_{H}\left(E^{\prime}, I_{a}\right) \neq 0$ for all $a \in Q^{0}$, and consequently $\operatorname{Hom}_{H}\left(E, \tau_{H}^{\alpha r+s} I_{a}\right) \cong \operatorname{Hom}_{H}\left(E, \tau_{H}^{s} I_{a}\right) \neq 0$ for all $a \in Q^{0}$ and every integer $\alpha \geq 0$. Hence, if there is a path of the form (*), then there is a sequence $n_{0}<n_{1}<\cdots$ of non-negative integers such that, for each $k \geq 0$, there are a vertex $a_{k} \in Q^{0}$ and an integer $\alpha_{k} \geq 0$ with $Y_{n_{k}} \cong \tau_{H}^{\alpha_{k} r+s} I_{a_{k}}$. Thus $Y_{n_{k}}$ is in $\mathcal{S}(E)$ for every $k \geq 0$, and we are done.

Therefore the statement holds if H is of one of the Euclidean types $\tilde{\mathbb{A}}_{11}$, $\tilde{\mathbb{A}}_{12}, \tilde{\mathbb{B}}_{m}, \tilde{\mathbb{C}}_{m}, \widetilde{\mathbb{B}}_{m}, \widetilde{\mathbb{C B}}_{m}, \tilde{\mathbb{G}}_{21}$, or $\tilde{\mathbb{G}}_{22}$. Indeed, if H is of type $\tilde{\mathbb{A}}_{11}$ or $\tilde{\mathbb{A}}_{12}$, then all stable tubes of Γ_{H} are homogeneous. For the remaining types, there is a unique stable tube of Γ_{H} of rank $r \geq 2$ which contains a sincere module on the mouth (see [12, 6. Tables]).

Now, we consider the remaining Euclidean types: $\tilde{\mathbb{D}}_{m}$ with $m \geq 4, \widetilde{\mathbb{B D}}_{m}$ or $\widetilde{\mathbb{C D}}_{m}$ with $m \geq 3, \tilde{\mathbb{E}}_{6}, \tilde{\mathbb{E}}_{7}, \tilde{\mathbb{E}}_{8}, \tilde{\mathbb{F}}_{41}$, or $\tilde{\mathbb{F}}_{42}$. In each case, we proceed only for a module E lying in the stable tube of rank $r \geq 2$, not containing a sincere module. Observe also that, if we prove our claim for an arbitrarily chosen module E on the mouth of \mathcal{T}, then it holds for any other mouth module of \mathcal{T}. Note that Q_{H} is assumed to have a cannonical orientation (as in [12, 6. Tables]); for vertices of Q_{H} we use the same notations as in [12] 6. Tables].
(1) Let H be of type $\tilde{\mathbb{D}}_{m}$ with $m \geq 4$. Then, by [12, 6 . Tables], the stable tube of Γ_{H} of rank $m-2$ contains a sincere module. Therefore, we may assume that E lies in one of two stable tubes of Γ_{H} of rank 2 .

Assume first that $E=E_{0}^{\prime}$ (in the notation of [12, 6. Tables]). Then $\operatorname{Hom}_{H}\left(E, I_{a}\right) \neq 0$ for all vertices a in $\left\{z_{1}, \ldots, z_{m-3}, a_{2}, b_{2}\right\}$. Similarly, we have $\operatorname{Hom}_{H}\left(\tau_{H}^{-1} E, I_{a}\right) \neq 0$ for all $a \in\left\{z_{1}, \ldots, z_{m-3}, a_{1}, b_{1}\right\}$. Therefore $\mathcal{S}(E)$ contains the set

$$
\mathcal{S}_{0}^{*}(E)=\left\{I_{a_{2}}, I_{b_{2}}, I_{z_{1}}, \ldots, I_{z_{m-3}}, \tau_{H} I_{b_{1}}, \tau_{H} I_{a_{1}}, \tau_{H} I_{z_{1}}, \ldots, \tau_{H} I_{z_{m-3}}\right\} .
$$

Since \mathcal{T} is a stable tube of rank $2, \mathcal{S}_{\alpha}^{*}(E):=\tau_{H}^{2 \alpha} \mathcal{S}_{0}^{*}(E)$ is a subset of $\mathcal{S}(E)$ for any $\alpha \geq 0$. Thus, if we have a path of the form $(*)$ in \mathcal{Q}^{H}, and there is a module $Y_{t_{0}}$ not lying in $\mathcal{S}(E)$, then either $Y_{t_{0}} \cong \tau_{H}^{2 \alpha} I_{a}$ with $a \in\left\{a_{1}, b_{1}\right\}$ and $\alpha \geq 0$, or $Y_{t_{0}} \cong \tau_{H}^{2 \alpha+1} I_{a}$ with $a \in\left\{a_{2}, b_{2}\right\}$ and $\alpha \geq 0$. In both cases,
we have $Y_{t_{0}+1} \in \mathcal{S}_{\alpha}^{*}(E)$, hence the path (*) admits infinitely many modules from $\mathcal{S}(E)$.

In a similar way, if $E=E_{0}^{\prime \prime}$, then for any $\alpha \geq 0$, the set $\mathcal{S}(E)$ contains the subset $\mathcal{S}_{\alpha}^{*}(E)=\tau_{H}^{2 \alpha} \mathcal{S}_{0}^{*}(E)$, where

$$
\mathcal{S}_{0}^{*}(E)=\left\{I_{a_{2}}, I_{b_{1}}, I_{z_{1}}, \ldots, I_{z_{m-3}}, \tau_{H} I_{b_{2}}, \tau_{H} I_{a_{1}}, \tau_{H} I_{z_{1}}, \ldots, \tau_{H} I_{z_{m-3}}\right\},
$$

and again, if there is a path of the form $(*)$ then, for every module $Y_{t_{0}}$ in $\tau_{H}^{2 \alpha+1} \Sigma \cup \tau_{H}^{2 \alpha} \Sigma$ not lying in $\mathcal{S}_{\alpha}^{*}(E)$, the module $Y_{t_{0}+1}$ belongs to $\mathcal{S}_{\alpha}^{*}(E)$.
(2) Assume now that H is of type $\widetilde{\mathbb{B D}}_{m}$. Then $E=E_{0}^{\prime}$ lies in the stable tube of rank 2 (other tubes admit a sincere mouth module), and a straightforward calculation shows that, for every $\alpha \geq 0$, the set $\mathcal{S}(E)$ contains $\mathcal{S}_{\alpha}^{*}(E)=\tau_{H}^{2 \alpha} \mathcal{S}_{0}^{*}(E)$, where

$$
\mathcal{S}_{0}^{*}(E)=\left\{I_{a} ; a \in Q^{0} \backslash a_{1}\right\} \cup\left\{\tau_{H} I_{a} ; a \in Q^{0} \backslash a_{2}\right\} .
$$

Observe that the unique direct predecessor in \mathcal{Q}^{H} of a module $Y=\tau_{H}^{2 \alpha} I_{a_{1}}$, $\alpha \geq 0$, not lying in $\mathcal{S}_{\alpha}^{*}(E)$, is of the form $Y^{\prime}=\tau_{H}^{2 \alpha} I_{z_{1}}$, because $I_{a_{1}}$ is a sink in Σ. Hence Y^{\prime} is in $\mathcal{S}_{\alpha}^{*}(E)$. In a similar way, the unique direct predecessor of $Y=\tau_{H}^{2 \alpha+1} I_{a_{2}}, \alpha \geq 0$, is of the form $Y^{\prime}=\tau_{H}^{2 \alpha+1} I_{z_{1}}$, and so Y^{\prime} lies in $\mathcal{S}_{\alpha}^{*}(E)$. Therefore, for each infinite path of the form ($*$), there is a sequence $n_{0}<n_{1}$ $<\cdots$ of non-negative integers such that, for every $k \geq 0$, there is an integer $\alpha_{k} \geq 0$ with $Y_{n_{k}}$ in $\mathcal{S}_{\alpha_{k}}^{*}(E) \subset \mathcal{S}(E)$. The proof in this case is thus complete. In a similar way, we prove that the claim holds for the Euclidean type $\widetilde{\mathbb{C D}}_{m}$.
(3) Now, we consider the types $\tilde{\mathbb{E}}_{6}, \tilde{\mathbb{E}}_{7}$ and $\tilde{\mathbb{E}}_{8}$. Assume first that H is of type $\tilde{\mathbb{E}}_{6}$. Because the unique stable tube of Γ_{H} of rank 2 contains a sincere module, we may assume that E lies in one of the remaining tubes of rank 3 . Let $E=E_{0}^{\prime}$. Then using [12, 6. Tables], we easily find that the set

$$
\mathcal{S}_{0}^{*}(E)=\bigcup_{i=0}^{2}\left\{\tau_{H}^{i} I_{a} ; a \in Q^{0} \backslash Q^{0, i}\right\}
$$

where $Q^{0,0}=\left\{a_{1}, c_{1}, c_{2}\right\}, Q^{0,1}=\left\{c_{1}, b_{1}, b_{2}\right\}$, and $Q^{0,2}=\left\{b_{1}, a_{1}, a_{2}\right\}$, is a subset of $\mathcal{S}(E)$. Observe that, for every $\alpha \geq 0$, we also have the inclusion $\mathcal{S}_{\alpha}^{*}(E):=\tau_{H}^{3 \alpha} \mathcal{S}_{0}^{*}(E) \subset \mathcal{S}(E)$, because \mathcal{T} is of rank 3 . Now, consider an arbitrary path of the form (*) in \mathcal{Q}^{H}, and let $Y_{t_{0}}=\tau_{H}^{3 \alpha+i} I_{a}$ with $\alpha \geq 0$ and $i \in\{0,1,2\}$ be a module not lying in $\mathcal{S}_{\alpha}^{*}(E)$. If $i=0$, then $a \in\left\{a_{1}, c_{1}, c_{2}\right\}$. Assume that $a=a_{1}$. Then $Y_{t_{0}+1} \in \mathcal{S}_{\alpha}^{*}(E)$. If $a=c_{q}, q \in\{1,2\}$, then $Y_{t_{0}+3-q} \in \mathcal{S}_{\alpha}^{*}(E)$ or $Y_{t_{0}+4-q} \in \mathcal{S}_{\alpha}^{*}(E)$. Further, if $i=1$, then for $a=c_{2}$, we have $Y_{t_{0}+1} \in \mathcal{S}_{\alpha}^{*}(E)$, and if $a=b_{q}, q \in\{1,2\}$, then $Y_{t_{0}+3-q} \in \mathcal{S}_{\alpha}^{*}(E)$ or $Y_{t_{0}+4-q} \in \mathcal{S}_{\alpha}^{*}(E)$. Finally, assume that $i=2$. If $a=b_{1}$, then $Y_{t_{0}+1} \in \mathcal{S}_{\alpha}^{*}(E)$, and, if $a=a_{q}, q \in\{1,2\}$, then $Y_{t_{0}+3-q} \in \mathcal{S}_{\alpha}^{*}(E)$. This shows that there are infinitely many integers $n_{k} \geq 0, k \geq 0$, such that $Y_{n_{k}} \in \mathcal{S}(E)$ for any $k \geq 0$. Similar arguments prove the claim when $E=E_{0}^{\prime \prime}$ is contained in the second tube of rank 3 of Γ_{H}.

Now, let H be of type $\tilde{\mathbb{E}}_{7}$. We may assume that E is contained either in the stable tube of rank 2 , or in the stable tube of rank 4 , because the stable tube of rank 3 admits a sincere mouth module E_{1}. First, let $E=E_{0}^{\prime \prime}$ be a module in the tube of rank 2 . Then we easily find that

$$
\mathcal{S}_{0}^{*}(E)=\left\{I_{a} ; a \in Q^{0} \backslash\left\{a_{1}\right\}\right\} \cup\left\{\tau_{H} I_{a} ; a \in Q^{0} \backslash\left\{b_{1}\right\}\right\}
$$

is a subset of $\mathcal{S}(E)$, and $\mathcal{S}_{\alpha}^{*}(E):=\tau_{H}^{2 \alpha} \mathcal{S}_{0}^{*}(E) \subset \mathcal{S}_{0}^{*}(E)$ for all $\alpha \geq 0$. Consequently, if there is a path of the form $(*)$ in \mathcal{Q}^{H}, and $Y_{t_{0}}$ is not in $\mathcal{S}(E)$, then $Y_{t_{0}+1}$ belongs to $\mathcal{S}(E)$, and hence there are infinitely many integers $n_{k} \geq 0$, $k \geq 0$, such that $Y_{n_{k}} \in \mathcal{S}(E)$ for all $k \geq 0$. Assume now that $E=E_{0}^{\prime}$ is contained in the stable tube of rank 4 . Then, for every $\alpha \geq 0$, the set $\mathcal{S}(E)$ contains $\mathcal{S}_{\alpha}^{*}(E)=\tau_{H}^{4 \alpha} \mathcal{S}_{0}^{*}(E)$, where

$$
\mathcal{S}_{0}^{*}(E)=\bigcup_{i=0}^{3}\left\{\tau_{H}^{i} I_{a} ; a \in Q^{0} \backslash Q^{0, i}\right\}
$$

$Q^{0,0}=\left\{a_{1}, a_{2}, a_{3}, b_{1}\right\}, Q^{0,1}=\left\{a_{1}, a_{2}, c\right\}, Q^{0,2}=\left\{b_{1}, b_{2}, b_{3}, a_{1}\right\}$, and $Q^{0,3}=$ $\left\{b_{1}, b_{2}, c\right\}$. It follows that, if there is a path in \mathcal{Q}^{H} of the form $(*)$, with $Y_{t_{0}}=\tau_{H}^{4 \alpha+i} I_{a}, \alpha \geq 0, i \in\{0,1,2,3\}$, and $Y_{t_{0}}$ is not in $\mathcal{S}_{\alpha}^{*}(E)$, then either there is an integer $k \geq 1$ such that $Y_{t_{0}+k} \in \mathcal{S}_{\alpha}^{*}(E)$, or there is an integer $k \geq 1$ such that $Y_{t_{0}+k}$ is in $\mathcal{S}_{\alpha+1}^{*}(E)$.

Finally, assume that H is of type $\tilde{\mathbb{E}}_{8}$. Observe that there is a sincere module both in the stable tube of rank 2 (the module $E_{1}^{\prime \prime}$) and in the stable tube of rank 5 (the module E_{1}). Thus, we may assume that $E=E_{0}^{\prime}$ is a module in the (unique) stable tube of rank 3 . Then we deduce from [12, 6. Tables] that the set

$$
\mathcal{S}_{0}^{*}(E)=\bigcup_{i=0}^{2}\left\{\tau_{H}^{i} I_{a} ; a \in Q^{0} \backslash Q^{0, i}\right\}
$$

where $Q^{0,0}=\left\{a_{1}, a_{2}\right\}, Q^{0,1}=\left\{a_{1}\right\}$, and $Q^{0,2}=\left\{b_{1}\right\}$, is contained in $\mathcal{S}(E)$, and $\mathcal{S}_{\alpha}^{*}(E):=\tau_{H}^{3 \alpha} \mathcal{S}_{0}^{*}(E) \subset \mathcal{S}(E)$ for all $\alpha \geq 0$. Hence, if there is a path in \mathcal{Q}^{H} of the form $(*)$, and the module $Y_{t_{0}}=\tau_{H}^{3 \alpha+i} I_{a}$ with $i \in\{0,1,2\}$ and $\alpha \geq 0$ is not contained in $\mathcal{S}_{\alpha}^{*}(E)$, then $Y_{t_{0}+1} \in \mathcal{S}_{\alpha}^{*}(E)$ or $Y_{t_{0}+2} \in \mathcal{S}_{\alpha}^{*}(E)$, and the claim follows.
(4) In the last step, we consider the types $\tilde{\mathbb{F}}_{41}$ and $\tilde{\mathbb{F}}_{42}$. First, let H be of type \tilde{F}_{41}. Then we may assume that $E=E_{0}^{\prime}$ lies in a stable tube of rank 2 , because the unique stable tube of rank 3 contains the sincere module E_{1}. Further, we calculate that

$$
\mathcal{S}_{0}^{*}(E)=\left\{I_{a} ; a \in Q^{0} \backslash\left\{a_{1}\right\}\right\} \cup\left\{\tau_{H} I_{a} ; a \in Q^{0} \backslash\{b\}\right\}
$$

is contained in $\mathcal{S}(E)$. Clearly, $\mathcal{S}_{\alpha}^{*}(E)=\tau_{H}^{2 \alpha} \mathcal{S}_{0}^{*}(E)$ is also contained in $\mathcal{S}(E)$. Therefore, if the module $Y=\tau_{H}^{2 \alpha+i} I_{a}, i \in\{0,1\}$, is not in $\mathcal{S}_{\alpha}^{*}(E)$, then $a=a_{1}$ and $i=0$ or $i=1$ and $a=b$, and in both cases every direct predecessor of
Y is in $\mathcal{S}_{\alpha}^{*}(E) \cup \mathcal{S}_{\alpha+1}^{*}(E)$. This shows that the claim holds true in this case. Assume finally that H is of type $\tilde{\mathbb{F}}_{42}$. Then the unique stable tube of rank 2 admits the sincere mouth module E_{1}^{\prime}. Let $E=E_{0}$ be a module lying on the mouth of the remaining (nonhomogeneous) stable tube of rank 3. Then, as before, the set

$$
\mathcal{S}_{0}^{*}(E)=\bigcup_{i=0}^{2}\left\{\tau_{H}^{i} I_{a} ; a \in Q^{0} \backslash Q^{0, i}\right\}
$$

where $Q^{0,0}=\left\{a_{1}\right\}, Q^{0,1}=\left\{b_{1}\right\}$, and $Q^{0,2}=\left\{a_{1}, a_{2}\right\}$, is a subset of $\mathcal{S}(E)$, as well as $\mathcal{S}_{\alpha}^{*}(E):=\tau_{H}^{3 \alpha} \mathcal{S}_{0}^{*}(E)$ is contained in $\mathcal{S}(E)$ for every $\alpha \geq 0$. Moreover, a direct observation shows that, if there is a path in \mathcal{Q}^{H} of the form (*) with a module $Y_{t_{0}}=\tau_{H}^{3 \alpha+i} I_{a}, i \in\{0,1,2\}$, not lying in $\mathcal{S}_{\alpha}^{*}(E)$, then there is $k \in\{1,2,3\}$ such that $Y_{t_{0}+k} \in \mathcal{S}_{\alpha}^{*}(E) \cup \mathcal{S}_{\alpha+1}^{*}(E)$.

For a hereditary algebra H of type $\tilde{\mathbb{A}}_{m}$, we have the following slightly different result.

Lemma 6.2. Let H be a hereditary algebra of Euclidean type $\tilde{\mathbb{A}}_{m}, m \geq 2$, with valued quiver Q_{H} oriented canonically (as in [12]), and let E be a module lying on the mouth of a stable tube \mathcal{T} of Γ_{H}. Then, for every module Y from the preinjective component \mathcal{Q}^{H} of Γ_{H}, there is an infinite sectional path

$$
\cdots \rightarrow Y_{1} \rightarrow Y_{0}=Y
$$

in \mathcal{Q}^{H} such that:
(i) There exists a sequence $n_{0}<n_{1}<\cdots$ of non-negative integers such that $\operatorname{Hom}_{H}\left(E, Y_{n_{k}}\right) \neq 0$, for all $k \geq 0$.
(ii) For every non-negative integer c, there exists a sequence $n_{0}^{c}<$ $n_{1}^{c}<\cdots$ of non-negative integers such that $\operatorname{Hom}_{H}\left(E, \tau_{H}^{c} Y_{n_{k}^{c}}\right) \neq 0$ for all $k \geq 0$.

Proof. We use the notations introduced in Lemma 6.1 (we also stick to the notations for the vertices of Q_{H} used in [12, 6. Tables]). As above, we may assume that E belongs to one of the stable tubes of Γ_{H} of rank ≥ 2, because otherwise E is a sincere module lying on the mouth of a homogeneous stable tube, hence $\operatorname{Hom}_{B}(E, Q) \neq 0$ for all modules Q from \mathcal{Q}^{H}.
(1) It follows from [12, 6. Tables] that

$$
\mathcal{S}\left(E_{0}\right)=\bigcup_{\alpha=0}^{\infty} \mathcal{S}_{\alpha}^{*}\left(E_{0}\right)
$$

where $\mathcal{S}_{\alpha}^{*}\left(E_{0}\right)=\tau_{H}^{(p+1) \alpha} \mathcal{S}_{0}^{*}\left(E_{0}\right)$, and

$$
\mathcal{S}_{0}^{*}\left(E_{0}\right)=\left\{I_{c_{p}}, \tau_{H} I_{c_{p-1}}, \ldots, \tau_{H}^{p-1} I_{c_{1}}\right\} \cup\left\{\tau_{H}^{p} I_{a} ; a \in\left\{d_{1}, \ldots, d_{q}, a, b\right\}\right\} .
$$

Moreover, observe that there is a sectional path in \mathcal{Q}^{H} of the form

$$
\cdots \rightarrow Q_{1} \rightarrow Q_{0}
$$

such that $\mathcal{S}\left(E_{0}\right)=\left\{Q_{i}\right\}_{i \geq 0}$. Similarly, for every $t \in\{0, \ldots, p\}$, the set $\mathcal{S}\left(\tau_{H}^{-t} E_{0}\right)=\tau_{H}^{-t} \mathcal{S}\left(E_{0}\right)$ is formed by the modules $\tau_{H}^{-t} Q_{n}, n \geq 0$, lying on a sectional path in \mathcal{Q}^{H}. Consequently, \mathcal{Q}^{H}, viewed as a set, has the disjoint union decomposition

$$
\mathcal{Q}^{H}=\mathcal{S}\left(E_{0}\right) \cup \mathcal{S}\left(\tau_{H}^{-1} E_{0}\right) \cup \cdots \cup \mathcal{S}\left(\tau_{H}^{-p} E_{0}\right)
$$

In the same manner, it has the disjoint union decomposition

$$
\mathcal{Q}^{H}=\mathcal{S}\left(E_{0}^{\prime}\right) \cup \mathcal{S}\left(\tau_{H}^{-1} E_{0}^{\prime}\right) \cup \cdots \cup \mathcal{S}\left(\tau_{H}^{-q} E_{0}^{\prime}\right)
$$

(2) Now, observe that $\mathcal{S}\left(\tau_{H}^{-t_{1}} E_{0}\right) \cap \mathcal{S}\left(\tau_{H}^{-t_{2}} E_{0}^{\prime}\right)$ is an infinite set for every $t_{1} \in\{0, \ldots, p\}$ and $t_{2} \in\{0, \ldots, q\}$. Indeed, a module X in \mathcal{Q}^{H} belongs to $\mathcal{S}\left(\tau_{H}^{-t_{1}} E_{0}\right)$ if and only if X is a non-zero module lying on the following path in \mathcal{Q}^{H} :

$$
\begin{aligned}
\cdots \rightarrow \tau_{H}^{2(p+1)} & Z_{0} \rightarrow \cdots \rightarrow \tau_{H}^{p+1} Z_{0} \rightarrow \tau_{H}^{-t_{1}+p} I_{b} \rightarrow \tau_{H}^{-t_{1}+p} d_{q} \rightarrow \cdots \rightarrow \tau_{H}^{-t_{1}+p} I_{d_{1}} \\
& \rightarrow \tau_{H}^{-t_{1}+p} I_{a} \rightarrow \tau_{H}^{-t_{1}+p-1} I_{c_{1}} \rightarrow \cdots \rightarrow \tau_{H}^{-t_{1}+1} I_{c_{p-1}} \rightarrow \tau_{H}^{-t_{1}} I_{c_{p}}=Z_{0}
\end{aligned}
$$

Applying [12, 6. Tables] again, we infer that a module X in \mathcal{Q}^{H} belongs to $\mathcal{S}\left(\tau_{H}^{-t_{2}} E_{0}^{\prime}\right)$ if and only if X is a non-zero module lying on the following sectional path in \mathcal{Q}^{H} :

$$
\begin{aligned}
\cdots \rightarrow \tau_{H}^{2(q+1)} Z_{0}^{\prime} \rightarrow \cdots \rightarrow \tau_{H}^{q+1} Z_{0}^{\prime} \rightarrow \tau_{H}^{-t_{2}+q} I_{b} \rightarrow \tau_{H}^{-t_{2}+q} I c_{p} \rightarrow \cdots \rightarrow \tau_{H}^{-t_{2}+q} I_{c_{1}} \\
\rightarrow \tau_{H}^{-t_{2}+q} I_{a} \rightarrow \tau_{H}^{-t_{2}+q-1} I_{d_{1}} \rightarrow \cdots \rightarrow \tau_{H}^{-t_{2}+1} I_{d_{q-1}} \rightarrow \tau_{H}^{-t_{2}} I_{d_{q}}=Z_{0}^{\prime}
\end{aligned}
$$

Further, observe that, for every integer $\alpha \geq 1$, there are an integer $\beta \geq 0$ and $r \in\{0, \ldots, q\}$ such that $\alpha(p+1)+p+t_{2}-t_{1}=\beta(q+1)+r$, and hence $\alpha(p+1)-t_{1}+p=\beta(q+1)-t_{2}+r$. Consequently, the module $X_{\alpha}=$ $\tau_{H}^{\alpha(p+1)-t_{1}+p} I_{d-r}=\tau_{H}^{\beta(q+1)-t_{2}+r} I_{d-r}$ is contained in $\mathcal{S}\left(\tau_{H}^{-t_{1}} E_{0}\right) \cap \mathcal{S}\left(\tau_{H}^{-t_{2}} E_{0}^{\prime}\right)$ for every integer $\alpha \geq 1$, and we are done.

Finally, consider the module E lying on the mouth of a stable tube. We assume that the rank of \mathcal{T} is p (similar arguments provide the claim if \mathcal{T} is a stable tube of rank q). Then $E \cong \tau_{H}^{-t_{1}} E_{0}$ for some $t_{1} \in\{0, \ldots, p\}$. Using (1), we conclude that there is $t_{2} \in\{0, \ldots, q\}$ such that $Y \in \mathcal{S}\left(\tau_{H}^{-t_{2}} E_{0}^{\prime}\right)$ and there exists a sectional path in \mathcal{Q}^{H} of the form required in (i). Moreover, $Y_{n} \in \mathcal{S}\left(\tau_{H}^{-t_{2}} E_{0}^{\prime}\right)$ for all $n \geq 0$. Applying the arguments in (2), we deduce that there is a sequence $n_{0}<n_{1}<\cdots$ of non-negative integers such that $Y_{n_{k}} \in$ $\mathcal{S}\left(\tau_{H}^{-t_{1}} E_{0}\right) \cap \mathcal{S}\left(\tau_{H}^{-t_{2}} E_{0}^{\prime}\right)$ for all $k \geq 0$, and consequently $\operatorname{Hom}_{H}\left(E, Y_{n_{k}}\right) \neq 0$ for every $k \geq 0$. Hence (ii) also holds. For the proof of (iii), it is sufficient to use the fact that $\mathcal{S}(E) \cap \mathcal{S}\left(\tau_{H}^{-t_{2}+c} E_{0}^{\prime}\right)$ is an infinite set.

Our next aim is to prove the following lemma, essential to the proof of the main theorem in the non-semiregular case (see Theorem 6.4 below).

Lemma 6.3. Let B be a tilted algebra of Euclidean type such that Γ_{B} admits an infinite preinjective connecting component. Moreover, assume that there are modules M and R in ind B satisfying the following conditions:
(i) M lies on the mouth of a stable tube of Γ_{B}.
(ii) R is contained in the preinjective component \mathcal{Q}^{B} of Γ_{B}.

Then there are infinitely many pairwise non-isomorphic indecomposable modules Z_{n} in $\mathcal{Q}^{B}, n \in \mathbb{N}$, such that

$$
\operatorname{Hom}_{B}\left(M, \tau_{B} Z_{n}\right) \neq 0 \quad \text { and } \quad \operatorname{Hom}_{B}\left(\tau_{B}^{-1} Z_{n}, R\right) \neq 0
$$

for all $n \geq 0$.
Proof. Let H be a hereditary algebra of Euclidean type and T be a tilting module in $\bmod H$ such that $B \cong \operatorname{End}_{H}(T)$. Using the assumptions on Γ_{B}, we infer that $T=T^{p p} \oplus T^{r g}$, where $T^{p p}$ (respectively, $T^{r g}$) is in $\operatorname{add}\left(\mathcal{P}^{H}\right)$ (respectively, $\operatorname{add}\left(\mathcal{T}^{H}\right)$), the family \mathcal{T}^{B} (of all semiregular tubes of Γ_{B}) does not admit a coray tube containing an injective module, and the connecting component $\mathcal{C}_{T}=\mathcal{Q}^{B}$ determined by T contains all indecomposable injective B-modules. We denote by Σ the section in \mathcal{Q}^{H} formed by all indecomposable injective H-modules, and by Δ the associated section in \mathcal{Q}^{B} formed by all modules of the form $\operatorname{Hom}_{H}(T, I)$ with I in Σ. Moreover, since M lies on the mouth of a stable tube of Γ_{B}, there is a stable tube of Γ_{H} without modules from $\operatorname{add}(T)$ and containing a mouth module E such that $\operatorname{Hom}_{H}(T, E) \cong M$ as B-modules. Note also that we may assume that the valued quiver $Q_{H} \cong \Delta^{\mathrm{op}}$ of H is oriented canonically (as in 12, 6. Tables $]$). Indeed, since \mathcal{Q}^{B} is an acyclic and generalized standard component of Γ_{B} with section Δ, the component \mathcal{Q}^{B} of Γ_{B} admits a section Δ^{\prime} with the same number of vertices as Δ such that Δ^{\prime} is oriented canonically, Δ and Δ^{\prime} are of the same Euclidean type, and $\operatorname{Hom}_{B}\left(U_{0}, \tau_{B} U_{1}\right)=0$ for all modules U_{0}, U_{1} from Δ^{\prime} (see also [37, Theorem 2]). Therefore, using the Liu-Skowroński criterion [22], 37] (see also [1. Theorem VIII.5.6]), we find that the direct sum U_{B} of all modules lying on Δ^{\prime} is a tilting B-module, the algebra $H^{\prime}=\operatorname{End}_{B}\left(U_{B}\right)$ is a hereditary algebra with $Q_{H^{\prime}} \cong\left(\Delta^{\prime}\right)^{\text {op }}$ oriented canonically, and $B \cong \operatorname{End}_{H^{\prime}}\left(T^{\prime}\right)$, where $T^{\prime}=T_{H^{\prime}}^{\prime}=D\left(H^{\prime} U\right)$ is a tilting module in $\bmod H^{\prime}$. Recall that there is an induced splitting torsion pair $(\mathcal{X}(T), \mathcal{Y}(T))$ in $\bmod B$, where the torsion part $\mathcal{X}(T)$ and torsion-free part $\mathcal{Y}(T)$ of $\bmod B$ are defined as follows: $\mathcal{X}(T)=\left\{X \in \bmod B ; X \otimes_{B} T=0\right\}$ and $\mathcal{Y}(T)=\left\{Y \in \bmod B ; \operatorname{Ext}_{B}^{1}(Y, D(T))=0\right\}$. Moreover, every indecomposable module in $\mathcal{X}(T)$ (respectively, in $\mathcal{Y}(T)$) is isomorphic to a module of the form $\operatorname{Ext}_{H}^{1}(T, M)$ (respectively, $\operatorname{Hom}_{H}(T, M)$) with M a module in ind H such that $\operatorname{Hom}_{H}(T, M)=0\left(\right.$ respectively, $\left.\operatorname{Ext}_{H}^{1}(T, M)=0\right)$. Note
also that every almost split sequence in $\bmod B$ is contained entirely in $\mathcal{X}(T)$ or entirely in $\mathcal{Y}(T)$, or it is a connecting sequence, that is, an almost split sequence in $\bmod B$ of the form

$$
0 \rightarrow \operatorname{Hom}_{H}\left(T, I_{j}\right) \rightarrow E \rightarrow \operatorname{Ext}_{H}^{1}\left(T, P_{j}\right) \rightarrow 0
$$

where $E=\operatorname{Hom}_{H}\left(T, I_{j} / \operatorname{soc}\left(I_{j}\right)\right) \oplus \operatorname{Ext}_{H}^{1}\left(T, \operatorname{rad} P_{j}\right)$ and P_{j} is not in $\operatorname{add}(T)$.
Clearly, there is a projective module P in $\mathcal{P}^{B} \cup \mathcal{T}^{B}$ such that $\operatorname{Hom}_{B}(P, R)$ $\neq 0$. By [40, Lemma 2.1], there is an infinite path (Ω) in \mathcal{C}_{T} of the form

$$
(\Omega): \cdots \rightarrow V_{1} \rightarrow V_{0}=R,
$$

with $\operatorname{Hom}_{B}\left(V_{n}, R\right) \neq 0$ for all $n \geq 0$. Since \mathcal{C}_{T} is a preinjective component of Γ_{B}, we conclude that there is a path in \mathcal{C}_{T} of the form

$$
\cdots \rightarrow V_{1}^{\prime} \rightarrow V_{0}^{\prime}
$$

where $V_{n}^{\prime}=\tau_{B} V_{n}$ for any $n \geq 0$, and so $\operatorname{Hom}_{B}\left(\tau_{B}^{-1} V_{n}^{\prime}, R\right)=\operatorname{Hom}_{B}\left(V_{n}, R\right)$ $\neq 0$ for each $n \geq 0$. Now, consider the path in \mathcal{C}_{T} of the form

$$
\cdots \rightarrow V_{1}^{\prime \prime} \rightarrow V_{0}^{\prime \prime}
$$

where $V_{n}^{\prime \prime}=\tau_{B} V_{n}^{\prime}=\tau_{B}^{2} V_{n}$ for all $n \geq 0$. It is clear that there is an integer $m_{0} \geq 0$ such that $V_{n}^{\prime \prime}$ is a predecessor of Δ in \mathcal{C}_{T} for all $n \geq m_{0}$. Therefore, there exists a path in \mathcal{Q}^{H} of the form

$$
\begin{equation*}
\cdots \rightarrow Y_{m_{0}+1} \rightarrow Y_{m_{0}} \tag{*}
\end{equation*}
$$

such that $\operatorname{Hom}_{H}\left(T, Y_{n}\right) \cong V_{n}^{\prime \prime}$ for every $n \geq m_{0}$. Hence, if Q_{H} is a tree, then Lemma 6.1 implies that there is an infinite sequence $m_{0} \leq n_{0}<n_{1}<\cdots$ of integers such that $\operatorname{Hom}_{H}\left(E, Y_{n_{k}}\right) \neq 0$ for all $k \geq 0$, and consequently $\operatorname{Hom}_{B}\left(M, V_{n_{k}}^{\prime \prime}\right) \cong \operatorname{Hom}_{H}\left(E, Y_{n_{k}}\right) \neq 0$, by the Brenner-Buttler theorem (see [1, Theorem VI.3.8]). Thus, in this case, there are infinitely many pairwise non-isomorphic modules $Z_{k}=V_{n_{k}}^{\prime}, k \geq 0$, with the required properties.

Now, assume that H is of Euclidean type $\tilde{\mathbb{A}}_{m}, m \geq 1$. First, let R be a module from the torsion-free part $\mathcal{Y}(T) \cap \mathcal{C}_{T}$ of \mathcal{C}_{T}. Then $R \cong \operatorname{Hom}_{H}(T, Y)$ for a module Y in \mathcal{Q}^{H}. Hence, Lemma 6.2 implies that there is a sectional path in \mathcal{Q}^{H} of the form

$$
\cdots \rightarrow Y_{1} \rightarrow Y_{0}=Y
$$

such that there exists a sequence $n_{0}<n_{1}<\cdots$ of non-negative integers, with $\operatorname{Hom}_{H}\left(E, \tau_{H}^{2} Y_{n_{k}}\right) \neq 0$ for all $k \geq 0$. Therefore, we have a sectional path (Ω) in \mathcal{Q}^{B} of the form

$$
(\Omega): \cdots \rightarrow V_{1} \rightarrow V_{0}=R
$$

where $V_{n} \cong \operatorname{Hom}_{H}\left(T, Y_{n}\right)$ for every $n \geq 0$, and $\operatorname{Hom}_{B}\left(M, \tau_{B}^{2} V_{n_{k}}\right) \neq 0$ for every $k \geq 0$. Consequently, there are infinitely many pairwise non-isomorphic modules $Z_{k}=\tau_{B} V_{n_{k}}, k \geq 0$, in \mathcal{Q}^{B} such that $\operatorname{Hom}_{B}\left(\tau_{B}^{-1} Z_{k}, R\right)=$ $\operatorname{Hom}_{B}\left(V_{n_{k}}, R\right) \neq 0$ and $\operatorname{Hom}_{B}\left(M, \tau_{B} Z_{k}\right)=\operatorname{Hom}_{B}\left(M, \tau_{B}^{2} V_{n_{k}}\right) \neq 0$ for all $k \geq 0$.

Now, we consider the last case, where R belongs to the torsion part $\mathcal{X}(T) \cap \mathcal{Q}^{B}$ of \mathcal{Q}^{B}. Then there is a torsion-free module F in \mathcal{P}^{H} such that $R \cong \operatorname{Ext}_{H}^{1}(T, F)$. Observe also that all irreducible homomorphisms between indecomposable modules in the postprojective component \mathcal{P}^{H} of Γ_{H} are irreducible monomorphisms, and \mathcal{P}^{H} is a generalized standard component of Γ_{H}. Hence a module F in \mathcal{P}^{H} belongs to the torsion free part $\mathcal{F}(T)$ of $\bmod H$ if and only if F is not a successor in \mathcal{P}^{H} of an indecomposable direct summand of $T^{p p}$, and consequently $\mathcal{F}(T) \cap$ ind H is a full subcategory of ind H, closed under predecessors in ind H. Therefore, applying Lemma 6.2 and its dual, we conclude that the following statements hold:

- There is a sectional path in \mathcal{P}^{H} of the form

$$
P_{j}=F_{0} \rightarrow F_{1} \rightarrow \cdots \rightarrow F_{t}=F,
$$

with $j \in Q^{0}, P_{j}$ not in $\operatorname{add}(T)$, and such that $\operatorname{Hom}_{H}\left(\tau_{H}^{-p} F_{s}, E\right) \neq 0$ for an integer $p \geq 0$ and every $s \in\{0, \ldots, t\}$.

- \mathcal{Q}^{H} admits a sectional path of the form

$$
\cdots \rightarrow Y_{1} \rightarrow Y_{0}=I_{i}
$$

such that there is a sequence $n_{0}<n_{1}<\cdots$ of non-negative integers with $\operatorname{Hom}_{H}\left(E, \tau_{H}^{2} Y_{n_{k}}\right) \neq 0$ for every $k \geq 0$, and there is an irreducible homomorphism in $\bmod B$ of the form $\operatorname{Hom}_{H}\left(T, I_{i}\right) \rightarrow \operatorname{Ext}_{H}^{1}\left(T, P_{j}\right)$ with I_{i} an indecomposable direct summand of the injective module $I_{j} / \operatorname{soc}\left(I_{j}\right)$.

- The modules I_{j} and Y_{1} are non-isomorphic modules in $\bmod H$.

It follows that there is a sectional path in \mathcal{Q}^{B} of the form

$$
\cdots \rightarrow V_{1} \rightarrow V_{0} \rightarrow W_{0} \rightarrow \cdots \rightarrow W_{t}=R
$$

where $V_{n} \cong \operatorname{Hom}_{H}\left(T, Y_{n}\right)$ for any $n \geq 0$ and $W_{s} \cong \operatorname{Ext}_{H}^{1}\left(T, F_{s}\right)$ for all $s \in\{0, \ldots, t\}$. As before, the modules $Z_{k}=\tau_{B} V_{n_{k}}$ for $k \geq 0$ have the required properties, and the proof is now finished.

The following theorem completes the proof of Theorem 1.2.
Theorem 6.4. Let A be a cycle-finite algebra such that there exists a non-semiregular component \mathcal{C} in Γ_{A}. Then the following statements are equivalent:
(a) For all but finitely many isomorphism classes of modules X in ind A, we have $\operatorname{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$.
(b) A is a generalized double tilted algebra.

Proof. The implication (ii) \Rightarrow (i) is a consequence of the main result of [47] (see also 31, Theorem 3.4]).

To prove $(\mathrm{i}) \Rightarrow(\mathrm{ii})$, we may assume that A is not of finite representation type, because otherwise A is a generalized double tilted algebra with finite connecting component (see [31, Section 3]), and there is nothing to prove.

From now on, we assume that A satisfies (i). We will show that A is a generalized double tilted algebra.
(1) Let \mathcal{C} be a non-semiregular component of Γ_{A}. By Proposition 3.1, every connected component of the cyclic part ${ }_{c} \mathcal{C}$ is finite. Moreover, every finite cyclic component of Γ_{A} contains both a projective module and an injective module (see [24, Corollary 2.6]). Therefore, \mathcal{C} is an almost acyclic component of Γ_{A}. Hence, applying [31, Theorem 2.5], we infer that \mathcal{C} admits a multisection Δ. Recall that Δ is a full connected valued subquiver of \mathcal{C} satysfying the following conditions (see [31, Section 2]):
(a) Δ is almost acyclic.
(b) Δ is convex in \mathcal{C}.
(c) For each τ_{A}-orbit \mathcal{O} in \mathcal{C}, we have $1 \leq|\Delta \cap \mathcal{O}|<\infty$.
(d) For all but finitely many τ_{A}-orbits \mathcal{O} in \mathcal{C}, we have $|\Delta \cap \mathcal{O}|=1$.
(e) No proper full valued subquiver of Δ satisfies (a)-(d).

Following Reiten and Skowroński [31, we also consider the following full valued subquivers of \mathcal{C} :

- $\Delta_{r}=\left(\Delta \backslash \Delta_{l}^{\prime}\right) \cup \tau_{A}^{-1} \Delta_{l}^{\prime \prime}$, where Δ_{l}^{\prime} is a full valued subquiver of Δ containing all modules $X \in \Delta$ such that there is a non-sectional path $X \rightarrow \cdots \rightarrow P$ with P a projective module and $\Delta_{l}^{\prime \prime}=\left\{X \in \Delta_{l}^{\prime} ;\right.$ $\left.\tau_{A}^{-1} X \notin \Delta_{l}^{\prime}\right\} ;$
- $\Delta_{l}=\left(\Delta \backslash \Delta_{r}^{\prime}\right) \cup \tau_{A} \Delta_{r}^{\prime \prime}$, where Δ_{r}^{\prime} is a subquiver of Δ containing all modules $X \in \Delta$ such that there is a non-sectional path $I \rightarrow \cdots \rightarrow X$ with I an injective module and $\Delta_{r}^{\prime \prime}=\left\{X \in \Delta_{r}^{\prime} ; \tau_{A} X \notin \Delta_{r}^{\prime}\right\}$;
- $\Delta_{c}=\Delta_{l}^{\prime} \cap \Delta_{r}^{\prime}$.

Further, using [31, Proposition 2.4], we infer that every oriented cycle in \mathcal{C} lies entirely in Δ_{c}, and \mathcal{C} has the disjoint union decomposition

$$
\mathcal{C}=\mathcal{C}_{l} \cup \Delta_{c} \cup \mathcal{C}_{r},
$$

where \mathcal{C}_{l} (respectively, \mathcal{C}_{r}) is the full valued translation subquiver of \mathcal{C} formed by all predecessors of Δ_{l} in \mathcal{C} (respectively, all successors of Δ_{r} in \mathcal{C}). Note that \mathcal{C}_{l} or \mathcal{C}_{r} is an infinite full valued subquiver of \mathcal{C}, because A is assumed to be indecomposable and of infinite representation type.

Assume that \mathcal{C}_{l} is infinite. Let \mathcal{D}_{l} be the full valued translation subquiver of the left stable part ${ }_{l} \mathcal{C}_{l}$ of \mathcal{C}_{l} formed by all modules X in \mathcal{C}_{l} such that X is a predecessor of a projective module in \mathcal{C} and every predecessor of X in \mathcal{C} is in ${ }_{l} \mathcal{C}_{l}$. Clearly, \mathcal{D}_{l} is then a non-empty and acyclic left stable full valued translation subquiver of \mathcal{C}_{l}, closed under predecessors in \mathcal{C}. Assume that \mathcal{D}_{l} has a decomposition $\mathcal{D}_{l}=\mathcal{D}_{l}^{1} \cup \cdots \cup \mathcal{D}_{l}^{p}$ into a disjoint union of connected
full (valued) translation subquivers. Then, using [23, Theorem 2.2], we infer that, for every $i \in\{1, \ldots, p\}$, there exist a hereditary algebra H_{i} of Euclidean type and a tilting module T_{i} in $\bmod H_{i}$ without non-zero preinjective direct summands such that the tilted algebra $B_{i}=\operatorname{End}_{H}\left(T_{i}\right)$ is a factor algebra of A and the torsion-free part $\mathcal{Y}\left(T_{i}\right) \cap \mathcal{C}_{T_{i}}$ of the connecting component $\mathcal{C}_{T_{i}}$ of $\Gamma_{B_{i}}$ is a full valued translation subquiver of \mathcal{D}_{l}^{i} (closed under predecessors in \mathcal{C}). Further, every A-module in \mathcal{D}_{l}^{i} is a B_{i}-module and hence lies in the preinjective connecting component $\mathcal{C}_{T_{i}}=\mathcal{Q}^{B_{i}}$ of $\Gamma_{B_{i}}$. Moreover, the product algebra $B=B_{1} \times \cdots \times B_{p}$ is a quotient algebra of A. In particular, for every $i \in\{1, \ldots, p\}$, there are a module R_{i} in \mathcal{D}_{l}^{i} (lying in $\mathcal{Q}^{B_{i}}$) and an irreducible monomorphism $R_{i} \rightarrow P^{(i)}$ with $P^{(i)}$ a projective module in \mathcal{C}. Note also that \mathcal{D}_{l} admits at most finitely many τ_{A}-orbits, because \mathcal{D}_{l} is acyclic and hence consists only of directing modules (see [29] and [39).
(2) Consider now the family $\mathcal{T}^{B_{i}}=\left(\mathcal{T}_{\lambda}^{B_{i}}\right)_{\lambda \in \Lambda_{i}}$ of all semiregular tubes of $\Gamma_{B_{i}}$ for $i \in\{1, \ldots, p\}$. Then the disjoint union $\mathcal{T}^{B_{1}} \cup \cdots \cup \mathcal{T}^{B_{p}}$ is the family $\mathcal{T}^{B}=\left(\mathcal{T}_{\lambda}^{B}\right)_{\lambda \in \Lambda}$, with $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{p}$, of all (pairwise orthogonal) semiregular tubes of Γ_{B} and $B=\operatorname{supp}\left(\mathcal{T}^{B}\right)$. Note also that \mathcal{T}^{B} contains only ray tubes. Moreover, observe that B is a convex subcategory of A. Indeed, for every $i \in\{1, \ldots, p\}$, the algebra B_{i} is a tubular extension of a tame concealed algebra C_{i}, hence [7, Theorem 1.5] shows that B_{i} is a convex subcategory of A. Consequently, so is B.

Moreover, for any two modules X and Y lying in the cyclic part ${ }_{c} \mathcal{T}_{\lambda}^{B}$ of a ray tube $\mathcal{T}_{\lambda}^{B}, \lambda \in \Lambda$, there exists a cycle of irreducible homomorphisms in mod B passing through X and Y. Since A is a cycle-finite algebra, we deduce that X and Y lie on a common cycle of irreducible homomorphisms in $\bmod A$, and hence there is a component $\mathcal{T}_{\lambda}^{A}$ of Γ_{A} containing all modules from ${ }_{c} \mathcal{T}_{\lambda}^{B}$. Further, ${ }_{c} \mathcal{T}_{\lambda}^{B}$ is infinite, hence the cyclic part ${ }_{c} \mathcal{T}_{\lambda}^{A}$ of $\mathcal{T}_{\lambda}^{A}$ is infinite, and consequently, by Proposition 3.1 $\mathcal{T}_{\lambda}^{A}$ is a ray tube or a coray tube. Note also that $\mathcal{T}_{\lambda}^{A} \neq \mathcal{T}_{\mu}^{A}$ for any $\lambda \neq \mu$ in Λ, and $\mathcal{T}_{\lambda}^{A}=\mathcal{T}_{\lambda}^{B}$ for all but finitely many λ in Λ (see the proof of [7, Theorem 4.1]). Denote by $\mathcal{T}^{A}=\mathcal{T}^{A}(B)$ the family $\left(\mathcal{T}_{\lambda}^{A}\right)_{\lambda \in \Lambda}$ of semiregular tubes of Γ_{A}.

We claim that \mathcal{T}^{A} has no coray tubes containing injective modules. Suppose to the contrary that a coray tube $\mathcal{T}_{\lambda_{0}}^{A}, \lambda_{0} \in \Lambda$, of \mathcal{T}^{A} contains an injective module. Then the ray tube $\mathcal{T}_{\lambda_{0}}^{B}$ is a stable tube of Γ_{B}, by 42, Proposition 2.3], and hence there exists a module M lying on the mouth of $\mathcal{T}_{\lambda_{0}}^{B}$ and an irreducible epimorphism $I \rightarrow M$ in $\bmod A$ with I an injective A-module. Therefore, if $\lambda_{0} \in \Lambda_{i}$, then, using Lemma 6.3, we conclude that there are infinitely many pairwise non-isomorphic indecomposable modules $Y_{n}, n \geq 0$, in $\mathcal{Q}^{B_{i}}$ such that

$$
\operatorname{Hom}_{B}\left(M, \tau_{B} Y_{n}\right) \neq 0 \quad \text { and } \quad \operatorname{Hom}_{B}\left(\tau_{B}^{-1} Y_{n}, R_{i}\right) \neq 0
$$

for all $n \geq 0$. But then $\operatorname{Hom}_{A}\left(I, \tau_{A} Y_{n}\right) \neq 0$ and $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} Y_{n}, P^{(i)}\right) \neq 0$,
for every $n \geq 0$, hence, by [1, Lemma IV.2.7], there are infinitely many pairwise non-isomorphic indecomposable modules Y_{n} in \mathcal{C} with $\operatorname{pd}_{A} Y_{n} \geq 2$ and $\operatorname{id}_{A} Y_{n} \geq 2$, a contradiction. Thus indeed, the family \mathcal{T}^{A} does not admit a coray tube which is not a stable tube.
(3) Now, we show that $\mathcal{T}^{A}=\mathcal{T}^{B}$. First, observe that, by [42, Proposition 2.3], for any non-regular tube $\mathcal{T}_{\lambda}^{B}$, all rays of $\mathcal{T}_{\lambda}^{B}$ are complete rays of $\mathcal{T}_{\lambda}^{A}$. Since all tubes of \mathcal{T}^{A} are pairwise orthogonal and generalized standard components of Γ_{A}, there is a factor algebra $A^{\prime}=A / \operatorname{ann}\left(\mathcal{T}^{A}\right)$ of A such that A^{\prime} is tubular extension of B and \mathcal{T}^{A} is obtained from \mathcal{T}^{B} by a finite (possibly zero) number of ray insertions.

Suppose now that $\mathcal{T}^{A} \neq \mathcal{T}^{B}$. Then B is also a convex subcategory of A^{\prime} and there is a decomposition $A^{\prime}=P \oplus Q$ such that P is a direct sum of projective B-modules in $\bmod A^{\prime}$. It follows that $P=B, \operatorname{Hom}_{A^{\prime}}(Q, B)=0$, and there is an isomorphism of K-algebras

$$
A^{\prime} \cong\left[\begin{array}{ll}
F & U \\
0 & B
\end{array}\right],
$$

where $F=\operatorname{End}_{A^{\prime}}(Q)$ and U is a non-zero F - B-bimodule with U_{B} in $\operatorname{add}\left(\mathcal{T}^{B}\right)$. In particular, there is a module X in \mathcal{D}_{l} such that $\operatorname{Hom}_{B}(U, X) \neq 0$ and there is an almost split sequence in $\bmod B$ of the form

$$
0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0,
$$

which is also an almost split sequence in $\bmod A$. Since X, Y and Z are A^{\prime}-modules, the above sequence is an almost split sequence in $\bmod A^{\prime}$. But this is impossible, because $\operatorname{Hom}_{B}(U, X) \neq 0$ (see [32, (2.5)], [36, Theorem XV.1.6] and [49, Lemma 5.6]). Consequently, $\mathcal{T}^{A}=\mathcal{T}^{B}$, that is, the family \mathcal{T}^{B} of all semiregular tubes of Γ_{B} is a family of components of Γ_{A}.

Summarizing, we have proved in (1)-(3) that there is a factor tilted algebra $B=B(\mathcal{C})$ of A such that $B=B_{1} \times \cdots \times B_{p}$ is a product of indecomposable tilted algebras of Euclidean type, the torsion-free part $\mathcal{Q}^{B_{i}} \cap \mathcal{Y}(T)$ of $\mathcal{Q}^{B_{i}}$ is a full valued translation subquiver of \mathcal{C}_{l} for every $i \in\{1, \ldots, p\}$, and the family $\mathcal{T}^{B(\mathcal{C})}$ of all semiregular tubes of Γ_{B} is a family of components of Γ_{A}. Using dual arguments, we infer that, if \mathcal{C}_{r} is infinite, then there is a factor algebra $B^{\prime}=B^{\prime}(\mathcal{C})=B_{1}^{\prime} \times \cdots \times B_{q}^{\prime}$ of A such that, for every $j \in\{1, \ldots, q\}$, there is a hereditary algebra H_{j}^{\prime} of Euclidean type and a tilting module T_{j}^{\prime} without postprojective direct summands such that we have an isomorphism of K-algebras $B_{j}^{\prime} \cong \operatorname{End}_{H_{j}^{\prime}}\left(T_{j}^{\prime}\right)$, and the torsion part $\mathcal{P}^{B_{j}^{\prime}} \cap \mathcal{X}\left(T_{j}^{\prime}\right)$ of $\mathcal{P}^{B_{j}^{\prime}}$ is a full valued translation subquiver of \mathcal{C}_{r} for every $j \in\{1, \ldots, q\}$. Moreover, the family $\mathcal{T}^{B^{\prime}(\mathcal{C})}=\left(\mathcal{T}_{\lambda}^{B^{\prime}}\right)_{\lambda \in \Lambda^{\prime}}=\left(\mathcal{T}_{\lambda}^{A}\right)_{\lambda \in \Lambda^{\prime}}$ of all coray tubes of $\Gamma_{B^{\prime}}$ is a family of components of Γ_{A}.
(4) In the last part of the proof we show that A is in fact a generalized double tilted algebra. Denote by $\mathcal{P}^{B(\mathcal{C})}$ (respectively, $\mathcal{Q}^{B^{\prime}(\mathcal{C})}$) the family
$\mathcal{P}^{B_{1}} \cup \cdots \cup \mathcal{P}^{B_{p}}$ of all postprojective components of $\Gamma_{B(\mathcal{C})}$ (respectively, the family $\mathcal{Q}^{B_{1}^{\prime}} \cup \cdots \cup \mathcal{Q}^{B_{q}^{\prime}}$ of all preinjective components of $\left.\Gamma_{B^{\prime}(\mathcal{C})}\right)$.

Consider the two-sided ideal $I=\operatorname{ann}\left(\mathcal{T}^{B(\mathcal{C})} \cup \mathcal{C}\right)=\operatorname{ann}\left(\mathcal{T}^{B(\mathcal{C})} \cup \mathcal{C} \cup\right.$ $\left.\mathcal{T}^{B^{\prime}(\mathcal{C})}\right)=\operatorname{ann}\left(\mathcal{C} \cup \mathcal{T}^{B^{\prime}(\mathcal{C})}\right)$ of A and the quotient algebra $A(\mathcal{C})=A / I$. Then $\mathcal{T}^{B(\mathcal{C})} \cup \mathcal{C} \cup \mathcal{T}^{B^{\prime}(\mathcal{C})}$ is a faithful family of components of $\Gamma_{A(\mathcal{C})}$. Moreover, all projective modules in $\bmod A(\mathcal{C})$ are contained in $\mathcal{P}^{B(\mathcal{C})} \cup \mathcal{T}^{B(\mathcal{C})} \cup \mathcal{C}$. Dually, each injective module in $\bmod A(\mathcal{C})$ belongs to $\mathcal{C} \cup \mathcal{T}^{B^{\prime}(\mathcal{C})} \cup \mathcal{Q}^{B^{\prime}(\mathcal{C})}$. In particular, all projective (respectively, injective) $A(\mathcal{C})$-modules are projective (respectively, injective) A-modules, and hence the valued quiver $Q_{A(\mathcal{C})}$ can be treated as a (full) valued subquiver of Q_{A}.

We claim that $Q_{A(\mathcal{C})}=Q_{A}$. Suppose otherwise. Then, as Q_{A} is connected, there are a vertex i_{0} in Q_{A} not lying in $Q_{A(\mathcal{C})}$ and a vertex j_{0} in $Q_{A(\mathcal{C})}$ such that there is either an arrow $i_{0} \rightarrow j_{0}$ in Q_{A} or an arrow $j_{0} \rightarrow i_{0}$ in Q_{A}. Suppose the latter. Then there is a homomorphism $f_{0}: P_{i_{0}} \rightarrow P_{j_{0}}$ in $\bmod A$, where $P_{j_{0}}=e_{j_{0}} A$ and $P_{i_{0}}=e_{i_{0}} A$ are indecomposable projective A-modules corresponding to the vertices j_{0} and i_{0}, respectively, and f_{0} is given by an element $a_{0} \in e_{j_{0}}(\operatorname{rad} A) e_{i_{0}} \backslash e_{j_{0}}(\operatorname{rad} A)^{2} e_{i_{0}}$. Since $P_{j_{0}}$ and $P_{i_{0}}$ are nonisomorphic indecomposable projective modules, f_{0} is not an epimorphism, and hence $\operatorname{Im} f_{0}$ is a submodule of $\operatorname{rad} P_{j_{0}}$. Then the projectivity of $P_{i_{0}}$ implies that in $\bmod A$ there exists a commutative diagram

with $P\left(\operatorname{rad} P_{j_{0}}\right)$ a projective cover of $\operatorname{rad} P_{j_{0}}$ in $\bmod A(\mathcal{C})$ and $f_{0}=u \bar{f}_{0}$, where $u: \operatorname{rad} P_{j_{0}} \rightarrow P_{j_{0}}$ is the canonical inclusion. Observe that, if P_{i} is a direct summand of $P\left(\operatorname{rad} P_{j_{0}}\right)$, then i is in $Q_{A(\mathcal{C})}$ and so g_{0} is a homomorphism in rad_{A}. Moreover, the homomorphism $h_{0}=u \pi$ is in $\operatorname{rad}_{A}\left(P\left(\operatorname{rad} P_{j_{0}}\right), P_{j_{0}}\right)$. But then $f_{0}=h_{0} g_{0}$ implies that a_{0} is in $e_{j_{0}}(\operatorname{rad} A)^{2} e_{i_{0}}$, a contradiction. Summing up, we have proved that, if there is an arrow $j \rightarrow i$ in Q_{A} with j in $Q_{A(\mathcal{C})}$, then i also belongs to $Q_{A(\mathcal{C})}$. Similarly, using injective modules, we prove that, if there is an arrow $i \rightarrow j$ in Q_{A} with j in $Q_{A(\mathcal{C})}$, then i also belongs to $Q_{A(\mathcal{C})}$. Consequently, we get the required equality $Q_{A(\mathcal{C})}=Q_{A}$.

Hence, all indecomposable projective (respectively, injective) modules in $\bmod A$ are in fact indecomposable projective (respectively, injective) modules in $\bmod A(\mathcal{C})$, and so are contained in $\mathcal{P}^{B(\mathcal{C})} \cup \mathcal{T}^{B(\mathcal{C})} \cup \mathcal{C} \cup \mathcal{T}^{B^{\prime}(\mathcal{C})} \cup \mathcal{Q}^{B^{\prime}(\mathcal{C})}$. Moreover, \mathcal{C} is a faithful component of $\Gamma_{A}, \Gamma_{A}=\Gamma_{A(\mathcal{C})}=\mathcal{P}^{B(\mathcal{C})} \cup \mathcal{T}^{B(\mathcal{C})} \cup$ $\mathcal{C} \cup \mathcal{T}^{B^{\prime}(\mathcal{C})} \cup \mathcal{Q}^{B^{\prime}(\mathcal{C})}$, and $A=A(\mathcal{C})$. In particular, we may consider the decomposition $A=P \oplus P^{\prime}$ of A_{A} into a direct sum of projective A-modules, where P (respectively, P^{\prime}) is the direct sum of all indecomposable projective
modules in $\bmod A$ lying in $\mathcal{P}^{B(\mathcal{C})} \cup \mathcal{T}^{B(\mathcal{C})}$ (respectively, in \mathcal{C}). Further, observe that $\operatorname{Hom}_{A}\left(P^{\prime}, P\right)=0$. Therefore, $A=A(\mathcal{C})$ is isomorphic to a K-algebra of triangular matrix form

$$
\left[\begin{array}{cc}
D & V \\
0 & B
\end{array}\right],
$$

where $D=\operatorname{End}_{A}\left(P^{\prime}\right)$ and $V=\operatorname{Hom}_{A}\left(P, P^{\prime}\right)$ is a D - B-bimodule with V_{B} lying in \mathcal{C}. Moreover, $\bmod A$ can be identified with the category whose objects are triples $Y=\left(Y_{0}, Y_{1}, \varphi\right)$, where $Y_{1} \in \bmod B, Y_{0} \in \bmod D$, and φ : $Y_{0} \rightarrow \operatorname{Hom}_{B}\left(V, Y_{1}\right)$ is a D-homomorphism, and a morphism $h:\left(Y_{0}, Y_{1}, \varphi\right) \rightarrow$ $\left(X_{0}, X_{1}, \psi\right)$ of such triples is a pair $\left(h_{0}, h_{1}\right)$ such that $h_{0} \in \operatorname{Hom}_{D}\left(Y_{0}, X_{0}\right)$, $h_{1} \in \operatorname{Hom}_{B}\left(Y_{1}, X_{1}\right)$, and $\operatorname{Hom}_{B}\left(V, h_{1}\right) \varphi=\psi h_{0}$.

Consider now an arbitrary module X from \mathcal{D}_{l}. Then X is a module in $\bmod B$, hence $X \cong\left(X_{0}, X_{1}, \psi\right)$, where $X_{0}=0$ and $\psi=0$. Now, let $Y \cong\left(Y_{0}, Y_{1}, \varphi\right)$ be a predecessor of X in ind A. Then there is a pair $\left(h_{0}, h_{1}\right)$ of homomorphisms such that $h_{0} \in \operatorname{Hom}_{D}\left(Y_{0}, X_{0}\right), h_{1} \in \operatorname{Hom}_{B}\left(Y_{1}, X_{1}\right)$, and $\operatorname{Hom}_{B}\left(V, h_{1}\right) \varphi=\psi h_{0}$. In particular, $h_{0}=0$.

We claim that Y is in ind B. First, observe that $\varphi=0$. Indeed, if this is not the case, then applying Lemma 2.1, we conclude that, for every indecomposable direct summand Z of Y_{1}, we have $\operatorname{Hom}_{B}(V, Z) \neq 0$. Consequently, Z is a successor in ind B of an indecomposable direct summand of $\operatorname{rad} P^{\prime}$, a contradiction, because Z is a predecessor of $X \cong X_{1}$ lying in \mathcal{D}_{l}. Therefore, indeed $\varphi=0$.

It follows that there is an isomorphism $Y \cong Y_{0} \oplus Y_{1}$ in $\bmod A$, hence because Y is in ind A, we conclude that $Y \cong Y_{0}$ or $Y \cong Y_{1}$. In the first case, $Y_{1}=0$, hence $h_{1}=0$, and $h=0$, a contradiction. Thus $Y \cong Y_{1}$, and we are done. Summing up, we have proved that every predecessor in ind A of a module X from \mathcal{D}_{l} is a predecessor of X in ind B.

Finally, we will prove that \mathcal{C} is a generalized standard component. Suppose to the contrary that $\operatorname{rad}_{A}^{\infty}(M, N) \neq 0$ for some indecomposable modules M and N in \mathcal{C}. Then, applying [40, Lemma 2.1], we deduce that there is an infinite path $\cdots \rightarrow N_{1} \rightarrow N_{0}=N$ in \mathcal{C} such that $\operatorname{rad}_{A}^{\infty}\left(M, N_{k}\right) \neq 0$ for all $k \geq 0$. Since \mathcal{C} is almost acyclic, there exists an integer $k_{0} \geq 0$ such that $N_{k_{0}}$ lies in \mathcal{D}_{l}, and consequently M is also in \mathcal{D}_{l}. But then we obtain a contradiction, because M and $N_{k_{0}}$ are indecomposable modules lying in the preinjective component of Γ_{B} which is generalized standard.

Thus, we have proved that \mathcal{C} is an almost acyclic, faithful, and generalized standard component of Γ_{A}, and hence A is a generalized double tilted algebra, by [31, Theorem 3.1]. The proof is now complete.
7. An example. We give here an example illustrating the relevance of the homological assumption in Theorem 6.4.

Example 7.1. Let $A=K Q / I$, where K is an algebraically closed field, Q is a quiver of the form

and I is an admissible ideal in the path algebra $K Q$, generated by all paths in Q of length 2. Then $\operatorname{dim}_{K} A=11$, and the equivalence of categories $\bmod A \cong \operatorname{rep}_{K}(Q, I)$ (see [1, Theorem III.1.6]) yields the disjoint union decomposition

$$
\Gamma_{A}=\mathcal{C} \cup \bigcup_{\lambda \in \mathbb{P}_{1}(K)} \mathcal{T}_{\lambda}^{H},
$$

where H is the path algebra $K \Sigma$ of the Kronecker subquiver Σ of Q given by the vertices 2,5 and the arrows $\xi, \eta, \mathcal{T}^{H}=\left(\mathcal{T}_{\lambda}^{H}\right)_{\lambda \in \mathbb{P}_{1}(K)}$ is the family of all stable tubes of rank 1 in Γ_{H} (see [35], Section XI.4]), and \mathcal{C} is a component of Γ_{A} of the shape

where S_{i}, P_{i}, I_{i} denote the simple module, the indecomposable projective module, and the indecomposable injective module in $\bmod A$ corresponding to the vertex $i \in\{1,2,3,4,5\}$ of Q. Observe that A is a cycle-finite algebra, because \mathcal{T}^{H} is a family of pairwise orthogonal stable tubes and every module in \mathcal{C} has finitely many predecessors or finitely many successors in \mathcal{C}, equivalently, in ind A. Moreover, the postprojective component
\mathcal{P}^{H} of Γ_{H} is a full valued translation subquiver of \mathcal{C} closed under successors. Dually, the preinjective component \mathcal{Q}^{H} of Γ_{H} is a full valued translation subquiver of \mathcal{C} closed under predecessors. Note also that in this case $B(\mathcal{C})=B^{\prime}(\mathcal{C})=H$.

Moreover, \mathcal{C} is an acyclic component of Γ_{A} containing all indecomposable projective A-modules, hence \mathcal{C} is a faithful and (almost) acyclic component of Γ_{A}. But \mathcal{C} is not a generalized standard component of Γ_{A}. Indeed, as $\operatorname{rad}_{A}\left(P_{5}, S_{5}\right)=\operatorname{Hom}_{A}\left(P_{5}, S_{5}\right) \neq 0$ and there is no path in \mathcal{C} from P_{5} to S_{5}, we infer that $\operatorname{rad}_{A}^{\infty}\left(P_{5}, S_{5}\right) \neq 0$.

Summing up, A is a cycle-finite algebra and Γ_{A} admits a component \mathcal{C} which is faithful and almost acyclic, but not generalized standard. Moreover, the homological condition, imposed in Theorem 6.4, is not satisfied here. We claim that, for every successor Z of $\tau_{A}^{-1} S_{2}$ in \mathcal{C}, we have $\operatorname{pd}_{A} Z \geq 2$ and $\operatorname{id}_{A} Z \geq 2$. Namely, consider a successor Z of the module $\tau_{A}^{-1} S_{2}$ in \mathcal{C}. Then Z is a module in \mathcal{P}^{H} with $\tau_{A} Z=\tau_{H} Z$ and $\tau_{A}^{-1} Z=\tau_{H}^{-1} Z \neq S_{2}$ in \mathcal{P}^{H}, and hence $\operatorname{Hom}_{A}\left(S_{2}, \tau_{A} Z\right) \neq 0$ and $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} Z, S_{5}\right) \neq 0$. Further, there are an epimorphism $I_{1} \rightarrow S_{2}$ and a monomorphism $S_{5} \rightarrow P_{4}$, thus $\operatorname{Hom}_{A}\left(I_{1}, \tau_{A} Z\right) \neq 0$ and $\operatorname{Hom}_{A}\left(\tau_{A}^{-1} Z, P_{4}\right) \neq 0$. Consequently, [1, Lemma IV.2.7] implies that $\operatorname{pd}_{A} Z \geq 2$ and $\operatorname{id}_{A} Z \geq 2$.

Acknowledgements. The author gratefully acknowledges support from the research grant DEC-2011/02/A/ST1/00216 of the Polish National Science Center. The author would also like to kindly thank Professor Andrzej Skowroński for his helpful suggestions and inspiring discussions.

REFERENCES

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[2] I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
[3] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331.
[4] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61.
[5] M. Auslander, Representation theory of artin algebras II, Comm. Algebra 1 (1974), 269-310.
[6] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1994.
[7] J. Białkowski, A. Skowroński, A. Skowyrski and P. Wiśniewski, Cycle-finite algebras of semiregular type, Colloq. Math. 129 (2012), 211-247.
[8] F. U. Coelho and M. A. Lanzilotta, Algebras with small homological dimension, Manuscripta Math. 100 (1999), 1-11.
[9] F. U. Coelho, E. M. Marcos, H. A. Merklen and A. Skowroński, Module categories with infinite radical square zero are of finite type, Comm. Algebra 22 (1994), 45114517.
[10] F. U. Coelho, E. M. Marcos, H. A. Merklen and A. Skowroński, Module categories with infinite radical cube zero, J. Algebra 183 (1996), 1-23.
[11] F. U. Coelho and A. Skowroński, On Auslander-Reiten components of quasi-tilted algebras, Fund. Math. 143 (1996), 67-82.
[12] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173.
[13] D. Happel and I. Reiten, Hereditary abelian categories with tilting object over arbitrary base fields, J. Algebra 256 (2002), 414-432.
[14] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575.
[15] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
[16] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
[17] O. Kerner and A. Skowroński, On the module categories with infinite nilpotent radical, Compos. Math. 77 (1991), 313-333.
[18] H. Lenzing, A K-theoretic study of canonical algebras, in: Representation Theory of Algebras, Canad. Math. Soc. Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1998, 433-454.
[19] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181.
[20] S. Liu, Degrees of irreducible maps and the shape of Auslader-Reiten quivers, J. London Math. Soc. 45 (1992), 32-54.
[21] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416.
[22] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. (Basel) 61 (1993), 12-19.
[23] P. Malicki, J. A. de la Peña and A. Skowroński, On the number of terms in the middle of almost split sequences over cycle-finite artin algebras, Centr. Eur. J. Math., in press; arXiv:1302.2497v1[math.RT].
[24] P. Malicki, J. A. de la Peña and A. Skowroński, Finite cycles of indecomposable modules, arXiv:1306.0929v1[math.RT]
[25] P. Malicki and A. Skowroński, Almost cyclic coherent components of an AuslanderReiten quiver, J. Algebra 229 (2000), 695-749.
[26] P. Malicki and A. Skowroński, Algebras with almost cyclic coherent AuslanderReiten components, J. Algebra 291 (2005), 208-237.
[27] P. Malicki and A. Skowroński, Algebras with separating Auslander-Reiten components, in: Representations of Algebras and Related Topics, EMS Ser. Congress Reports, Eur. Math. Soc., Zürich, 2011, 251-353.
[28] J. A. de la Peña and A. Skowroński, Algebras with cycle-finite Galois coverings, Trans. Amer. Math. Soc. 363 (2011), 4309-4336.
[29] L. Peng and J. Xiao, On the number of DTr-orbits containing directing modules, Proc. Amer. Math. Soc. 118 (1993), 753-756.
[30] I. Reiten and A. Skowroński, Characterizations of algebras with small homological dimension, Adv. Math. 179 (2003), 122-154.
[31] I. Reiten and A. Skowroński, Generalized double tilted algebras, J. Math. Soc. Japan 56 (2004), 269-288.
[32] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[33] C. M. Ringel, The canonical algebras (with an appendix by W. Crawley-Boevey), in: Topics in Algebra, Part 1: Rings and Representations of Algebras, Banach Center Publ. 26, PWN, Warszawa, 1980, 407-432.
[34] D. Simson and A. Skowroński, The Jacobson radical power series of module categories and the representation type, Bol. Soc. Mexicana 5 (1999), 223-236.
[35] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, Cambridge, 2007.
[36] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, Cambridge, 2007.
[37] A. Skowroński, Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math. 30 (1993), 515-527.
[38] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543.
[39] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19-26.
[40] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243.
[41] A. Skowroński, On the composition factors of periodic modules, J. London Math. Soc. 49 (1994), 477-492.
[42] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116.
[43] A. Skowroński, Simply connected algebras of polynomial growth, Compos. Math. 109 (1997), 99-133.
[44] A. Skowroński, Tame algebras with strongly simply connected Galois coverings, Colloq. Math. 72 (1997), 335-351.
[45] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490.
[46] A. Skowroński, Directing modules and double tilted algebras, Bull. Polish Acad. Sci. Ser. Math. 50 (2002), 77-87.
[47] A. Skowroński, On artin algebras with almost all indecomposable modules of projective or injective dimension at most one, Centr. Eur. J. Math. 1 (2003), 108-122.
[48] A. Skowroński, Selfinjective algebras: finite and tame type, in: Trends in Representation Theory of Algebras and Related Topics, Contemp. Math. 406, Amer. Math. Soc., Providence, RI, 2006, 169-238.
[49] A. Skowroński and K. Yamagata, Socle deformations of selfinjective algebras, Proc. London Math. Soc. 72 (1996), 545-566.
[50] A. Skowroński and K. Yamagata, Frobenius Algebras I. Basic Representation Theory, Eur. Math. Soc. Textbooks in Math., Eur. Math. Soc., Zürich, 2011.
[51] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672.

Adam Skowyrski
Faculty of Mathematics
and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: skowyr@mat.uni.torun.pl
skowyr@mat.umk.pl

Received 6 June 2013;
revised 14 July 2013

[^0]: 2010 Mathematics Subject Classification: 16E10, 16G10, 16G60, 16G70.
 Key words and phrases: cycle-finite algebra, tame quasitilted algebra, generalized double tilted algebra, Auslander-Reiten quiver, projective dimension, injective dimension.

