AN INEQUALITY FOR SPHERICAL CAUCHY DUAL TUPLES
 BY
 SAMEER CHAVAN (Kanpur)

Abstract

Let T be a spherical 2-expansive m-tuple and let $T^{\mathfrak{s}}$ denote its spherical Cauchy dual. If $T^{\mathfrak{s}}$ is commuting then the inequality $$
\sum_{|\beta|=k}(\beta!)^{-1}\left(T^{\mathfrak{s}}\right)^{\beta}\left(T^{\mathfrak{s}}\right)^{* \beta} \leq\binom{ k+m-1}{k} \sum_{|\beta|=k}(\beta!)^{-1}\left(T^{\mathfrak{s}}\right)^{* \beta}\left(T^{\mathfrak{s}}\right)^{\beta}
$$ holds for every positive integer k. In case $m=1$, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.

1. Introduction. If \mathbb{N} denotes the set of non-negative integers, let \mathbb{N}^{m} denote the cartesian product $\mathbb{N} \times \cdots \times \mathbb{N}(m$ times $)$. For $p \equiv\left(p_{1}, \ldots, p_{m}\right)$ in \mathbb{N}^{m}, we write $|p|:=\sum_{i=1}^{m} p_{i}$.

Given a Banach space \mathcal{X}, a tuple $T \equiv\left(T_{1}, \ldots, T_{m}\right)$ of bounded linear operators acting on \mathcal{X}, and $p \in \mathbb{N}^{m}$, we let $T^{p}:=\left(T_{1}^{p_{1}}, \ldots, T_{m}^{p_{m}}\right)$, where $T_{i}^{p_{i}}$ denotes the product of T_{i} with itself p_{i} times.

When $T \equiv\left(T_{1}, \ldots, T_{m}\right)$ is a tuple of bounded linear operators acting on a Hilbert space \mathcal{H}, we let $T^{*}:=\left(T_{1}^{*}, \ldots, T_{m}^{*}\right)$.

Let \mathcal{H} denote a complex separable Hilbert space and let $B(\mathcal{H})$ denote the C^{*}-algebra of bounded linear operators on \mathcal{H}. Let T be an m-tuple of (possibly non-commuting) bounded linear operators on \mathcal{H}. The spherical generating 1-tuple Q_{s} associated with T is given by

$$
Q_{s}(X):=\sum_{i=1}^{m} T_{i}^{*} X T_{i} \quad(X \in B(\mathcal{H}))
$$

(see [5] for the definition of the generating m-tuples). More generally, for m-tuples A and B, consider the so-called elementary operator

$$
E_{A, B}(X)=\sum_{i=1}^{m} A_{i} X B_{i} \quad(X \in B(\mathcal{H})) .
$$

[^0]If A and B are commuting m-tuples then it is easy to see that

$$
\begin{equation*}
E_{A, B}^{k}(X)=\sum_{|\beta|=k} \frac{k!}{\beta!} A^{\beta} X B^{\beta} \tag{1.1}
\end{equation*}
$$

Suppose T is jointly left-invertible, that is, $Q_{s}(I)$ is invertible. We refer to the m-tuple $T^{\mathfrak{s}}:=\left(T_{1}^{\mathfrak{s}}, \ldots, T_{m}^{\mathfrak{s}}\right)$ as the spherical Cauchy dual tuple of T, where $T_{i}^{\mathfrak{s}}:=T_{i}\left(Q_{s}(I)\right)^{-1}(i=1, \ldots, m)$.

REmARK 1.1. If P_{s} denotes the spherical generating 1-tuple associated with $T^{\mathfrak{s}}$ then $P_{s}(I)=Q_{s}(I)^{-1}$.

We say that T is a spherical 2-expansion if

$$
\begin{equation*}
I-2 Q_{s}(I)+Q_{s}^{2}(I) \leq 0 \tag{1.2}
\end{equation*}
$$

We say that T is a spherical 2-isometry if equality occurs in (1.2).
The Drury-Arveson 2-shift $M_{z, 2}$ is an important example of a spherical 2-isometry [7, Theorem 4.2]. Recall that $M_{z, 2}$ is the 2-tuple of multiplication by the coordinate functions z_{1}, z_{2} on the reproducing kernel Hilbert space associated with the positive-definite kernel

$$
\frac{1}{1-z_{1} \bar{w}_{1}-z_{2} \bar{w}_{2}} \quad\left(\left(z_{1}, z_{2}\right) \in \mathbb{B}_{2}\right)
$$

where \mathbb{B}_{2} denotes the open unit ball in \mathbb{C}^{2}.
Every spherical 2-expansion T is a spherical expansion, that is, $Q_{s}(I) \geq I$ [5. Proposition 4.1(i)]. In particular, the spherical Cauchy dual tuple T^{5} of a spherical 2-expansion T is well-defined. Let P_{s} denote the spherical generating 1-tuple associated with $T^{\mathfrak{s}}$. If T is a spherical expansion then, by Remark 1.1, $T^{\mathfrak{s}}$ is a spherical contraction, that is, $P_{s}(I) \leq I$. In all the above notions, we skip the prefix "spherical" in case $m=1$. Also, in this case, we retain Shimorin's original notation T^{\prime} for the Cauchy dual operator. When dealing with the Cauchy duals, it is tempting to mention the papers [9], 10] concerning Kaufman's transformation $T \mapsto T\left(I-T^{*} T\right)^{-1 / 2}$, which maps strict contractions reversibly onto closed densely defined operators.

The spherical Cauchy dual tuple $S:=M_{z, 2}^{\mathfrak{s}}$ of the Drury-Arveson 2-shift is commuting. Further, it admits a normal extension [4]. The fact that S is jointly hyponormal (that is, the 2×2 matrix $\left(\left[S_{j}^{*}, S_{i}\right]\right)_{1 \leq i, j \leq 2}$ of cross commutators of S is positive-definite) can also be deduced from Curto's Six Point Test [6].

We invoke the following basic fact about spherical Cauchy dual tuples, which plays an important role in the proof of the main result.

Lemma 1.2. Let T be a spherical 2-expansive m-tuple of commuting bounded linear operators on \mathcal{H} and let $T^{\mathfrak{s}}$ denote the spherical Cauchy dual of T. Let $Q_{s}\left(\right.$ resp. $\left.P_{s}\right)$ denote the spherical generating 1-tuple associated with the m-tuple T (resp. $\left.T^{\mathfrak{s}}\right)$. Then $P_{s} \circ Q_{s}(I) \leq I \leq Q_{s} \circ P_{s}(I)$.

Proof. The first inequality is obtained in [5, proof of Theorem 6.6] while the second one is obtained in [4, proof of Proposition 5.2].

REMARK 1.3. Since $P_{s}^{2}(I)=P_{s}(I) Q_{s} \circ P_{s}(I) P_{s}(I)$, we obtain the following inequality: $P_{s}^{2}(I) \geq P_{s}(I)^{2}$.
2. Main result. The purpose of this note is to prove the following inequality for spherical Cauchy dual tuples:

Theorem 2.1. Let T be a spherical 2-expansive m-tuple of commuting bounded linear Hilbert space operators. Assume that the spherical Cauchy dual $T^{\mathfrak{s}}$ of T is commuting. Let $P_{s}\left(\right.$ resp. $\left.R_{s}\right)$ denote the spherical generating 1-tuple associated with the m-tuple $T^{\mathfrak{s}}$ (resp. $\left.\left(T^{\mathfrak{s}}\right)^{*}\right)$. Then

$$
\begin{equation*}
R_{s}^{k}(I) \leq\binom{ k+m-1}{k} P_{s}^{k}(I) \quad \text { for every positive integer } k \tag{2.3}
\end{equation*}
$$

Proof. By Remark 1.3, $P_{s}^{2}(I) \geq P_{s}(I)^{2}$. It is easy to see that

$$
\begin{equation*}
P_{s}^{k}(I)-P_{s}^{k+1}(I) \leq P_{s}^{k-1}(I)-P_{s}^{k}(I) \quad(k \in \mathbb{N}) \tag{2.4}
\end{equation*}
$$

where $P^{0}(I)=I$. We prove the following by induction on $k \geq 1$:

$$
\begin{equation*}
P_{s}^{k}(I)+k\left(P_{s}^{k-1}(I)-P_{s}^{k}(I)\right) \leq I \quad(k \in \mathbb{N}) \tag{2.5}
\end{equation*}
$$

The case $k=1$ is trivial with equality in (2.5). Suppose (2.5) holds for some integer $k \geq 1$. By (2.4),

$$
\begin{aligned}
P_{s}^{k+1}(I)+(k+1)\left(P_{s}^{k}(I)-P_{s}^{k+1}(I)\right) & =P_{s}^{k}(I)+k\left(P_{s}^{k}(I)-P_{s}^{k+1}(I)\right) \\
& \leq P_{s}^{k}(I)+k\left(P_{s}^{k-1}(I)-P_{s}^{k}(I)\right)
\end{aligned}
$$

The desired conclusion is now immediate from the induction hypothesis.
Let Q_{s} denote the spherical generating 1-tuple associated with T. It was observed in [5, proof of Proposition 4.1(i)] that Q_{s} satisfies

$$
\begin{equation*}
Q_{s}^{k}(I) \leq I+k\left(Q_{s}(I)-I\right) \quad(k \in \mathbb{N}) \tag{2.6}
\end{equation*}
$$

We claim that for all positive integers $k, P_{s}^{k} \circ Q_{s}^{k}(I) \leq I$. The case $k=1$ is already recorded in Lemma 1.2. It now follows from (2.6) that

$$
\begin{aligned}
P_{s}^{k} \circ Q_{s}^{k}(I) & \leq P_{s}^{k}\left(I+k\left(Q_{s}(I)-I\right)\right)=P_{s}^{k}(I)+k\left(P_{s}^{k} \circ Q_{s}(I)-P_{s}^{k}(I)\right) \\
& \leq P_{s}^{k}(I)+k\left(P_{s}^{k-1}(I)-P_{s}^{k}(I)\right)
\end{aligned}
$$

By (2.5), $P_{s}^{k} \circ Q_{s}^{k}(I) \leq I$. Thus the claim stands verified.
Before we obtain the desired estimate, let us note some combinatorial identities. Consider the elementary operator $E_{T^{*}, T^{s}}$ (see the discussion prior to (1.1)), and observe that $E_{T^{*}, T^{\mathfrak{s}}}(I)=I$. It follows that

$$
\sum_{|\alpha|=k} \frac{k!}{\alpha!}\left(T^{*}\right)^{\alpha}\left(T^{\mathfrak{s}}\right)^{\alpha}=E_{T^{*}, T^{\mathfrak{s}}}^{k}(I)=I \quad(k \in \mathbb{N})
$$

It is now clear that $c_{\alpha \beta}:=\sqrt{k!/ \alpha!} \sqrt{k!/ \beta!}\left(T^{\alpha}\left(T^{\mathfrak{s}}\right)^{\beta}\right)^{*}$ satisfies

$$
\begin{equation*}
\sqrt{k!/ \beta!}\left(T^{\mathfrak{s}}\right)^{* \beta}=\sum_{|\alpha|=k} c_{\alpha \beta} \sqrt{k!/ \alpha!}\left(T^{\mathfrak{s}}\right)^{\alpha} \quad\left(\beta \in \mathbb{N}^{m}\right) \tag{2.7}
\end{equation*}
$$

Let $l=\binom{k+m-1}{k}$ and let $\mathcal{H}^{(l)}$ be the orthogonal direct sum of l copies of \mathcal{H}. For the $l \times l B(\mathcal{H})$-valued matrix $\left[c_{\alpha \beta}\right]:=\left[c_{\alpha \beta}\right]_{|\alpha|=k,|\beta|=k}$, we define the linear operator $\Phi: \mathcal{H}^{(l)} \rightarrow \mathcal{H}^{(l)}$ by

$$
\Phi(X)=\left[c_{\alpha \beta}\right] X \quad\left(X \in \mathcal{H}^{(l)}\right)
$$

Note that $P_{s}^{k} \circ Q_{s}^{k}(I) \leq I$ is equivalent to

$$
\sum_{|\alpha|=k} \sum_{|\beta|=k} c_{\alpha \beta}\left(c_{\alpha \beta}\right)^{*} \leq I
$$

which holds if and only if

$$
\left\|\sum_{|\alpha|=k} \sum_{|\beta|=k} c_{\alpha \beta} h_{\alpha, \beta}\right\|^{2} \leq \sum_{|\alpha|=k} \sum_{|\beta|=k}\left\|h_{\alpha, \beta}\right\|^{2} \quad\left(h_{\alpha, \beta} \in \mathcal{H}\right)
$$

For the last equivalence, see [1, Remark 3.2]. It is now easy to see that for every $X \in \mathcal{H}^{(l)}$,

$$
\|\Phi(X)\| \leq\left|\left\{\alpha \in \mathbb{N}^{m}:|\alpha|=k\right\}\right|^{1 / 2}\|X\|=\sqrt{l}\|X\|
$$

For $h \in \mathcal{H}$, let $X=\left(\sqrt{k!/ \alpha!}\left(T^{\mathfrak{s}}\right)^{\alpha} h\right)_{|\alpha|=k}$. By (2.7),

$$
\Phi(X)=\left(\sqrt{k!/ \beta!}\left(T^{\mathfrak{s}}\right)^{* \beta} h\right)_{|\beta|=k}
$$

In particular,

$$
\left\|\left(\sqrt{k!/ \beta!}\left(T^{\mathfrak{s}}\right)^{* \beta} h\right)_{|\beta|=k}\right\| \leq \sqrt{l}\left\|\left(\sqrt{k!/ \alpha!}\left(T^{\mathfrak{s}}\right)^{\alpha} h\right)_{|\alpha|=k}\right\| .
$$

It follows that

$$
\sum_{|\beta|=k} \frac{k!}{\beta!}\left\|\left(T^{\mathfrak{s}}\right)^{* \beta} h\right\|^{2} \leq l \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|\left(T^{\mathfrak{s}}\right)^{\alpha} h\right\|^{2}
$$

Since h was arbitrary, the desired inequality follows.
The special case $m=1, k=1$ of Theorem 2.1 was independently obtained by Shimorin [13] and the author [3]. For m arbitrary and $k=1$, Theorem 2.1 recovers [5, Corollary 6.8]. To see this, note that the commutativity of $T^{\mathfrak{s}}$ is not required for the deduction of (2.3) in case $k=1$. Unfortunately, for $m \geq 2$, there is one shortcoming of Theorem 2.1: it is not clear whether or not equality holds in (2.3) for some spherical 2-expansive m-tuple T.

Question 2.2. Let P_{s}, R_{s} be as in the statement of Theorem 2.1. What is the smallest positive number $\gamma_{m, k}$ such that the inequality

$$
R_{s}^{k}(I) \leq \gamma_{m, k} P_{s}^{k}(I)
$$

holds for all spherical 2-expansive m-tuples T with commuting $T^{\mathfrak{s}}$?
Thus Theorem 2.1 says that $\gamma_{m, k}$ is at most $\binom{k+m-1}{k}$. Let us see what happens if we relax the commutativity of the spherical Cauchy dual in Question 2.2 for the case $k=1$. To see that, we borrow the following example from unpublished notes of Prof. Stefan Richter.

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be such that $\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{m}\right|^{2}=1$. Let $V=$ $\left(V_{1}, \ldots, V_{m}\right)$ be an m-tuple of bounded linear operators from \mathcal{H} into \mathcal{K} such that $\sum_{i=1}^{m} \bar{\alpha}_{i} V_{i}=0$. Define the m-tuple $S_{V, \alpha}=\left(S_{1}, \ldots, S_{m}\right)$ by

$$
S_{i}:=\left(\begin{array}{cc}
\alpha_{i} I & V_{i} \tag{2.8}\\
0 & \alpha_{i} I
\end{array}\right) \quad \text { on } \mathcal{H} \oplus \mathcal{K} \quad(i=1, \ldots, m)
$$

Then $S_{V, \alpha}$ is a spherical 2-isometry. This follows from

$$
\sum_{i=1}^{m}\left(S_{i}\right)^{*} S_{i}=\left(\begin{array}{cc}
I & 0 \\
0 & A
\end{array}\right), \quad \sum_{i, j=1}^{m} S_{j}^{*}\left(S_{i}\right)^{*} S_{i} S_{j}=\left(\begin{array}{cc}
I & 0 \\
0 & 2 A-I
\end{array}\right)
$$

where $A:=I+\sum_{i=1}^{m} V_{i}^{*} V_{i}$. Note further that spherical Cauchy dual of $S_{V, \alpha}$ is given by

$$
S_{i}^{\mathfrak{s}}=\left(\begin{array}{cc}
\alpha_{i} I & V_{i} A^{-1} \\
0 & \alpha_{i} A^{-1}
\end{array}\right) \quad(i=1, \ldots, m)
$$

Let $\alpha=(1,0), V=(0, I)$, and consider the 2-tuple $S_{V, \alpha}=\left(S_{1}, S_{2}\right)$. It is easy to see that $\gamma_{2,1} \geq 5 / 4$. Since components of a jointly hyponormal m-tuple are hyponormal [2] and $S_{2}^{\mathfrak{5}}$ is not hyponormal, $S_{V, \alpha}^{\mathfrak{S}}$ is not jointly hyponormal. In particular, in dimension greater than 1 , the spherical Cauchy dual tuple of a spherical 2-isometry is not necessarily jointly hyponormal. This answers [5, Question 6.9] in the negative. Note, however, that $S_{V, \alpha}^{\mathfrak{S}}$ is not commuting.
3. Dimension $m=1$. We state below a special case of Theorem 2.1, which is a small but important step towards the question of subnormality of the Cauchy dual of a complete hyperexpansion [3].

Theorem 3.1. Let T be a 2-expansion and let T^{\prime} denote its Cauchy dual. Then $T^{\prime k}$ is hyponormal for every positive integer k.

Corollary 3.2. If S in $\mathcal{B}(\mathcal{H})$ satisfies

$$
\begin{equation*}
\|S x+y\|^{2} \leq 2\left(\|x\|^{2}+\|S y\|^{2}\right) \quad(x, y \in \mathcal{H}) \tag{3.9}
\end{equation*}
$$

then S^{k} is hyponormal for every positive integer k.

Proof. If S satisfies (3.9) then S^{\prime} is 2-expansive [12, proof of Theorem 3.6]. Now the required conclusion is immediate from the identity $S=$ $\left(S^{\prime}\right)^{\prime}$ and the last theorem.

Let $T \in B(\mathcal{H})$ be left-invertible. Consider the 2-parameter family

$$
\mathscr{F}_{T}:=\left\{\left(\left(\left(T^{p}\right)^{\prime}\right)^{q}\right)^{\prime}: p, q \in \mathbb{N}\right\}
$$

associated with T. Note that all operators in \mathscr{F}_{T} are left-invertible.
Corollary 3.3. Suppose T is a 2 -expansion with finite-dimensional cokernel. Then all operators in \mathscr{F}_{T} admit trace-class self-commutator.

Proof. We first assume that $A \in \mathscr{F}_{T}$ is of the form $\left(T^{\prime q}\right)^{\prime}$ for some positive integer q. Since any 2 -expansion can be written as a direct sum of a unitary and a completely non-unitary 2 -expansion, we may assume that T is completely non-unitary. By [3, Lemma 2.19], T^{\prime} (and hence $T^{\prime q}$) is finitely multi-cyclic. By Theorem 3.1, and the Berger-Shaw Theorem [11, $A^{\prime}=T^{\prime q}$ admits a trace-class self-commutator.

We now imitate the argument of [3, Proposition 2.21] to see that A has a trace-class self-commutator. Check first that

$$
\left[A^{*}, A\right] A=-A^{*} A\left(\left[A^{\prime *}, A^{\prime}\right] A\right) A^{*} A .
$$

In particular, the operator $\left[A^{*}, A\right] A$, and hence $\left[A^{*}, A\right] A A^{\prime *}$, is trace-class. It is easy to see that

$$
\left[A^{*}, A\right]=\left[A^{*}, A\right] A A^{\prime *}+\left[A^{*}, A\right] P_{\operatorname{ker}\left(A^{*}\right)}
$$

where $P_{\operatorname{ker}\left(A^{*}\right)}$, the orthogonal projection onto $\operatorname{ker}\left(A^{*}\right)$, is a finite-rank operator. It follows that $\left[A^{*}, A\right]$ is a trace-class operator.

The general case follows from the fact that a positive integral power of a 2-expansion is again a 2 -expansion [8, Proposition 4.2].

REFERENCES

[1] W. Arveson, Subalgebras of C^{*}-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), 159-228.
[2] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423.
[3] S. Chavan, On operators Cauchy dual to 2-hyperexpansive operators, Proc. Edinburgh Math. Soc. 50 (2007), 637-652.
[4] S. Chavan, C^{*}-algebras generated by spherical hyperexpansions, New York J. Math., to appear.
[5] S. Chavan and R. Curto, Operators Cauchy dual to 2-hyperexpansive operators: the multivariable case, Integral Equations Operator Theory 73 (2012), 481-516.
[6] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, in: Operator Theory: Operator Algebras and Applications, Part 2, Proc. Sympos. Pure Math. 51, Part 2, Amer. Math. Soc., 1990, 69-91.
[7] J. Gleason and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Integral Equations Operator Theory 56 (2006), 181-196.
[8] Z. Jabłoński and J. Stochel, Unbounded 2-hyperexpansive operators, Proc. Edinburgh Math. Soc. 44 (2001), 613-629.
[9] W. Kaufman, Representing a closed operator as a quotient of continuous operators, Proc. Amer. Math. Soc. 72 (1978), 531-534.
[10] W. Kaufman, Closed operators and pure contractions in Hilbert space, Proc. Amer. Math. Soc. 87 (1983), 83-87.
[11] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Operator Theory Adv. Appl. 39, Birkhäuser, Basel, 1989.
[12] S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math. 531 (2001), 147-189.
[13] S. Shimorin, Complete Nevanlinna-Pick property of Dirichlet-type spaces, J. Funct. Anal. 191 (2002), 276-296.

Sameer Chavan
Department of Mathematics
Indian Institute of Technology Kanpur
Kanpur 208016, India
E-mail: chavan@iitk.ac.in

> Received 31 August 2012; revised 8 May 2013

[^0]: 2010 Mathematics Subject Classification: Primary 47A13, 47B20; Secondary 47A65, 47B47.
 Key words and phrases: jointly hyponormal, spherical 2-expansion, Cauchy dual.

