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FINITE GROUPS WITH MODULAR CHAINS

BY

ROLAND SCHMIDT (Kiel)

Abstract. In 1954, Kontorovich and Plotkin introduced the concept of a modular
chain in a lattice to obtain a lattice-theoretic characterization of the class of torsion-free
nilpotent groups. We determine the structure of finite groups with modular chains. It turns
out that this class of groups lies strictly between the class of finite groups with lower
semimodular subgroup lattice and the projective closure of the class of finite nilpotent
groups.

1. Introduction. Many lattice-theoretic characterizations of classes of
groups can be obtained by translating a suitable definition of the class into
lattice theory, that is, by replacing concepts appearing in this definition by
lattice-theoretic concepts that are equivalent to them or nearly so. The first
to use this idea were Kontorovich and Plotkin who in 1954 introduced the
concept of a modular chain in a lattice (as translation of a central series of a
group) to obtain a lattice-theoretic characterization of the class of torsion-
free nilpotent groups (see [3] or [6, Theorem 7.2.3]).

In this paper we want to study finite groups G whose subgroup lattice
L(G) has a modular chain. Since every central series of G is a modular chain
in L(G), this class of groups contains the class N∗ of all projective images
of finite nilpotent groups. We also consider some slightly stronger lattice-
theoretic properties. It is easy to construct finite lattices with these prop-
erties which have maximal chains of different lengths and therefore do not
satisfy the Jordan–Dedekind chain condition (see Examples 2.7 and 2.12).
For subgroup lattices of finite groups, however, we can show that all prop-
erties considered are equivalent and that the following holds.

Theorem A. The subgroup lattice of a finite group is lower semimodular
if it has a modular chain.

The converse is not true although lower semimodularity is a transla-
tion of a strong normalizer condition into lattice theory [6, p. 233], another
possible definition of nilpotency for finite groups. By Ito’s theorem (see [2]
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or [6, Theorem 5.3.11]), L(G) is lower semimodular if and only if G is super-
soluble and induces an automorphism group of at most prime order in every
chief factor. In particular, these groups have a Sylow tower. The structure
of finite groups with a modular chain is much more restricted.

Theorem B. Let G be a finite group. Then L(G) has a modular chain
if and only if G has a Sylow tower 1 = P0 < · · · < Pn = G such that for all
i ∈ {1, . . . , n}, every complement Ki/Pi−1 to the Sylow pi-subgroup Pi/Pi−1
of G/Pi−1 satisfies either

(a) G/Pi−1 = Pi/Pi−1 ×Ki/Pi−1, or
(b) |Ki/Pi−1 : CKi/Pi−1

(Pi/Pi−1)| is a prime dividing pi − 1 and
CPi/Pi−1

(Ki/Pi−1) � Pi/Pi−1.

In particular, Ki induces an automorphism group of at most prime order
in the normal Sylow subgroup Pi/Pi−1, not only in the chief factors of G
between Pi and Pi−1. It is well-known [6, p. 54] that the projective closure N∗

of the class N of finite nilpotent groups is the class of coprime direct products
of finite primary and P -groups. Several lattice-theoretic characterizations of
this class of groups are given in [7]. Theorem B shows that N∗ is strictly
smaller than the class of finite groups with modular chains and we finally
prove that it is not possible to find a (better) lattice-theoretic translation,
“L-central chain”, say, of a central series for which N∗ would be the class of
groups G such that L(G) has an L-central chain.

All groups and lattices considered are finite. Our notation is standard
(see [4] or [6]) except that we write H ∪K for the group generated by the
subgroups H and K of the group G. The least and greatest elements of the
lattice L are denoted by 0 and I, respectively, a minimal nontrivial element
of L is an atom of L, elements with the dual property are called antiatoms,
and for a, b ∈ L such that a ≤ b, we let [b/a] = {x ∈ L | a ≤ x ≤ b}. For
short, we say that G is a group with a modular chain if L(G) has a modular
chain, and that G is an LM -group if L(G) is lower semimodular.

2. Proof of Theorem A. We first give the definition of a modular
chain in a finite lattice [6, 7.2.1]. Recall that a lattice L is modular if for all
x, y, z ∈ L the modular law holds:

• If x ≤ z, then x ∪ (y ∩ z) = (x ∪ y) ∩ z.

An element m ∈ L is modular in L, if

• x ∪ (m ∩ z) = (x ∪m) ∩ z for all x, z ∈ L with x ≤ z, and
• m ∪ (y ∩ z) = (m ∪ y) ∩ z for all y, z ∈ L with m ≤ z.

For a group G, a modular element of L(G) is called modular in G.
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Definition 2.1. Let L be a finite lattice, 0 its least and I its greatest
element. Then

(a) c ∈ L is called cyclic if [c/0] is distributive,
(b) C(L) is the set of cyclic elements of L,
(c) a ∈ L is modularly embedded in L if [a∪ c/0] is a modular lattice for

all c ∈ C(L), and
(d) 0 = a0 ≤ · · · ≤ an = I is a modular chain in L if ai+1 is modularly

embedded in [I/ai] for all i = 0, . . . , n− 1.

If G is a finite group, then by Ore’s theorem [6, 1.2.4], C(L(G)) consists of
the cyclic subgroups of G. Furthermore, a subgroup A of G is central if and
only if A∪X is abelian for every cyclic subgroup X of G. Since every abelian
group has modular subgroup lattice [6, 2.1.4], it is clear that every central
subgroup of G is modularly embedded in L(G) and every central series of
G is a modular chain in L(G). In addition, every normal subgroup of G
is modular in L(G) ([6, 2.1.3]) and Kontorovich and Plotkin included this
in their definition of a modularly embedded or, as they called it, d-central
element of a lattice. We also consider their original property.

Definition 2.2. The element a of the lattice L is called d-central in L if
a is modular and modularly embedded in L. A chain 0 = a0 ≤ · · · ≤ an = I
in L is called d-central if ai+1 is d-central in [I/ai] for all i = 0, . . . , n− 1.

Clearly, every d-central chain is a modular chain, and it is also rather
obvious that a modular chain need not be d-central (see Example 2.7). For
subgroup lattices of finite groups, however, a deep theorem of Previato’s (see
[5] or [6, Theorem 5.1.13]) implies that every modular chain is d-central.

Proposition 2.3. Let G be a finite group.

(a) Suppose that A ≤ B ≤ G and that A is modular in G. If B is
modularly embedded in [G/A], then B is modular in G.

(b) If 1 = A0 ≤ · · · ≤ An = G is a modular chain in L(G), then every
Ai is modular in G.

(c) Every modular chain in L(G) is d-central.

Proof. (a) Let X ≤ G be cyclic of prime power order. Then L(X) is a
chain and by [6, 2.1.5], [A ∪ X/A] ' [X/A ∩ X] since A is modular in G.
Thus [A∪X/A] is distributive and since B is modularly embedded in [G/A],
it follows that [B ∪X/A] is modular. Hence B is modular in [B ∪X/A] and
by [6, 2.1.6(c)], B is modular in B ∪X. Now Previato’s theorem [6, 5.1.13]
implies that B is modular in G.

(b) follows from (a) by a trivial induction and, clearly, implies (c).

By Proposition 2.3, we only have to study modular chains. We want to
show next that these have the same inheritance properties as central series.
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For this we need the following simple result which generalizes Ore’s theorem
on finite groups with distributive subgroup lattices and also holds for infinite
groups.

Proposition 2.4. If G is a group and H ≤ G is such that [G/H] is a
finite distributive lattice, then there exists x ∈ G such that G = 〈H,x〉.

Proof. Suppose that this is false and let G,H be a counterexample. Then
[G/H] is finite and so we may assume that H is maximal in G such that
the assertion does not hold. Clearly, there exists M ≤ G such that H is
a maximal subgroup of M and hence M = 〈H,x〉 with x ∈ M \ H. Since
[G/M ] is distributive, the maximality of H implies that there exists y ∈ G
such that G = 〈M,y〉 = 〈H,x, y〉. Let K1 = 〈H, y〉 and K2 = 〈H,xy〉. Then
K1 ∪ K2 ≥ 〈H,x, y〉 = G. Since H is a counterexample, Ki < G, there-
fore x 6∈ Ki and so M ∩ Ki = H for i = 1, 2. The distributivity of [G/H]
yields

M = M ∩G = M ∩ (K1 ∪K2) = (M ∩K1) ∪ (M ∩K2) = H,

a contradiction.

To prove the desired inheritance properties, we again have to look at the
situation in Proposition 2.3(a).

Lemma 2.5. Let G be a finite group, let A ≤ B ≤ G and suppose that A
is modular in G and B is modularly embedded in [G/A].

(a) If A ≤ D1 ≤ D2 ≤ B, then D2 is modularly embedded in [G/D1].
(b) If H ≤ G, then B ∩H is modularly embedded in [H/A ∩H].
(c) For M modular in G, B ∪M is modularly embedded in [G/A ∪M ].

Proof. If x ∈ G, then by [6, 2.1.5 and 1.2.4], [A∪ 〈x〉/A] ' [〈x〉/〈x〉 ∩A]
is distributive, and since B is modularly embedded in [G/A], it follows that

(?) [B ∪ 〈x〉/A] is a modular lattice.

(a) LetX ∈ C([G/D1]). By 2.4 there exists x ∈ X such thatX = D1∪〈x〉.
By (?), [B ∪ 〈x〉/A] is modular, and since A ≤ D1 ≤ D2 ∪X ≤ B ∪ 〈x〉, it
follows that [D2 ∪X/D1] is modular.

(b) Let X ∈ C([H/A ∩ H]). By 2.4 there exists x ∈ X such that X =
(A ∩H) ∪ 〈x〉, and again by (?), [B ∪X/A] is modular. By [6, 2.1.5],

[(B ∩H) ∪X/((B ∩H) ∪X) ∩A] ' [(B ∩H) ∪X ∪A/A].

Since A∩H ≤ (B ∩H)∪X ≤ H, we have ((B ∩H)∪X)∩A = A∩H, and
since B∩H, X, A are all contained in B∪X, the lattice [(B∩H)∪X/A∩H]
is isomorphic to an interval in [B ∪X/A] and hence is modular.

(c) Let X ∈ C([G/A ∪M ]). By 2.4 there exists x ∈ X such that X =
(A ∪M) ∪ 〈x〉. By [6, 2.1.6], A ∪M is modular in G. Since (B ∪M) ∪X =
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(B ∪ 〈x〉) ∪ (A ∪M), it follows from [6, 2.1.5] that

[(B ∪M) ∪X/A ∪M ] ' [B ∪ 〈x〉/(B ∪ 〈x〉) ∩ (A ∪M)].

This is an interval in [B ∪ 〈x〉/A] and hence, by (?), it is modular.

Proposition 2.6. Let G be a finite group and let 1 =A0 ≤ · · · ≤ An =G
be a modular chain in L(G).

(a) Every refinement of this chain is a modular chain; in particular, this
holds for every maximal chain in L(G) which contains all the Ai.

(b) If H ≤ G, then 1 = A0 ∩H ≤ · · · ≤ An ∩H = H is a modular chain
in L(H).

(c) If M ≤ G is modular in G, then M = A0 ∪M ≤ · · · ≤ An ∪M = G
is a modular chain in [G/M ].

Proof. By assumption and 2.3, every Ai is modular in G and Ai+1 is
modularly embedded in [G/Ai]. Therefore 2.5 implies that Ai+1 ∩ H and
Ai+1 ∪ M are modularly embedded in [H/Ai ∩ H] and [G/Ai ∪ M ], re-
spectively. Thus (b) and (c) hold. And if 1 = B0 ≤ · · · ≤ Bm = G is a
refinement of the given chain, then for every j ∈ {0, . . . ,m− 1} there exists
i ∈ {0, . . . , n − 1} such that Ai ≤ Bj ≤ Bj+1 ≤ Ai+1. By 2.5(a), Bj+1 is
modularly embedded in [G/Bj ] and so also (a) holds.

In particular, Proposition 2.6 shows that every subgroup and every fac-
tor group of a group with modular chain also has a modular chain. Since
its proof uses Propositions 2.3 and 2.4, it is not surprising that none of the
statements in Proposition 2.6 holds for arbitrary finite lattices. The following
example illustrates this and also that d-central chains do not behave much
better.

Example 2.7. Let L∗ be the lattice whose Hasse diagram is given in
Figure 1 and let L be the interval [I/0] in L∗. By [6, 2.1.5], m is modular

s
s s s

s
@
@
@

�
�
�

�
�
�

@
@
@

s
s s

s s

s

@@

��
�
�
�

A
A
A

�
�
�

�
�
�
�

C
C
C
C
CC

a

I

I∗

b c

m

0

Fig. 1



200 R. SCHMIDT

in L∗, a is modular in L but not in L∗, and b and c are not modular in L
and L∗, respectively. Since C(L∗) = C(L) consists of 0 and the three atoms
of L, it follows that 0 < a < I is a d-central chain in L, and 0 < b < I
and 0 < c < I∗ are modular chains in L and L∗, respectively, which are not
d-central. Furthermore, since a and I are not modularly embedded in [I/m],
the following chains are not modular chains:

(a) the refinement 0 < m < a < I of 0 < a < I in L;
(b) the intersection 0 < m = c ∩ I < I = I∗ ∩ I of 0 < c < I∗ with L;
(c) the union m = m ∪ 0 < a = m ∪ a < I of 0 < a < I with m.

It is a well-known theorem of Baer’s that a group G is hypercentral (and
therefore a finite group is nilpotent) if and only if every nontrivial factor
group of G has a nontrivial centre. Using Definitions 2.1 and 2.2, we can
translate this condition into two lattice properties.

Definition 2.8. Let L be a finite lattice. We say that L ∈ B (re-
spectively, L ∈ B∗) if for every modular element a < I of L there exists
b ∈ L such that a < b and b is modularly embedded (respectively, d-central)
in [I/a].

We want to show that for subgroup lattices of finite groups, our four
lattice-theoretic translations of the existence of a central series and of Baer’s
property all are equivalent. For finite lattices, we have the following.

Lemma 2.9. Let L be a finite lattice and suppose that L ∈ B∗.

(a) If m is modular in L, then [I/m] ∈ B∗.
(b) L has a d-central chain.

Proof. (a) Let a be a modular element of [I/m] such that a < I. Then
by [6, 2.1.6(c)], a is modular in L and since L ∈ B∗, there exists b ∈ L
such that a < b and b is d-central in [I/a]. In particular, b ∈ [I/m] and so
[I/m] ∈ B∗.

(b) We use induction on |L| and may assume that |L| ≥ 2. Since L ∈ B∗,
there exists a1 ∈ L such that 0 < a1 and a1 is d-central in [I/0] = L. In
particular, a1 is modular in L, hence [I/a1] ∈ B∗ by (a), and the induction
hypothesis implies that [I/a1] has a d-central chain a1 ≤ · · · ≤ an = I. Then
0 ≤ a1 ≤ · · · ≤ an is a d-central chain in L.

Theorem 2.10. The following properties of the finite group G are equiv-
alent:

(a) L(G) has a modular chain.
(b) L(G) has a d-central chain.
(c) L(G) ∈ B.
(d) L(G) ∈ B∗.
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Proof. By 2.3(c), properties (a) and (b) are equivalent, by 2.3(a) so are
(c) and (d), and by Lemma 2.9, (d) implies (b); hence it suffices to show that
(a) implies (c). So suppose that 1 = A0 ≤ · · · ≤ An = G is a modular chain
in L(G) and that A is a proper modular subgroup of G. Then by 2.6(c),
A = A∪A0 ≤ · · · ≤ A∪An = G is a modular chain in [G/A]. Since A < G,
there exists i ∈ {0, . . . , n−1} such that A = A∪Ai and A < A∪Ai+1 =: B.
Then B is modularly embedded in [G/A ∪ Ai] = [G/A] and it follows that
L(G) ∈ B.

By Lemma 2.9, every lattice in B∗ has a d-central chain and, by defini-
tion, lies in B; likewise, every lattice with a d-central chain has a modular
chain. But these are the only implications between the four properties in
Theorem 2.10 which hold for arbitrary finite lattices. For, the lattice L∗

in Example 2.7 has a modular chain but no d-central chain, and its sub-
lattice L = [I/0] has a d-central chain; both lattices do not belong to B
since neither [I/m] nor [I∗/m] has a nontrivial modularly embedded ele-
ment.

And the lattice L whose Hasse diagram is given in Figure 2 lies in B and
has none of the other three properties. For, since c ∈ C(L) and c∪ x = I for
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every x ∈ L \ {0, b, c}, it is clear that b is the unique nontrivial modularly
embedded element in L and that [I/b] has no such element; therefore L has
no modular chain. Since [6, 2.1.5] shows that 0, a, I are the only modular
elements in L, it follows that L ∈ B and L 6∈ B∗. Thus L has the desired
properties.

We come to the proof of Theorem A.

Theorem 2.11. If G is a finite group and L(G) has a modular chain,
then L(G) is lower semimodular.



202 R. SCHMIDT

Proof. We use induction on |G|, may assume that G 6= 1, and first note
that it suffices to prove the following:

(?) There exists N �G such that |N | ∈ P and |G/CG(N)| ∈ P ∪ {1}.

For, then 2.6(c) implies that L(G/N) has a modular chain and therefore is
lower semimodular by the induction assumption. By Ito’s theorem [6, 5.3.11],
G/N is supersoluble and G induces automorphism groups of at most prime
order in the chief factors above N . By (?), this also holds for the chief
factor N , and G is supersoluble. Again by Ito’s theorem, L(G) is lower
semimodular.

To prove (?), we consider a minimal subgroup A in the first nontrivial
term of a modular chain in L(G). Clearly, A is modularly embedded in L(G)
and by 2.3(a), A is modular in G.

Suppose first that A�G. If A ≤ Z(G), then (?) holds; so let A 6≤ Z(G).
By definition, |A| = p is a prime and hence G/CG(A) is cyclic; let x ∈ G
be such that G = CG(A)〈x〉. Since A is modularly embedded in L(G), A〈x〉
has modular subgroup lattice. Since 〈x〉/C〈x〉(A) operates faithfully on A,
Iwasawa’s theorem [6, 2.4.4] implies that A〈x〉/C〈x〉(A) is nonabelian of order
pq for some prime q. Thus |G/CG(A)| = q and (?) holds with N = A.

Now suppose that A is not normal in G. If A is permutable in G,
then by [6, 5.2.9], Z(G) 6= 1 and (?) holds. And if A is not permutable
in G, then by [6, 5.1.9], G = AG × K with nonabelian P -group AG and
(|AG|, |K|) = 1. Then every normal subgroup N of prime order in AG sat-
isfies |G/CG(N)| = |A| ∈ P and (?) holds.

None of the lattices displayed in Figures 1 and 2 is lower semimodular;
they even do not satisfy the Jordan–Dedekind chain condition. However, B∗

is the strongest of the properties we have considered. Therefore we finally
show that also B∗ does not imply lower semimodularity.

Example 2.12. Let p ∈ P and 4 ≤ k ∈ N, suppose that H is an elemen-
tary abelian group of order pk (of course, p = 2 and k = 4 suffice to get the
desired example) and let A1, . . . , An be the maximal subgroups of H. The
lattice L is obtained from L(H) by adjoining elements B0, B1, . . . , Bn and I
such that I is the greatest element and the trivial subgroup of H is the least
element 0 of L; H and all the Bi are pairwise different antiatoms of L; Ai is
the unique antiatom in [Bi/0] for i = 1, . . . , n; and A1 ∩ A2 is the unique
antiatom in [B0/0].

Since k ≥ 4, A1∩A2 is not cyclic and hence C(L) consists of the subgroups
of order at most p of H. Therefore H is modularly embedded in L. In
addition, [6, 2.1.5] shows that H is modular in L and we claim that 0, H, I
are the only modular elements of L.
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For, if i 6= j and j ≥ 1, then [Bi ∪ Bj/Bi] is a chain of length 1 and
[Bj/Bi ∩Bj ] has length at least 2; therefore Bi is not modular in L. And if
0 < A < H, there exist i, j ∈ {1, . . . , n} such that A ≤ Ai ≤ Bi and A 6≤ Bj .
Then Aj is the unique antiatom in [Bj/A∩Bj ] whereas [A∪Bj/A] = [I/A]
contains the antiatoms H and Bi. Thus A is not modular in L.

Since H is d-central in L, it follows that L ∈ B∗. But, clearly, L does not
satisfy the Jordan–Dedekind chain condition; in particular, L is not lower
semimodular. If we omit B0 in our example, we still obtain a lattice in B∗

which is not lower semimodular (but satisfies the Jordan–Dedekind chain
condition); this also works for k = 3.

3. Proof of Theorem B. By Theorem A and Ito’s theorem, every finite
group with modular chain is supersoluble and hence has a Sylow tower. To
determine the structure of these groups, we therefore have to consider finite
groups with a normal Sylow subgroup.

Lemma 3.1. Let p and q be different primes and suppose that G = PQ
where P is a normal p-subgroup, |Q| = q and 1 < CP (Q) < P . If A
is a minimal subgroup of G which is modularly embedded in L(G), then
A ≤ CP (Q).

Proof. Suppose that A 6≤ CP (Q) and let N ≤ CP (Q) be such that
|N | = p. Then X = NQ is cyclic of order pq. Since A is modularly embedded
in L(G), A∪Xg has modular subgroup lattice for every g ∈ G and therefore
is nilpotent by Iwasawa’s theorem [6, 2.4.4] because it contains an element
of order pq. In particular, A ∪ X is nilpotent and since A 6≤ CP (Q), it
follows that |A| = q. So A = Q is the Sylow q-subgroup of A∪X. But since
CP (Q) < P , there exists g ∈ G \ NG(Q) and the nilpotent group A ∪ Xg

has two different Sylow q-subgroups Q and Qg, a contradiction.

Lemma 3.2. Let G = PK where P is a normal Sylow p-subgroup of G
and P ∩K = 1. If L(G) has a modular chain, then

(a) |K : CK(P )| = q ∈ P ∪ {1} where q | p− 1, and
(b) CP (K) �G.

Proof. (a) By Theorem A, L(G) is lower semimodular and therefore by
Ito’s theorem, G is supersoluble.

We show first that |K : CK(P )| ∈ P ∪ {1}. Let G be a minimal coun-
terexample to this assertion and let H be a maximal subgroup of K. Since
G is supersoluble, |K : H| = r ∈ P. By 2.6, L(PH) has a modular chain and
the minimality of G yields |H : CH(P )| ∈ P ∪ {1}; since G is a counterex-
ample, H > CH(P ), so |H : CH(P )| = s ∈ P and CH(P ) = CK(P ) =: N .
Clearly, N �G and by 2.6, L(G/N) has a modular chain. So if N 6= 1, the
minimality of G would imply that for F/N = CK/N (PN/N) we would have
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|K : F | ∈ P ∪ {1} and [P, F ] ≤ P ∩ N = 1. But G is a counterexample,
a contradiction. So N = 1, that is, we have shown that

(1) |K| = rs where r, s ∈ P and CK(P ) = 1.

Now suppose, for a contradiction, that there exists a minimal subgroup
of G which is modularly embedded in L(G) but not contained in P . Then
by Sylow’s theorem there exists such a subgroup A with A < K. By 2.3, A
is modular in G. If A were permutable in G, then A�PA, as a permutable
Sylow subgroup of this group; therefore PA = P × A, but this would con-
tradict (1). Thus A is not permutable in G and so by [6, 5.1.9], G = AG×W
with a nonabelian P -group AG and (|AG|, |W |) = 1. By (1), P 6≤W , hence
P ≤ AG and then AG = PA; but G = PA×W contradicts (1). Thus

(2) P contains every modularly embedded atom of L(G).

By assumption, L(G) has a modular chain and hence by 2.1 (or 2.6(a))
there exists a modularly embedded atom A of L(G). By (2), A ≤ P and
since A is modular in G (by 2.3), it follows that

A = A ∪ (K ∩ P ) = (A ∪K) ∩ P �A ∪K.

If K is not cyclic, then CK(A) 6= 1 since AutA is cyclic. If K is cyclic,
then AK has modular subgroup lattice since A is modularly embedded in
L(G); by Iwasawa’s theorem, CK(A) 6= 1. Hence in both cases there exists
Q ≤ CK(A) such that |Q| = q ∈ P. By (1), 1 < A ≤ CP (Q) < P . Therefore
if B is any modularly embedded atom of L(G), then by (2), B ≤ P and
hence B is modularly embedded in L(PQ); by 3.1, B ≤ CP (Q). So if M is
the group generated by all modularly embedded atoms of L(G), we have

(3) M �G and 1 < M ≤ CP (Q) < P .

By 2.6, L(G/M) has a modular chain and the minimality of G and (1)
imply that TM/M ≤ CKM/M (P/M) for some minimal subgroup T of K.
Thus [P, T ] ≤ M and since P = [P, T ]CP (T ) (see [4, 8.2.7]) and M < P ,
it follows that CP (T ) 6= 1. By (1), T 6≤ CG(P ) and hence 1 < CP (T ) < P .
Again by (2) and 3.1 applied to PT , every modularly embedded atom of
L(G) is contained in CP (T ); hence M ≤ CP (T ). So T centralizes P/M
and M and therefore by [4, 8.2.2], T centralizes P . This contradicts (1) and
we have shown that |K : CK(P )| = q ∈ P ∪ {1}.

Finally, suppose that |K : CK(P )| = q ∈ P. Then by [4, 8.2.2] there
exists a chief factor U/V of G contained in P which is not centralized by K.
Since G is supersoluble, |U/V | = p and hence q | p− 1. This proves (a).

(b) Again let G be a minimal counterexample and let N = CK(P ). Then
N �G and if N 6= 1, the minimality of G would imply that CP (K)N/N =
CPN/N (K/N)�G/N and hence CP (K) = P ∩CP (K)N�G. This contradic-
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tion shows thatN = 1. SinceCP (K) is not normal, 1<CP (K)<P and by (a),
|K| = q ∈ P. Again let M be the group generated by all modularly embed-
ded atoms of L(G). Since L(G) has a modular chain, M 6= 1 and by 3.1,
M ≤ CP (K). The minimality of G implies that CP/M (KM/M) � G/M .
By [4, 8.2.2], CP/M (KM/M) = CP/M (K) = CP (K)M/M = CP (K)/M and
hence CP (K) �G, a final contradiction. This proves Lemma 3.2.

Conversely, we show the following.

Lemma 3.3. Let p, q ∈ P be such that q | p− 1 and let G = PK where P
is a normal Sylow p-subgroup of G and P ∩K = 1; suppose that CP (K)�G
and |K : CK(P )| = q. If A/B is a chief factor of G such that CP (K) ≤ B
and A ≤ P , then |A/B| = p and A is modularly embedded in [G/B].

Proof. Clearly, A/B is an elementary abelian p-group which is central-
ized by P . Therefore the cyclic group K/CK(P ) of order q operates irre-
ducibly on A/B and since q | p− 1, it follows [1, p. 166] that |A/B| = p.

Let X ∈ C([G/B]). Then X/B is cyclic and hence there exists x ∈ G
such that X = B〈x〉. If x centralizes A/B, then AX/B is abelian and hence
[A ∪X/B] is modular, which we want to show. So suppose that x does not
centralize A/B and write x = x1x2 where xi ∈ 〈x〉, x1 is a p-element and
x2 is a p′-element. Then x1 ∈ P centralizes A/B and therefore x2 does not.
Since |G/CK(P )| = |P |q, it follows that |〈x2〉 : 〈x2〉∩CK(P )| = q; by Sylow’s
theorem there exists g ∈ G such that x2 ∈ Kg and hence Kg = 〈x2〉CK(P ).
Then x1 ∈ CP (x2) = CP (Kg) = CP (K)g ≤ B and therefore X = B〈x2〉. If
we write x2 = yz where y, z ∈ 〈x2〉, y is a q-element and z is a q′-element,
then z ∈ CK(P ) centralizes A〈y〉 and hence AX/B = A〈y〉/B × 〈z〉B/B.
Now A〈y〉/B is a P ∗-group [6, p. 69] since y induces an automorphism of
order q in A/B; by Iwasawa’s theorem, L(AX/B) is modular. Thus A is
modularly embedded in [G/B].

We can now prove Theorem B. We state it in a slightly different version
which might sometimes be easier to use.

Theorem 3.4. Let G be a finite group. Then L(G) has a modular chain
if and only if G has a Sylow system {S1, . . . , Sn} with Sylow pi-subgroups Si
such that for every i ∈ {1, . . . , n− 1}, Si � Ti := Si . . . Sn and either

(a) Ti = Si × Ti+1, or
(b) |Ti+1 : CTi+1(Si)| is a prime dividing pi − 1 and CSi(Ti+1) � Si.

Proof. If G is a p-group, then L(G) has a modular chain and the theorem
holds trivially. So assume that |G| is divisible by at least two primes.

If L(G) has a modular chain, then by Theorem A and Ito’s theorem,
G is supersoluble. Let p1 > · · · > pn be the primes dividing |G| and let
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{S1, . . . , Sn} be a Sylow system of G with Si ∈ Sylpi(G) for all i [1, p. 665].
Then for every i ∈ {1, . . . , n− 1}, Ti := Si . . . Sn is a supersoluble subgroup
of G and hence Si � Ti [1, p. 716]. By 2.6, L(Ti) has a modular chain and
therefore (a) and (b) follow from Lemma 3.2.

To prove the converse, we use induction on |G|. By assumption, we have
S1 � T1 = G and either G = S1 × T2 or (b) holds for i = 1. In both cases,
CS1(T2) � S1T2 = G. So if 1 = A0 ≤ · · · ≤ Ar = S1 is part of a chief series
of G through CS1(T2) and S1, then Ai is modularly embedded in [G/Ai−1]
for all i = 1, . . . , r: this follows from Lemma 3.3 for Ai > CS1(T2) and is
trivial for Ai ≤ CS1(T2) since those chief factors Ai/Ai−1 are central in G.
The induction assumption implies that L(T2) has a modular chain. If we
combine the chain A0 ≤ · · · ≤ Ar and the image of a modular chain in
L(T2) under the natural isomorphism from L(T2) onto [G/S1], we obtain a
modular chain in L(G).

Proof of Theorem B. It is easy to see that Theorem B follows from Theo-
rem 3.4 (and conversely) since the conditions given in these theorems are
equivalent. For, if {S1, . . . , Sn} is a Sylow system with the properties stated
in Theorem 3.4, then for every i ∈ {1, . . . , n}, Pi := S1 . . . Si is normal in G
and 1 = P0 < · · · < Pn = G is a Sylow tower with Pi/Pi−1 ' Si and
G/Pi−1 ' Ti. The natural isomorphism from Ti onto G/Pi−1 maps Ti+1

onto a complement Ki/Pi−1 to Pi/Pi−1 for which (a) and (b) of Theorem B
are satisfied. Since all these complements are conjugate, (a) and (b) hold in
general.

Conversely, if 1 = P0 < · · · < Pn = G is a Sylow tower in G with the
properties given in Theorem B, then G is soluble and therefore has a Sylow
system {S1, . . . , Sn} with Si ∈ Sylpi(G) for i = 1, . . . , n. If Ti := Si . . . Sn,
then again G/Pi−1 ' Ti and (a) and (b) of Theorem B imply (a) and (b) of
Theorem 3.4 for the complement Ti+1 to Si in Ti.

As already mentioned in the introduction, Theorem B (or Lemma 3.2)
implies that if G is an LM -group, then L(G) in general does not have a
modular chain. For example, by Ito’s theorem, the direct product of two
LM -groups is an LM -group [6, 5.3.12], but for p, q ∈ P with q | p− 1, a di-
rect product G of two (or more) nonabelian groups of order pq does not
satisfy (a) of Lemma 3.2 and therefore L(G) has no modular chain. And the
semidirect product G of a cyclic group of order p2 with a faithfully operating
cyclic group of order pq is an LM -group which satisfies (a) but not (b) of
Lemma 3.2; therefore again L(G) has no modular chain.

On the other hand, every semidirect product G = P o Q of an abelian
p-group P with an arbitrary q-group Q inducing an automorphism of or-
der q in P satisfies (b) of Theorem 3.4 (if q | p− 1) and therefore L(G) has
a modular chain; but G ∈ N∗ only if G is a P -group [6, p. 54]. This is
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somewhat disappointing but it is easy to see that it is impossible to ob-
tain a lattice-theoretic characterization of N∗ as the class of groups whose
subgroup lattices have a, let us call it, “L-central chain” even if one uses a
better lattice-theoretic approximation of “central subgroup” than “modu-
larly embedded element” in the definition of an L-central chain; at least not
if one requires that every minimal subgroup of Z(G) has this lattice-theoretic
property in L(G).

Remark 3.5. Suppose that “L-central” is a lattice-theoretic property
such that for every atom A of the subgroup lattice of a finite group G, the
following holds:

(?) If A ≤ Z(G), then A is L-central in L(G).

Define an L-central chain in a lattice L by replacing “modularly embedded”
in 2.1(d) by “L-central”. Then if p, q, r are pairwise different primes such
that r | q − 1 and qr | p− 1, the subgroup lattices of the following groups G
have L-central chains:

(a) G = A×(BoQ) where A is an abelian and B an elementary abelian
p-group and Q is a q-group inducing a power automorphism of order
q in B. Here G ∈ N∗ if and only if A = 1 and |Q| = q.

(b) G = A×(BoH) where A and B are as in (a) and H is a nonabelian
P -group of order qkr (k ∈ N) inducing a power automorphism of
order r in B. Here G 6∈ N∗.

Proof. (a) Let N = A×CQ(B). Then N �G and the chief factors of G
below N are central since Q is a q-group. Therefore if 1 = A0 ≤ · · · ≤ An =
N is part of a chief series of G, then by (?), Ai is L-central in [G/Ai−1]
for all i = 1, . . . , n. By [6, §2.2], G/N is a P -group of order pmq for some
m ∈ N and hence is lattice-isomorphic to an elementary abelian group T
of order pm+1. Again by (?), L(T ) and hence also [G/N ] has an L-central
chain N = An < · · · < An+m+1 = G. Then 1 = A0 ≤ · · · ≤ An+m+1 = G is
an L-central chain in L(G). Since G is a {p, q}-group which is not nilpotent,
G ∈ N∗ if and only if G is a P -group; thus (a) holds.

(b) follows from (a) since by [6, Theorem 4.1.6], G = A × (B o H) is
lattice-isomorphic to Ḡ = A × (B oK) where K is an elementary abelian
group of order qk+1 inducing a power automorphism of order q in B. Indeed,
if H = QR with |Q| = qk and |R| = r, the identity σ on N = A × B and
any projectivity τ from H to K with Qτ = CK(B) trivially satisfy condi-
tions (1) and (2) of that theorem. By (a), Ḡ has an L-central chain and
hence also G does. Finally, G 6∈ N∗ since R operates nontrivially on B and
on Q.
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