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ADMISSIBILITY FOR QUASIREGULAR REPRESENTATIONS OF
EXPONENTIAL SOLVABLE LIE GROUPS

BY

VIGNON OUSSA (Bridgewater, MA)

Abstract. Let N be a simply connected, connected non-commutative nilpotent Lie
group with Lie algebra n of dimension n. Let H be a subgroup of the automorphism group
of N. Assume that H is a commutative, simply connected, connected Lie group with Lie
algebra h. Furthermore, assume that the linear adjoint action of h on n is diagonalizable
with non-purely imaginary eigenvalues. Let τ = IndNoH

H 1. We obtain an explicit direct
integral decomposition for τ , including a description of the spectrum as a submanifold
of (n + h)∗, and a formula for the multiplicity function of the unitary irreducible repre-
sentations occurring in the direct integral. Finally, we completely settle the admissibility
question for τ . In fact, we show that if G = N oH is unimodular, then τ is never admis-
sible, and if G is non-unimodular, then τ is admissible if and only if the intersection of
H and the center of G is equal to the identity of the group. The motivation of this work
is to contribute to the general theory of admissibility, and also to shed some light on the
existence of continuous wavelets on non-commutative connected nilpotent Lie groups.

1. Introduction. Let π be a unitary representation of a locally compact
group X, acting in some Hilbert space H. We say that π is admissible if
there exists some function φ ∈ H such that the operator Wφ defines an
isometry on H, and Wφ : H → L2(X), Wφψ(x) = 〈ψ, π(x)φ〉. For continuous
wavelets on the real line, the admissibility of the quasiregular representation

Ind
Ro(0,∞)
(0,∞) 1 of the ‘ax + b’ group which is a unitary representation acting

in L2(R) leads to the well-known Calderón condition.

Given any locally compact group, a great deal is already known about
the admissibility of its left regular representation [10]. For example, it is
known that the left regular representation of the ‘ax+b’ group is admissible.
The left regular representation of Ro (0,∞) admits a decomposition into a
direct sum of two unitary irreducible representations acting in L2((0,∞)),
each with infinite multiplicities. Thus, the Plancherel measure of this affine
group is supported on two points. It is also known that the quasiregular

representation Ind
Ro(0,∞)
(0,∞) 1 is unitarily equivalent to a subrepresentation of

the left regular representation, and thus is admissible.
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Several authors have studied the admissibility of various representations;
see [1], and also [13], where Guido Weiss and his collaborators obtained an
almost complete characterization of groups of the type H ≤ GL(n,R) for
which the quasiregular representation τ = IndRnoH

H 1 is admissible. It is
known that if τ is admissible then the stabilizer subgroup of the action
of H on characters belonging to the unitary dual of Rn must be compact
almost everywhere. However, this condition is not sufficient to guarantee
the admissibility of τ . In [11], a complete characterization of dilation groups
H ≤ GL(n,R) is given. On non-commutative nilpotent domains, Liu and
Peng answered the question for τ = IndNoH

H 1, where N is the Heisenberg
group, and H is a 1-parameter dilation group. They have also constructed
some explicit continuous wavelets on the Heisenberg group (see [16]).

In 2007, Currey considered τ = IndNoH
H 1, where N is a connected,

simply connected non-commutative nilpotent Lie group, and H is a com-
mutative, connected, simply connected Lie group such that G = N oH is
completely solvable and R-split. He settled the admissibility question for τ
under the restriction that the stabilizer subgroup inside H is trivial, and
he also gave an explicit construction of some continuous wavelets (see [7]).
However, he did not address the case where the stabilizer of the action of H
on the unitary dual of N is non-trivial, leaving this problem open. In 2011,
we provided some answers for the admissibility of monomial representations
for completely solvable exponential Lie groups [8]. We now know that when
N is not commutative, the stabilizer of the action of H on the dual of N
does not have to be compact in order for τ to be admissible. Also, we were
recently informed that new results on the subject of admissibility were ob-
tained by Cordero and Tabacco [3], and Filippo De Mari and Ernesto De
Vito [9] for a different class of groups.

The purpose of this paper is to extend the results of Currey [5]. Firstly,
we make no assumption that the little group inside H is trivial. Secondly,
the class of groups considered in this paper is larger than the class consid-
ered by Currey. This class of groups also contains exponential solvable Lie
groups which are not completely solvable. We consider the situation where
the action of h on n has roots of the type α + iβ, with α 6= 0. Let us be
more precise. Let N be a simply connected, connected non-commutative
nilpotent Lie group with real Lie algebra n. Let H be a subgroup of the
automorphism group of N , which we denote by Aut(N). Assume that H is
isomorphic to Rr with Lie algebra h. Furthermore, assume that the linear
adjoint action of h on n is diagonalizable with non-purely imaginary com-
plex eigenvalues. We form the semidirect product Lie group G = N o H
such that G is an exponential solvable Lie group with Lie algebra g. More
precisely, there exist basis elements such that h = RA1 ⊕ · · · ⊕ RAr, and
basis elements Zi for the complexification of n such that Zi are eigen-
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vectors for the linear operator adAk, k = 1, . . . , r. Furthermore, we have
adAkZj = [Ak, Zj ] = γj(Ak)Zj with weight γj(Ak) = λ(Ak)(1 + iαj),
λ ∈ h∗, a real-valued linear functional, and αj ∈ R. We observe that G is
an exponential solvable Lie group, and is therefore type I. We define the
action of H on N multiplicatively, and the multiplication law for G is ob-
tained as follows: (n, h)(n′, h′) = (nh · n′, hh′). The Haar measure of G is
|det Ad(h)|−1dndh, where dn, dh are the canonical Haar measures on N,H
respectively. We will denote by L the left regular representation of G acting
in L2(G). We consider the quasiregular representation τ = IndGH 1 acting in
L2(N) as follows:

τ(n, 1)f(m) = f(n−1m), τ(1, h)f(m) = |det(Adh)|−1/2f(h−1m).

In this paper, mainly motivated by the admissibility question for τ , we
aim to obtain an explicit decomposition of τ , including a precise description
of its spectrum, an explicit formula for the multiplicity function, the measure
occurring in the decomposition of τ , and finally, we completely settle the
admissibility question for τ. Here is the main result of our paper.

Theorem 1. Let N be a simply connected, connected non-commutative
nilpotent Lie group with Lie algebra n of dimension n. Let H be a subgroup
of the automorphism group of N . Assume that H is a commutative simply
connected, connected Lie group with Lie algebra h. Furthermore, assume
that the linear adjoint action of h on n is diagonalizable with non-purely
imaginary eigenvalues such that NoH is an exponential solvable Lie group.
Let τ = IndNoH

H 1.

(1) Assume that dim(H ∩ Z(G)) = 0. Then τ is admissible if and only
if N oH is non-unimodular.

(2) Assume that dim(H ∩ Z(G)) 6= 0. Then τ is never admissible.

2. Preliminaries. We recall that the coadjoint action of G on g∗ is
simply the dual of the adjoint action, and is also defined multiplicatively as
g · l(X) = l(Adg−1 X), g ∈ G, X ∈ g∗. In this paper, the group G always
stands for N oH as described earlier.

Definition 2. Given two representations π, θ of G acting on the Hilbert
spaces Hπ,Hθ respectively, if there exists a bounded linear operator T :
Hπ → Hθ such that θ(x)T = Tπ(x) for all x ∈ G, we say T intertwines
π with θ. If T is a unitary operator, then we say the representations are
unitarily equivalent, we write π ' θ, and [π] = [θ].

Lemma 3. Let L be the left regular representation of G acting in L2(G).
Then L is admissible if and only if G is non-unimodular.
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Lemma 3 was proved in more general terms by Hartmut Führ in Theorem
4.23 of [10]. In fact, the general statement of his proof only assumes that G
is type I and connected.

Lemma 4. If G is non-unimodular, then τ is admissible if and only if τ
is equivalent to a subrepresentation of L.

Lemma 5. Let π, ρ be two type I unitary representations of G with direct

integral decompositions π '
	⊕
Ĝ
σ ⊗ 1Cmπ dµ(σ) and ρ '

	⊕
Ĝ
σ ⊗ 1Cm

′
ρ
dµ′σ.

Then π is equivalent to a subrepresentation of ρ if and only if µ is absolutely
continuous with µ′ and mπ ≤ m′ρ µ-a.e.

A clear explanation of Lemmas 4 and 5 is given on page 126 of the
monograph [10]. The following theorem is due to Lipsman, and the proof is
in Theorem 7.1 of [14].

Lemma 6. Let G = N o H be a semidirect product of locally compact
groups, N normal and type I. Let γ ∈ N̂ , Hγ the stability group. Let γ̃ be

any extension of γ to Hγ . Suppose that N is unimodular, N̂/H is countably

separated and γ̃ is a type I representation for µN -almost every γ ∈ N̂ . Let

γ̃ '
�⊕

Ĥγ

nγ(σ)σ dµγ(σ)

be the unique direct integral decomposition of γ̃. Then

IndGH 1 '
�⊕

N̂/H

�⊕

Ĥγ

πγ,σ ⊗ 1Cnγ (σ) dµγ(σ) dµ̇N (γ),

where µ̇N is the push-forward of the Plancherel measure on µN on N̂ .

It is now clear that in order to settle the admissibility question, it is
natural to compare both representations. As G is a type I group, there
exist unique direct integral decompositions for both L and τ. Since both
representations use the same family of unitary irreducible representations in
their direct integral decomposition, in order to compare the representations,
it is important to obtain the direct integral decompositions for both L and τ ,
and to check for the containment of τ inside L. In order to have a complete
picture of the results in Lemma 6, we will need the following:

1. A precise description of the spectrum of the quasiregular representa-
tion.

2. The multiplicity function of the irreducible representations occurring
in the decomposition of the quasiregular representation.

3. A description of the push-forward of the Plancherel measure of N .

Our approach here will rely on the orbit method, and we will construct
a smooth orbital cross-section to parametrize the dual of the group G.
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3. Orbital parameters. In this section, we will introduce the reader
to the theory developed by Currey, Arnal, and Dali [2] for the construction
of cross-sections for coadjoint orbits in g∗, where g is any n-dimensional
real exponential solvable Lie algebra with Lie group G. First, we consider a
complexification of the Lie algebra g, which we denote here by c = gC. Let
us be more precise. We begin by fixing an ordered basis {Z1, . . . , Zn} for the
Lie algebra c, where Zi = ReZi + i ImZi with ReZi and ImZi belonging
to g, such that the following conditions are satisfied:

1. For each k ∈ {1, . . . , n}, ck = C- span{Z1, . . . , Zk} is an ideal.
2. If cj 6= cj then cj+1 = cj+1 and Zj+1 = Zj .
3. If cj = cj and cj−1 = cj−1 then Zj ∈ g.
4. For any A ∈ logH, [A,Zj ] = γj(A)Zj mod cj−1 with weight

γj(Ak) = λ(Ak)(1 + iαj),

where λ ∈ h∗ is a real-valued linear functional and αj ∈ R.
Such a basis is called an adaptable basis. We recall the procedure de-

scribed in [2]. For any l ∈ g∗, we define, for any subset s of c, sl = {Z ∈ c :
l([s,Z]) = 0} and s(l) = sl ∩ s. Also, we set

i1(l) = min{j : cj 6⊂ c(l)},
h1(l) = cli1 = (Zi1)l,

j1(l) = min{j : cj 6⊂ h1(l)}.
By induction, for any k ∈ {1, . . . , n}, we define

ik(l) = min{j : cj ∩ hk−1(l) 6⊂ hk−1(l)
l},(3.1)

hk(l) = (hk−1(l) ∩ cik)l ∩ hk−1(l),(3.2)

jk(l) = min{j : cj ∩ hk−1(l) 6⊂ hk(l)}.(3.3)

Finally, we put e(l) = i(l) ∪ j(l), where i(l) = {ik(l) : 1 ≤ k ≤ d} and
j(l) = {jk(l) : 1 ≤ k ≤ d}. An interesting well-known fact is that card(e(l))
is always even. Also, observe the sequence {ik : 1 ≤ k ≤ d} is increasing,
and ik < jk for 1 ≤ k ≤ d.

Following Definition 2 of [2], let P be a partition of the linear dual of
the Lie algebra g.

Definition 7. We say P is an orbital stratification of g∗ if the following
conditions are satisfied:

(1) Each element Ω in P is G-invariant.
(2) For each Ω in P, the coadjoint orbits in Ω have the same dimension.
(3) There is a linear ordering on P such that for each Ω ∈ P,⋃

{Ω′ : Ω′ ≤ Ω}

is a Zariski open subset of g∗.
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The elements Ω belonging to a stratification are called layers of the dual
space g∗.

Definition 8. Given any subset of e of {1, . . . , n}, we define the set

Ωe = {l ∈ g∗ : e(l) = e},

which is G-invariant. The collection of non-empty Ωe forms a partition
of g∗. Such a partition is called a coarse stratification of g∗. Given e(l) =
{i1, . . . , id} ∪ {j1, . . . , jd}, we define

Ωe, j = {l ∈ g∗ : e(l) = e and j(l) = j}.

The collection of non-empty Ωe, j forms a partition of g∗ called the fine
stratification of g∗, and the elements Ωe, j are called fine layers.

We keep the notations used in [2].

1. We fix an adaptable basis, an open dense layer Ωe, j. We let c0 = {0},
and we define

(3.4)

I = {0 ≤ j ≤ n+ r : cj = cj},
j′ = max({0, 1, . . . , j − 1} ∩ I)

j′′ = min({j, j + 1, . . . , n+ r} ∩ I),

K0 = {1 ≤ k ≤ d : i′′k − i′k = 1},
K1 = {1 ≤ k ≤ d : ik /∈ I and ik + 1 /∈ e},
K2 = {1 ≤ k ≤ d : ik − 1 ∈ j \ I},
K3 = {1 ≤ k ≤ d : ik /∈ I and ik + 1 ∈ j},
K4 = {1 ≤ k ≤ d : ik /∈ I and ik + 1 ∈ i},
K5 = {1 ≤ k ≤ d : ik − 1 ∈ i \ I}.

We remark here that

i =
5⋃
j=0

{ik : k ∈ Kj}.

2. We gather some data corresponding to the fixed fine layer Ωe,j. For
each j ∈ e, we define recursively the rational function Zj : Ω → cj′′ such
that, for k ∈ {1, . . . , d},

(3.5)

V1(l) = Zi1(l), U1(l) = Zj1(l),

Vk(l) = ρk−1(Zik(l), l), Uk(l) = ρk−1(Zjk(l), l),

Zik(l) = β1,k(l) ReZik + β2,k(l) ImZik ,

Zjk(l) = α1,k(l) ReZjk + α2,k(l) ImZjk ,

α1,k = l[ReZjk , Vk(l)], α2,k = l[ImZjk , Vk(l)].



ADMISSIBILITY FOR QUASIREGULAR REPRESENTATIONS 247

Furthermore,

ρk(Z, l) = ρk−1(Z, l)−
l[ρk−1(Z, l), Uk(l)]

l[Vk(l), Uk(l)]
Vk(l)−

l[ρk−1(Z, l), Vk(l)]

l[Uk(l), Vk(l)]
Uk(l)

and ρ0(·, l) is the identity map.

(a) If k ∈ K0 then β1,k(l) = 1 and β2,k(l) = 0.
(b) If k ∈ K1 then

β1,k(l) = l([ρk−1(Zjk , l),ReZik ]), β2,k(l) = l([ρk−1(Zjk , l), ImZik ]).

(c) If k ∈ K2 then ik − 1 = jk, β1,k(l) = −α2,k(l) and β2,k(l) = −α1,k(l).
(d) If k ∈ K3 then β1,k(l) = 0 and β2,k(l) = 1.
(e) If k ∈ K4 (K5 is covered here too) and if Zjk+1

= Zjk , then β1,k(l)
= 1, β2,k(l) = 0, and

Zik+1(l) = − l[Uk(l), ImZik ]

l[Uk(l),ReZik ]
ReZik+1 − ImZik+1.

3. Let Cj = ker γj∩g and aj(l) = (glj′∩Cj)/(glj′′∩Cj). We define ϕ(l) ⊂ i
by setting ϕ(l) = {j ∈ e : aj(l) = {0}}, and we put

bj(l) =
γj(Uk(l))

l[Zj , Uk(l)]
.

The collection of sets Ωe, j,ϕ = {l ∈ Ωe, j : ϕ(l) = ϕ} forms a partition of g∗,
refining the fine stratification, which we call the ultrafine stratification of g∗.

4. Letting Ωe, j,ϕ be a layer obtained by refining the fixed fine layer Ωe, j,
and gathering the data

Zj(l), e, ϕ(l),bj(l),

the cross-section for the coadjoint orbits of Ω is given by the set

(3.6) Σ = {l ∈ Ω : l(Zj(l)) = 0, j ∈ e \ ϕ and |bj(l)| = 1, j ∈ ϕ}.
Let us now offer some concrete examples.

Example 9. Let g be a Lie algebra spanned by {Z, Y,X,A} with the
following non-trivial Lie brackets:

[X,Y ] = Z, [A,X + iY ] = (1 + i)(X + iY ), [A,Z] = 2Z.

An adaptable basis is {Z,X + iY,X − iY,A} and an arbitrary linear func-
tional is written as l = (z, x + iy, x − iy, a). Here I = {0, 1, 3, 4}, 1′ = 0,
2′ = 1, 3′ = 1, 4′ = 3, 4′′ = 1, 2′′ = 3, 3′′ = 3, and 4′′ = 4. Put e = {1, 2, 3, 4},
and j = {3, 4}. Next, it is easy to see that 1 ∈ K0 and 2 ∈ K3. Moreover,

Zi1(l) = V1(l) = Z, Zj1(l) = U1(l) = A, Zi2(l) = Y,

V2(l) = ρ1(Y, l) = Y − x+ y

2z
Z,

Zj2(l) = X, U2(l) = ρ1(X, l) = X − x− y
2z

Z.
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Then ϕ = {1} and Ωe, j = {(z, x+ iy, x− iy, a) : z 6= 0} and

Σ = {(z, x+ iy, x− iy, a) ∈ Ω : |z| = 1, a = x = y = 0}.

Example 10. Let g be a Lie algebra spanned by

{Z1, Z2, Y,X1, X2, A}
with the following non-trivial Lie brackets:

[Xj , Y ] = Zj , [A,X1 + iX2] = (1 + i)(X1 + iX2),

[A,Z1 + iZ2] = (1 + i)(Z1 + iZ2).

We choose an adaptable basis

{Z1 + iZ2, Z1 − iZ2, Y,X1 + iX2, X1 − iX2, A}
for c. We compute here that I = {0, 2, 3, 5, 6}, and 1′ = 0, 2′ = 0, 3′ = 2,
4′ = 3, 5′ = 3, 6′ = 5, 1′′ = 2, 2′′ = 2, 3′′ = 3, 4′′ = 5, 5′′ = 5, 6′′ = 6. Pick
e = {1, 3, 4, 6} and j = {6, 4}. In this example, the set K1 contains 1, and
K0 contains 2. Next, by simple computations,

Zi1(l) = (z1 − z2)Z1 + (z1 + z2)Z2, Zj1 = A, Zi2(l) = Y,

Zj2 = z1X1 + z2X2.

Clearly ϕ = {1}, the corresponding layer is Ωe, j = {(z, z, y, x, x) : z 6= 0}
and the corresponding cross-section is

Σ = {(z, z, y, x, x) : |z| = 1, a = y = 0, Re(zx) = 0}.

Now that we introduced the general construction, we will focus on N
which is the Lie group of the nilradical of g. Since N is also an exponential
solvable Lie group, formula (3.6) is valid. Let us recall the following well-
known facts. The first one is due to Kirillov, and the second one is an
application of the ‘Mackey Machine’ (see [17]).

Lemma 11. Let f ∈ n∗, and let N̂ be the set of unitary irreducible rep-
resentations of N up to equivalence. Let n∗/N = {N · f : f ∈ n∗} be the set

of coadjoint orbits. There exists a unique bijection between n∗/N and N̂ via
the Kirillov map. Thus, the construction of a measurable cross-section for
the coadjoint orbits is a natural way to parametrize N̂ .

Lemma 12. The set Ĝ of unitary irreducible representations of G is a

fiber set with base N̂/H and fibers Ĥλ, where Hλ is a closed subgroup of H
stabilizing the coadjoint action of H on the linear functional λ.

We aim here to construct an H-invariant cross-section for the coadjoint
orbits of N in n∗. We consider the nilradical n of g instead of g, and we go
through the procedure described earlier. We first obtain an adaptable basis
{Z1, . . . , Zn} for the complexification of the Lie algebra n, which we denote
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by m. Notice that {Z1, . . . , Zn, A1, . . . , Adim(h)} is then an adaptable basis
for g.

First, fixing a dense open layer Ω ⊂ g∗ and f ∈ Ω, we obtain the jump
indices corresponding to the generic layer of g∗:

i◦(f) = {i1, . . . , id◦}, j◦(f) = {j1, . . . , jd◦},
e◦(f) = {i1, . . . , id◦} ∪ {j1, . . . , jd◦}.

Second, let Ωe◦, j◦ be a fixed fine layer obtained by refining Ω. Given any
subset e◦⊆ {1, . . . , n}, the non-empty sets Ωe◦, j◦ are characterized by the
Pfaffian of the skew-symmetric matrix Me◦(f) = [f [Zi, Zj ]]i,j∈e◦ . Referring
to the procedure described in (3.4) and (3.5), we obtain

Zi◦1(f), Zj◦1 (f), . . . , Zid◦ (f), Zjd◦ (f),

and we have the polarizing sequence m = h0(l) ⊇ h1(l) ⊇ · · · ⊇ hd◦(l).
Thirdly, we compute the following data:

I, j′, j′′,K0,K1, . . . ,K5, V1(f), . . . , Vd◦(f), U1(f), . . . , Ud◦(f), ϕ(f), bj(f)

corresponding to our fine layer Ωe◦, j◦ as described in (3.4) and (3.5). Fi-
nally, gathering all the data, we notice that ϕ(f) = ∅, since according to
Proposition 4.1 in [2], aj(l) = 0 if and only if γj(Uk(l)) 6= 0 for j = ik. As
shown in [2], an H-invariant cross-section for the coadjoint N -orbits for Ωe◦

is given by

(3.7) Λ = {f ∈ Ωe◦, j◦ : f(Zj(f)) = 0, j ∈ e◦}.
Following the proof of Theorem 4.2 in [2], we have three separate cases:

Case 1. If j ∈ I or if j 6∈ I and j+1 ∈ e◦ then f(Zj(f)) = 0 is equivalent
to f(Zj) = 0.

Case 2. If j 6∈ I, j + 1 6∈ e◦, and j = ik then

f(Zj(f))=f([ρk−1(Zjk , f),ReZj ]) Re f(Zj)+f [ρk−1(Zjk , f), ImZj ] Im f(Zj).

Case 3. If j 6∈ I, j + 1 6∈ e◦, and j = jk then the equation f(Zj(f)) = 0
is equivalent to

Re(f [ρk−1(Zj , f),ReZik ]f(Zj) = Re(f [ρk−1(Zj , f), ImZik ]f(Zj) = 0.

Remark 13. If the assumptions of Case 1 hold for all elements of e◦

then

Λ = {f ∈ Ωe◦, j◦ : f(Zj) = 0, j ∈ e◦}.

Example 14. Let g be a nilpotent Lie algebra spanned by {Z1, Z2,
Y1, Y2, X1, X2} with the only non-trivial Lie brackets [Xj , Yj ] = Zj . Choos-
ing the adaptable basis

{Z1 + iZ2, Z1 − iZ2, Y1 + iY2, Y1 − iY2, X1 + iX2, X1 − iX2},
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letting e◦ = {3, 4, 5, 6} and j◦ = {5, 6} we then get

Ωe◦, j◦ = {(z, z, y, y, x, x) : z 6= 0},
Λ = {(z, z, y, y, x, x) ∈ Ωe◦, j◦ : x = y = 0}.

Now, we will compute a general formula for a smooth cross-section of the
G-orbits in some open dense set in g∗. Let λ : Ωe◦, j◦ → Λ be the cross-section
mapping. For each f ∈ n∗, we define ν(f) = {1 ≤ j ≤ n : f(Zj) 6= 0}. Put

h(f) =
⋂

j∈ν(f)

ker γj ,

and let Λν = {f ∈ Λ : ν(f) = ν}. Observe that h(f) is the Lie algebra of
the stabilizer subgroup (a subgroup of H) of the linear functional f . For
any f ∈ Λν , since we have a diagonal action, h(f) is independent of f and
is equal to some constant subalgebra k ⊂ h.

Lemma 15. There exists ν ⊆ {1, . . . , n} such that Λν is dense and
Zariski open in Λ, and if we let π be the projection or restriction map-
ping from g∗ onto n∗, and Ων = π−1 ◦ λ−1(Λν), then Ων is Zariski open
in g∗.

Proof. It suffices to let ν = {1, . . . , n} \ e◦. Notice that

Λν = {f ∈ Λ : ν(f) = {1, . . . , n} \ e◦}
is dense and Zariski open in Λ. Additionally, we observe that for f ∈ Λν
and j ∈ {1, . . . , n} \ e◦, f(Zj) 6= 0. Next, Ων is Zariski open in g∗ since the
projection map is continuous, and the cross-section mapping is rational and
smooth (see [2]).

Lemma 16. If l ∈ Ων and e(l) is the set of jump indices for Ων such
that

e(l) = {i1, . . . , id} ∪ {j1, . . . , jd},
i(l) = {i1, . . . , id}, j(l) = {j1, . . . , jd},

then max i(l) ≤ dim n.

Proof. Let us assume for contradiction that there exists some jump index
it ∈ i(l) such that Zit ∈ h. Because jump indices always come in pairs, and
because jt > it, we see that Zjt ∈ h. However, since h is commutative,
l[Zit , Zjt ] = 0. This is a contradiction.

Lemma 17. For any l ∈ Ων and for all j ∈ (e(l) \ e◦) \ i(l), Zj ∈ h.

Proof. We have

e(l) = e◦
·
∪ {is1 , . . . , isr}

·
∪ {js1 , . . . , jsr}.

If j ∈ (e(l) \ e◦) \ i(l) then j ∈ j(l) \ e◦, and there exists some k such that
Zj = Zjsk . Assume that Zjsk ∈ n. Since jsk /∈ e◦, there must exist some jump
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index isk such that isk < jsk and l[Zisk , Zjsk ] 6= 0. Since Zisk also belongs
to n, letting π(l) = f gives f [Zisk , Zjsk ] 6= 0. Thus, both isk , jsk ∈ e◦, which
contradicts our assumption.

We observe that the choice of an adaptable basis mainly relies on the
choice of an adaptable basis for the nilpotent Lie algebra. Any permutation
of the basis elements of h will not affect the ‘adaptability’ of the basis. With-
out loss of generality, we will assume that we have the following adaptable
basis for g:

{Z1, . . . , Zn, Am, . . . , Ar+1, Ar, . . . , A2, A1}
such that Ar = Zjsr , . . . , A1 = Zjs1 . Additionally, we assume that the basis
elements Ar, . . . , A1 with weights γr, . . . , γ1 are chosen such that Re(γt(At))
= 1, γt(At′) = 0, t 6= t′.

Lemma 18. For any l ∈ Ων , ϕ(l) = {is1 , . . . , isr}.

Proof. We already know that ϕ(l) ⊆ {is1 , . . . , isr}. We only need to show
that j ∈ ϕ(l) for any j = is1 . By definition, ϕ(l) = {j ∈ e : aj(l) = 0}, and
according to Proposition 4.1 in [2], aj(l) = 0 if and only if γj(Uk(l)) 6= 0 for
j = ik. In order to prove the lemma, it suffices to show that γisk (Uk(l)) = 0.
We have

Uk(l) = ρk−1(Zjsk (l), l) = ρk−1(Ask) = ρk−1(Ak)

= ρk−2(Ak, l)−
l[ρk−2(Ak, l), Uk−1(l)]

l[Vk−1(l), Uk−1(l)]
Vk−1(l)

− l[ρk−2(Ak, l), Vk−1(l)]

l[Uk−1(l), Vk−1(l)]
Uk−1(l).

A straightforward computation shows that, for some coefficients ct,

γisk (Uk(l)) = γk(Ak)− ck−1γk(Ak−1)− · · · − c1γ1(A1) = γk(Ak) 6= 0.

Proposition 19. Let g = n× k× a where h = k× a. A cross-section for
the G-orbits in Ων is

Σ = {l ∈ Ων : l = (f, k, 0), f ∈ Σ◦, k ∈ k∗}.
Letting π : g∗ → n∗ be the projection map,

π(Σ) = Σ◦ = {l ∈ Λν : |l(Zj)| = 1 ∀j ∈ {is1 , . . . , isr}}.

Proof. Let π(l) = f . So far, we have shown that e(l) = e◦
·
∪ ϕ(l)

·
∪

{js1 , . . . , jsr}. Using the description of the cross-section in [2],

Σ = {l ∈ Ων : l(Zj(l)) = 0 for j ∈ e \ ϕ, and |bj(l)| = 1 for j ∈ ϕ}.

For l ∈ g∗, if j ∈ e\ϕ then j ∈ e◦
·
∪ {js1 , . . . , jsr}. For j ∈ e◦, l(Zj(l)) =

f(Zj(f)) = 0, and for j ∈ {js1 , . . . , jsr}, l(Zj(l)) = 0. Thus, Aj = 0 for
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j ∈ {js1 , . . . , jsr}. Next, for j ∈ ϕ(l) = {is1 , . . . , isr},

|bj(l)| =
∣∣∣∣ γj(Uk(l))l[Zj , Uk(l)]

∣∣∣∣ =

∣∣∣∣ γj(Ak)l[Zj , AK ]

∣∣∣∣ =

∣∣∣∣ 1

l(Zj)

∣∣∣∣ = 1 ⇒ |l(Zj)| = 1.

Thus, we conclude that Σ = {l ∈ Ων : l = (f, k, 0), f ∈ Σ◦, k ∈ k∗} where

Σ◦ = {l ∈ Λν : |l(Zj)| = 1, j ∈ {is1 , . . . , isr}}.

Throughout the remainder of this paper, we will also use the symbol '
to denote homeomorphism between two topological spaces.

Proposition 20. Σ◦ is a cross-section for the H-orbits in Λν . In other
words,

Σ◦ = π(Σ) ' Λν/H.

Proof. The set Λν is an H-invariant cross-section for the N coadjoint
orbits of a fixed layer Ωe◦, j◦ , while Σ is a cross-section for the G coadjoint
orbits of for Ων . We must show that each H-orbit of an arbitrary element
inside Λν meets the set Σ◦ in a unique point, and also that any point in Σ◦

belongs to the H-orbit of some linear functional belonging to Λν .

We start by showing that H · f ∩ Σ◦ 6= ∅ for f ∈ Λν . Given f ∈ Λν ,
we consider the element (f, k, 0) ∈ Ων such that f = π((f, k, 0)). We know
there exists x ∈ Σ such that g · (f, k, 0) = x for some g ∈ G. In fact, let g =
(n, 1)(1, h). If (n, 1)(1, h) · (f, k, 0) = x, then π((n, 1)(1, h) · (f, k, 0)) = π(x),
and (n, 1)π((1, h) · (f, k, 0)) = π(x) ∈ Λν . Consequently, (n, 1) stabilizes
π((1, h) · (f, k, 0)), implying that π((1, h) · (f, k, 0)) = π(x) ∈ Λν . Since

π((1, h) · (f, k, 0)) = π((h · f, k, 0)) = h · f,

we see that h · f ∈ π(Σ) = Σ◦.

Next, let us assume that there exist h, h′ ∈ H such that f ∈ Λν and
h · f, h′ · f ∈ Σ◦ with h · f 6= h′ · f. Consider (h′ · f, k, 0), (h · f, k, 0) ∈ Σ. We
have

(h · f, k, 0) = (1, h) · (f, k, 0), (h′ · f, k, 0) = (1, h′) · (f, k, 0).

Both (h·f, k, 0), (h′ ·f, k, 0) are in the G-orbit of (f, k, 0), and since (h·f, k, 0)
and (h′ · f, k, 0) also belong to the cross-section Σ, we get (h · f, k, 0) =
(h′ · f, k, 0). The latter implies that h · f = h′ · f , a contradiction. We
conclude that π(Σ◦) = π(Σ) ' Λν/H.

Example 21. Let N be the Heisenberg Lie group with Lie algebra
n spanned by the adaptable basis {Z, Y,X} with non-trivial Lie bracket
[X,Y ] = Z. Let H be a 2-dimensional commutative Lie group with Lie al-
gebra h = RA ⊕ RB acting on n as follows: RB = z(g) and [A,X] = 1

2X,
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[A, Y ] = 1
2Y , [A,Z] = Z. Applying the procedure above, we obtain

ν = {1},
Λν = {(z, 0, 0) ∈ n∗ : z 6= 0},
Ων = {(z, y, x, a, b) ∈ g∗ : z 6= 0, y, x, a, b ∈ R},
Σ = {(±1, 0, 0, 0, b) : b ∈ R},
Σ◦ = {(±1, 0, 0) ∈ n∗}.

Example 22. Let g = (RZ1 ⊕ RZ2 ⊕ RY1 ⊕ RY2 ⊕ RX1 ⊕ RX2) ⊕ RA
with

n = RZ1 ⊕ RZ2 ⊕ RY1 ⊕ RY2 ⊕ RX1 ⊕ RX2

and non-trivial Lie brackets

[X1 + iX2, Y1 + iY2] = Z1 + iZ2,

[X1 − iX2, Y1 − iY2] = Z1 − iZ2,

[A,X1 + iX2] = (1 + i)/2(X1 + iX2),

[A, Y1 + iY2] = (1 + i)/2(Y1 + iY2),

[A,Z1 + iZ2] = (1 + i)(Z1 + iZ2).

Then

ν = {1, 2},
Λν = {(z, z, 0, 0, 0, 0) : z 6= 0},
Ων = {(z, z, y, y, x, x, a) : z 6= 0, y, x ∈ C, a ∈ R},
Σ = {(z, z, 0, 0, 0, 0, 0) : z 6= 0},
Σ◦ = {(z, z, 0, 0, 0, 0) : z 6= 0}.

Now that we have a precise description of the orbital parametrization of
the unitary dual of the group, we will take a closer look at the quasiregular
representation τ of G.

4. Decomposition of the quasiregular representation. In this sec-
tion, we will provide a precise decomposition of τ as a direct integral of
irreducible representations of G. As a result, we will be able to compare the
quasiregular representation with the left regular representation of G, and to
completely settle the question of admissibility for τ .

There is a well-known algorithm available for the computation of the
Plancherel measure of N. It is simply obtained by computing the Pfaffian
of a certain skew-symmetric matrix. More precisely, the Plancherel measure
on Λν is

dµ(λ) = |det(Me◦(λ))|1/2dλ = |Pf(λ)|dλ,
where Me◦(λ) = (λ[Zi, Zj ])1≤i,j≤e◦ . In this section, we will focus on the
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decomposition of the quasiregular representation τ = IndGH 1, which is a
unitary representation of G realized as acting in L2(N) in the following
way:

(τ(n, 1)φ)(m) = φ(n−1m),

(τ(1, h)φ)(m) = |δ(h)|−1/2φ(h−1 ·m), with δ(h) = det(Adh).

Let F be the Fourier transform defined on L2(N)∩L1(N), which we extend
to L2(N). Define

τ̂(·) = F ◦ τ(·) ◦ F−1.

Definition 23. Let λ ∈ Λν a linear functional. A polarization algebra
subordinate to λ is a maximal subalgebra of nC satisfying the following con-
ditions. Firstly, it is isotropic for the bilinear form Bλ defined as Bλ(X,Y ) =
λ[X,Y ]. In other words, it is a maximal subalgebra p such that λ([p, p]) = 0.
Secondly, p+ p is a subalgebra of nC. We will denote a polarization subalge-
bra subordinate to λ by p(λ). A polarization is said to be real if p(λ) = p(λ).
Also, we say that the polarization p(λ) is positive at λ if iλ[X,X] ≥ 0 for
all X ∈ p(λ).

Let e◦ be the set of jump indices corresponding to the linear function-
als in Λν , and let e◦ = d◦/2. Referring to Lemma 3.5 in [2], for any given
linear functional λ, a polarization subalgebra subordinate to λ is given by
p(λ) = hd◦(λ). See the formula below (3.1). Unfortunately, in general the
polarization obtained as hd◦(λ) is not real and we must proceed by holomor-
phic induction in order to construct irreducible representations of N . For
the interested reader, a very short introduction to holomorphic induction is
available on page 78 of the book [4].

The following discussion can also be found in [15, p. 124]. Given λ ∈ Λν ,
let πλ be an irreducible representation of N acting in the Hilbert space Hλ
and realized via holomorphic induction. Let X be the domain of Hλ on
which the irreducible representation πλ is acting. It is well-known that X
can be identified with n/e× e/d, where

d = n ∩ p(λ), e = (p(λ) + p(λ)) ∩ n,

and p(λ) is an H-invariant positive polarization inside nC. Finally, Hλ =
L2(n/e)⊗Hol(e/d) with Hol(e/d) denoting the holomorphic functions which
are square integrable with respect to some Gaussian function. It is worth
mentioning that, if the polarization p(λ) is real, then Hλ = L2(n/e), X =
n/e, and holomorphic induction here is just regular induction.

The choice of how we realize the irreducible representations of N really
depends on the action of the dilation group H on N . For example, if the
group N oH is completely solvable, there is no need to consider the com-
plexification of n since a positive polarization always exists for exponential
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solvable Lie groups. From now on, we will assume that a convenient choice
for a positive polarization subalgebra has been made for each λ ∈ Λν , and
we denote by Hλ the Hilbert space on which we realize the corresponding
irreducible representation πλ, and X is a domain on which we realize the
action of πλ. We fix an H-quasi-invariant measure on X , which we denote
by dn, and we define

δX (h) =
d(h−1 · n)

dn
.

Furthermore, let C(h, λ) : Hλ → Hh·λ be defined by

C(h, λ)f(x) = |δX (h)|−1/2f(h−1 · x)

so that πλ(h−1 ·n)C(h, λ) = C(h, λ)πh·λ(n) for all n ∈ N . We write ∆ for the
modular function of G where ∆(h) = det(Ad(h)−1), and set δ(h) = ∆(h)−1.

Proposition 24. Let φ ∈ F(L2(N)). Then

τ̂λ(n)(Fφ)(λ) = πλ(n)(Fφ)(λ),

τ̂λ(h)(Fφ)(λ) = |δ(h)|1/2C(h, h−1 · λ)(Fφ)(h−1 · λ)C(h, h−1 · λ)−1.

The proof is elementary, so we omit it. Now, we will describe how to
obtain almost all of the irreducible representations of G via an application
of the Mackey Machine.

Lemma 25. If there exists some non-zero linear λ ∈ Λν , and a non-
trivial subgroup K ≤ H fixing λ, then K must fix all elements in Λν .

Proof. Recall the definition of Λν :

Λν = {f ∈ Λ : f(Zj) 6= 0, j ∈ {1, . . . , n} \ e◦}.

Suppose there exists a linear functional f ∈ Λν and h 6= 1 such that
h · f = f . Since the action of h is a diagonal action, it must be the case that
ad log h(Zj) = 0 for all j ∈ {1, . . . , n} \ e◦. Thus for any f ∈ Λν , we have

K = {h ∈ H : ad log h(Zj) = 0 for j ∈ {1, . . . , n} \ e◦}.

Lemma 26. Let πλ be an irreducible representation of N corresponding
to a linear functional λ ∈ Λν via Kirillov’s map, and let K be the stabilizer
subgroup of the coadjoint action of H on Λν . We denote by π̃λ the extension
of πλ, which is an irreducible representation of N o K acting in Hλ =
L2(n/e) ⊗ Hol(e/d) such that γλ(·) is the restriction of C(λ, ·) to K. More
precisely, such an extension is defined by π̃λ(n, k)φ(x) = πλ(n)γλ(h)φ(x).

Furthermore, let {χσ : σ ∈ k∗} = K̂, and recall that Σ◦ is a cross-section
for the coadjoint orbits of H in Λν . The set

{IndNHNK(π̃λ ⊗ χσ) : (λ, σ) ∈ Σ◦ × k∗}
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exhausts almost all of the irreducible representations of G which will appear
in the Plancherel transform of G, and if L denotes the left regular represen-
tation of G, we have

L '
�⊕

Σ◦×k∗
IndNHNK(π̃λ ⊗ χσ)⊗ 1L2(H/K,Hλ) dµ(λ, σ)

and dµ(λ, σ) is absolutely continuous with respect to the natural Lebesgue
measure on Σ◦ × k∗.

The claims in Lemma 26 summarize some standard facts in the analysis
of exponential Lie groups. We refer the reader to Theorem 10.2 in [12],
where the general case of group extensions is presented, and to [6], which
specializes to the class of groups considered in the present paper.

Lemma 27. For any λ ∈ Λν , let K = StabG(λ) be such that K 6= {1}.
There exists a non-trivial representation of K inside the symplectic group
Sp(n/n(λ)), where n(λ) is the null-space of the matrix (λ[Zi, Zj ])1≤i,j≤n.

Proof. It is well-known that n/n(λ) has a smooth symplectic structure
since the bilinear form Bλ(X,Y ) = λ[X,Y ] is a non-degenerate, skew-
symmetric 2-form on n/n(λ). Let h ∈ K; since h · λ = λ, the bilinear form
Bλ(X,Y ) is K-invariant. In other words, for any h ∈ K, Bλ(h ·X,h · Y ) =
Bλ(X,Y ). Thus, there is a natural matrix representation β of K such that
β(K) is a closed subgroup of the symplectic group Sp(n/n(λ)). Identifying
n/n(λ) with a complementary subspace of n(λ) in n, which we denote by
B, this representation is nothing but the adjoint representation of K acting
on B.

In this paper, Z(G) stands for the center of the Lie group G, and z(g)
stands for its Lie algebra. Also, we remind the reader that γλ(·) is the re-
striction of the representation C(λ, ·) to the group K.

Lemma 28. Assume that K1 is a subgroup of K. Then γλ(K1) = {1} if
and only if K1 ≤ Z(G).

Proof. Clearly if there exists a non-trivial subgroup such that K1 ≤
Z(G) then γλ(K1) = {1}. For the other way around, let k ∈ K1. Notice that

γλ(k)φ(x) = |δX (h)|−1/2φ(β(k)−1x).

We have already seen that β(k) is a symplectic matrix, and at least half
of its eigenvalues are 1. Since for any symplectic matrix, the multiplicity of
eigenvalues 1 if they occur is even, it follows that β(k) is the identity. Thus,
k is a central element.

Remark 29. Let β be the finite-dimensional representation of K in
Sp(n/nλ). By the first isomorphism theorem, β(K) ' K/(Z(G) ∩H).
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Lemma 30. If there exists some x ∈ X with φx : K → X and φx(k) =
k ·x such that rank(φx) = maxy∈X (rank(φy)) then the number of elements in
a cross-section for the K-orbits in X is equal to 2dimX if rank(φx) = dimX ,
and is infinite otherwise.

Proof. Fix a cross-section C ' X/K for C ⊆ X . For each x ∈ C, let
r = maxx∈C(rank(φx)) and X1 = {x ∈ X : rank(φx) = r}. Then X1 is open
and dense in X . Assume that there exists some y in C such that rank(φy) =
dim(X ). If r = dim(X ), then φy defines a submersion, which means that
φy is an open map. Furthermore, φy(K), which is the orbit of y, is open
in X1. From the definition of the action of K this is possible if and only
if K acts with real eigenvalues, and in that case the number of orbits is
simply equal to 2dimX . Now, assume that there exists no y in C such that
rank(φy) = dimX ; then the orbits in X1 are always meager in X1. So a
cross-section will contain an infinite collection of points.

Lemma 31. Let γλ(·) be the restriction of C(λ, ·) to K. Then we have
the direct integral decomposition

γλ '
�⊕

(k/h∩z(g))∗
χσ ⊗ 1Cm dσ,

where the multiplicity function is uniformly constant, and m : k∗ → N∪{∞}
with m(σ) being equal to the number of elements in the cross-section X/K.

Proof. Recall that γλ(h)f(x) = |δX (h)|−1/2f(h−1 · x) and let m be the
number of elements in a cross-section for the K-orbits in X . If K = {1}
then clearly each point in X is its own orbit and m =∞. If K acts on some
invariant open subset of X by spirals, then the cross-section will contain an
infinite number of elements. Let X1 be as defined in Lemma 30. We have
the natural diffeomorphism α : X1/K × K/(H ∩ Z(G)) → X1 such that
α(x, k) = k · x. Thus, X1 becomes a total space with base space X1/K and
fibers K/(H ∩ Z(G)) · x such that

X1 =
⋃

x∈X1/K

(
K/(H ∩ Z(G)) · x

)
.

First, for each x in the cross-section X1/K, identify K/(H ∩ Z(G)) · x
with K/(H ∩ Z(G)), and the Hilbert space

Hλ '
(
L2
(
K/(H ∩ Z(G))

))m ' L2
(
K/(H ∩ Z(G))

)
⊗ Cm.

In fact, for each linear functional λ, the representation γλ can be modeled as
being quasi-equivalent to the left regular representation on K/(H ∩ Z(G)).
Let φ be a function in Hλ and for each x ∈ X1/K define φx as the restriction
of the function φ to the orbit of x. It is easy to see that the action of
γλ(·) becomes just a left translation acting on φx for each x ∈ X1/K. Since
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K/(H∩Z(G)) is a commutative Lie group, we can decompose its left regular
representation by using its group Fourier transform. Letting (k/h ∩ z(g))∗ be
the unitary dual of the group K/(H ∩Z(G)), we obtain a decomposition of
the representation γλ into its irreducible components as follows:

γλ '
�⊕

(k/h∩z(g))∗
χσ ⊗ 1Cm dσ,

where χσ are characters defined on Z(G)∩H, and
	⊕
(k/h∩z(g))∗ χσ⊗ 1Cm dσ is

modeled as acting in the Hilbert space
	⊕
(k/h∩z(g))∗ C⊗ 1Cm dσ.

Lemma 32. Let Λν → Σ◦ ' Λν/H be the quotient map induced by
the action of H. The push-forward of the Lebesgue measure on Λν via the
quotient map is equivalent to the Lebesgue measure on Σ◦ ' Λν/H.

Proof. This lemma follows from the following facts: the quotient map is
a submersion everywhere, and the push-forward of a Lebesgue measure via
a submersion is equivalent to a Lebesgue measure on the image set.

Now, we will compute an explicit decomposition of the Plancherel mea-
sure on Λν under the action of the dilation group H. We first recall the more
general theorem on disintegration of Borel measures.

Lemma 33. Let G be a locally compact group. Let X be a left Borel G-
space and µ a quasi-invariant σ-finite positive Borel measure on X. Assume
that there is a µ-null set X0 such that X0 is G-invariant and X − X0 is
standard. Then for all x ∈ X − X0, the orbit G · x is Borel isomorphic to
G/Gx under the natural mapping, and there is a quasi-invariant measure
µx concentrated on the orbit G · x such that, for all f ∈ L1(X,µ),�

X

f(x) dµ(x) =
�

(X−X0)/G

�

G/Gx

f(g · x) dµx(gGx) dµ(x),

where Gx is the stability group at x.

We refer the interested reader to [12] for a proof of the above lemma.

Proposition 34 (Disintegration of the Plancherel measure). Under the
action of H the Plancherel measure on Λν is decomposed into a measure on
the cross-section Σ◦ and a family of measures on each orbit such that, for
any non-negative measurable function F ∈ L1(Λν), we have�

Λν

F (f)|Pf(f)| df =
�

Σ◦

�

H/K

F (h · σ) dωσ(h) |Pf(σ)| dσ,

where for each σ ∈ Σ◦, dωσ(h) = ∆(h)dh, dh is the natural Haar measure
on H/K, dσ is the Lebesgue measure on Σ◦ with h = hK, and ∆ is the
modular function of the group H/K.
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The proof is obtained via some elementary computations involving
changing variables. It is quite trivial. Thus, we omit it.

Theorem 35. The quasiregular representation is unitarily equivalent to
the following direct integral decomposition:�⊕

Σ◦

( �⊕
(k/z(g)∩h)∗

IndNHNK(π̂λ ⊗ χσ)⊗ 1Cm dσ
)
|Pf(λ)| dλ,

with multiplicity function m equal to 2dimX if rank(φx) = dimX , and infi-
nite otherwise.

Theorem 35 follows from Lemmas 32 and 31, and [14, Theorem 7.1].

Proposition 36. The quasiregular representation τ = IndGH 1 is con-
tained in the left regular representation if and only if dim(Z(G) ∩H) = 0.

Proof. Assume that Z(G) ∩H is not equal to the trivial group {1}. We

have proved that γλ '
	⊕
(k/(z(g)∩h))∗ χσ ⊗ 1Cm(σ) dσ. By Lemma 32 and [15,

Theorem 3.1], we have

τ '
�⊕
Σ◦

�⊕
(k/(z(g)∩h))∗

IndNHNK(π̃λ ⊗ χσ)⊗ 1Cm(λ,σ) dσ dλ.

The measure dσ belongs to the Lebesgue class measure on (k/z(g) ∩ h)∗,
which we identify with Rdim(k/(z(g)∩h)). The Plancherel measure of the group
G is supported on Σ◦ × k∗ and belongs to the Lebesgue class measure
dλdσ such that dσ is the Lebesgue measure on k∗ = Rdim(k). Clearly, if
dim(Z(G) ∩ H) > 0, then Rdim(k/(z(g)∩h)) is meager in Rdim(k). Thus, the
measure occurring in the decomposition of the quasiregular representation
and the measure occurring in the decomposition of the left regular repre-
sentation are mutually singular if and only if dim(Z(G) ∩H) > 0. Finally,
we have

L '
�⊕
Σ◦

�⊕
k∗

IndNHNK(π̃λ ⊗ χσ)⊗ 1L2(H/K,Hλ) dσ dλ

'
�⊕
Σ◦

�⊕
k∗

IndNHNK(π̃λ ⊗ χσ)⊗ 1C∞ dσ dλ.

As the irreducible representations occurring in the decomposition of L have
uniform infinite multiplicities, the quasiregular representation τ = IndGH 1
is contained in the left regular representation if and only if dim(Z(G) ∩H)
= 0.

Finally we have our main result.

Theorem 37. Assume that G = N oH is unimodular. Then τ is never
admissible. Assume that G is non-unimodular. Then τ is admissible if and
only if dim(Z(G) ∩H) = 0.
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Proof. First, assume that G is unimodular. Clearly if

dim(Z(G) ∩H) = 0

then τ will be contained in the left regular representation. However, G being
unimodular, it is known (see [10]) that any subrepresentation of the left
regular representation is admissible if and only if

(4.1)
�

Σ

m(λ, σ) dµ(λ, σ) <∞.

But that is not possible because the multiplicity is constant a.e., m(λ, σ)
= m and �

Σ

m(λ, σ) dµ(λ, σ) =
�

Σ

m dµ(λ, σ) = m · µ(Σ).

If m is infinite, then clearly the integral will diverge. Now assume that m
is finite. Then there exists a non-trivial k ∈ k such that Σ = Σ◦ × k∗ and,
using Currey’s measure ([6]), up to multiplication by a constant,

dµ(λ, σ) = |Pfe(λ, σ)| dλ dσ
where Pfe(λ, σ) = det((λ, σ)[Zir , Zjs ])1≤r,s≤d. It is clear from the definition
of the action of H that the function Pfe(λ, σ) is really a function of λ. Thus,
we just write Pfe(λ, σ) = Pfe(λ) and�

Σ

m(λ, σ) dµ(λ, σ) = m
�

Σ◦

�

k∗

|Pfe(λ)| dλ dσ =∞.

If G is unimodular and dim(Z(G)∩H) > 0 then τ must be disjoint from
the left regular representation. Now assume that G is non-unimodular. We
have two different cases. If dim(Z(G)∩H) > 0 then the quasiregular repre-
sentation is disjoint from the left regular representation, which automatically
prevents τ from being admissible. Secondly, assume that dim(Z(G)∩H) = 0.
We have

τ '
�⊕
Σ◦

�⊕
k∗

IndNHNK(π̃λ ⊗ χσ)⊗ 1Cm(λ,σ) dσ dλ,

and of course, as seen previously, the multiplicity function is uniformly con-
stant and m(λ, σ) ≤ ∞. Thus, τ is quasiequivalent to the left regular rep-
resentation. G being non-unimodular, it follows that τ is admissible.

Remark 38. We call the attention of the reader to the fact that the
theorem above supports Conjecture 3.7 in [8], which states that a monomial
representation of a unimodular exponential solvable Lie group G never has
admissible vectors. The general case remains an open problem.

Based on our main theorem, we can assert the following.

Remark 39. Let N be a nilpotent Lie group with Lie algebra n. Let H
be given such that at least one of the basis elements of h commutes with all
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basis elements of n. Then Z(N oH)∩H is clearly non-trivial, and τ cannot
be admissible as a representation of G.

5. Examples. In this section, we will present several examples, and we
will show how to apply our results in order to settle the admissibility of τ
in each case.

Example 40. Coming back to Example 21, clearly G is not unimodular.
Since the center of the group has a non-trivial intersection with H, we can
see τ is not an admissible representation.

Example 41. Recall Example 22. Since G is non-unimodular and since
the center of the group is trivial, τ is an admissible representation of G.

Example 42. Let G be a Lie group with Lie algebra g spanned by

{Z, Y,X,A1, A2, A3}
such that

[X,Y ] = Z, [A1, X] = X, [A2, X] = X,

[A3, X] = 2X, [A1, Y ] = Y, [A2, Y ] = −Y,
[A3, Y ] = −Y, [A1, Z] = Z, [A3, Z] = Z.

The center of G is equal to

exp
(
R
(
−1

2A1 − 3
2A2 +A3

))
< H,

and so τ is not admissible.

Example 43. Let G be a Lie group with Lie algebra g spanned by

{Z, Y,X,W,A1, A2, A3, A4}
with non-trivial Lie brackets

[X,Y ] = Z, [W,X] = Y,

[A1,W ] = 1
3W, [A1, X] = 1

3X,

[A1, Y ] = 2
3Y, [A1, Z] = Z

[A2,W ] = −W, [A2, X] = X,

[A2, Z] = Z, [A3,W ] = 1
5W,

[A3, X] = 2
5X, [A2, Y ] = 3

5Y,

[A3, Z] = Z, [A4, X] = 1
2X,

[A4, Y ] = 1
2Y, [A4, Z] = Z.

In this example the Lie algebra h is spanned by the vectors A1, A2, A3, A4.
The center of G is equal to

exp
(
R
(
− 9

10A1 − 1
10A2 −A3

))
exp
(
R
(
−3

4A1 − 1
4A2 +A4

))
< H,

hence τ is not admissible.
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Example 44. Suppose that g is spanned by the vectors

U1, U2, Z1, Z2, Z3, X1, X2, X3, A

and h is spanned by the vector A. Furthermore, assume that we have the
following non-trivial Lie brackets:

[X3, X2] = Z1, [X3, X1] = Z2, [X2, X1] = Z3,

[A,U1 + iU2] = (1 + i)(U1 + iU2).

We remark that in this example the nilradical of g contains a step-2 freely
generated nilpotent Lie algebra with three generators. Since G is non-uni-
modular, and since the center of G is trivial, we deduce that τ is admissible.

Example 45. Let N be the Heisenberg group

N =




1 x y z

0 1 0 y

0 0 1 0

0 0 0 1

 :

 z

y

x

 ∈ R3

 ,

and the dilation group H be isomorphic to R2 such that

H =




et 0 0 0

0 et−r 0 0

0 0 er 0

0 0 0 1

 :

(
t

r

)
∈ R2

 .

The action of H on N is given as follows:
et 0 0 0

0 et−r 0 0

0 0 er 0

0 0 0 1




1 x y z

0 1 0 y

0 0 1 0

0 0 0 1




et 0 0 0

0 et−r 0 0

0 0 er 0

0 0 0 1


−1

=


1 xer yete−r zet

0 1 0 yet−r

0 0 1 0

0 0 0 1

 .

It is easy to see that the Lie algebra of G is spanned by {Z, Y,X,A} with
non-trivial Lie brackets

[A1, Z] = Z, [A1, Y ] = Y, [A2, Y ] = −Y, [A2, X] = X.
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Here

K =




1 0 0 0

0 e−r 0 0

0 0 er 0

0 0 0 1

 : r ∈ R


but the center of G is trivial. Thus, there is a non-trivial subgroup of the
dilation group stabilizing the center of N and thus stabilizing almost all of
elements of the unitary dual of N. The spectrum of the left regular represen-
tation of G = N oH is supported on two disjoint lines, and the irreducible
representations occurring in the decomposition of the left regular representa-
tion occur with infinite multiplicities. Also, the spectrum of the quasiregular
representation τ is parametrized by two disjoint lines, but the irreducible
representations occurring in the decomposition of τ occur twice almost ev-
erywhere. Since the group G is non-unimodular, and τ is contained in L, we
find that τ is admissible.

Example 46. Suppose that n is spanned by T1, T2, Z, Y,X such that
[X,Y ] = Z, and h is spanned by A1, A2, A3, A4, A5 such that

[A2, X] = 1
2X, [A2, Y ] = 1

2Y, [A2, Z] = Z, [A3, X] = X,

[A3, Y ] = −Y, [A5, X] = X, [A6, Y ] = Y,

[A3, T1 + iT1] = (1 + i)(T1 + iT1),

[A4, T1 + iT1] = (2 + 2i)(T1 + iT1),

[A1, T1 + iT1] = (1 + i)(T1 + iT1).

The center of G is given by

exp
(
R
(
A1 − 2A2 − 1

2A4

))
exp
(
R
(
A3 − 1

2A4 −A5

))
< H.

Thus τ is not admissible.
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