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AN INEQUALITY FOR SPHERICAL CAUCHY DUAL TUPLES

BY

SAMEER CHAVAN (Kanpur)

Abstract. Let T be a spherical 2-expansive m-tuple and let T s denote its spherical
Cauchy dual. If T s is commuting then the inequality∑

|β|=k

(β!)−1(T s)
β
(T s)∗

β ≤
(
k +m− 1

k

) ∑
|β|=k

(β!)−1(T s)∗
β
(T s)β

holds for every positive integer k. In case m = 1, this reveals the rather curious fact that
all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are
hyponormal.

1. Introduction. If N denotes the set of non-negative integers, let Nm
denote the cartesian product N × · · · × N (m times). For p ≡ (p1, . . . , pm)
in Nm, we write |p| :=

∑m
i=1 pi.

Given a Banach space X , a tuple T ≡ (T1, . . . , Tm) of bounded linear
operators acting on X , and p ∈ Nm, we let T p := (T p11 , . . . , T pmm ), where T pii
denotes the product of Ti with itself pi times.

When T ≡ (T1, . . . , Tm) is a tuple of bounded linear operators acting on
a Hilbert space H, we let T ∗ := (T ∗1 , . . . , T

∗
m).

Let H denote a complex separable Hilbert space and let B(H) denote
the C∗-algebra of bounded linear operators on H. Let T be an m-tuple of
(possibly non-commuting) bounded linear operators on H. The spherical
generating 1-tuple Qs associated with T is given by

Qs(X) :=

m∑
i=1

T ∗i XTi (X ∈ B(H))

(see [5] for the definition of the generating m-tuples). More generally, for
m-tuples A and B, consider the so-called elementary operator

EA,B(X) =
m∑
i=1

AiXBi (X ∈ B(H)).
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If A and B are commuting m-tuples then it is easy to see that

EkA,B(X) =
∑
|β|=k

k!

β!
AβXBβ.(1.1)

Suppose T is jointly left-invertible, that is, Qs(I) is invertible. We refer to
the m-tuple T s := (T s

1 , . . . , T
s
m) as the spherical Cauchy dual tuple of T ,

where T s
i := Ti(Qs(I))−1 (i = 1, . . . ,m).

Remark 1.1. If Ps denotes the spherical generating 1-tuple associated
with T s then Ps(I) = Qs(I)−1.

We say that T is a spherical 2-expansion if

I − 2Qs(I) +Q2
s(I) ≤ 0.(1.2)

We say that T is a spherical 2-isometry if equality occurs in (1.2).
The Drury–Arveson 2-shift Mz,2 is an important example of a spherical

2-isometry [7, Theorem 4.2]. Recall that Mz,2 is the 2-tuple of multiplication
by the coordinate functions z1, z2 on the reproducing kernel Hilbert space
associated with the positive-definite kernel

1

1− z1w̄1 − z2w̄2
((z1, z2) ∈ B2),

where B2 denotes the open unit ball in C2.
Every spherical 2-expansion T is a spherical expansion, that is, Qs(I) ≥ I

[5, Proposition 4.1(i)]. In particular, the spherical Cauchy dual tuple T s

of a spherical 2-expansion T is well-defined. Let Ps denote the spherical
generating 1-tuple associated with T s. If T is a spherical expansion then, by
Remark 1.1, T s is a spherical contraction, that is, Ps(I) ≤ I. In all the above
notions, we skip the prefix “spherical” in case m = 1. Also, in this case, we
retain Shimorin’s original notation T ′ for the Cauchy dual operator. When
dealing with the Cauchy duals, it is tempting to mention the papers [9], [10]
concerning Kaufman’s transformation T 7→ T (I − T ∗T )−1/2, which maps
strict contractions reversibly onto closed densely defined operators.

The spherical Cauchy dual tuple S := M s
z,2 of the Drury–Arveson 2-shift

is commuting. Further, it admits a normal extension [4]. The fact that S
is jointly hyponormal (that is, the 2 × 2 matrix ([S∗j , Si])1≤i,j≤2 of cross
commutators of S is positive-definite) can also be deduced from Curto’s Six
Point Test [6].

We invoke the following basic fact about spherical Cauchy dual tuples,
which plays an important role in the proof of the main result.

Lemma 1.2. Let T be a spherical 2-expansive m-tuple of commuting
bounded linear operators on H and let T s denote the spherical Cauchy dual
of T. Let Qs (resp. Ps) denote the spherical generating 1-tuple associated
with the m-tuple T (resp. T s). Then Ps ◦Qs(I) ≤ I ≤ Qs ◦ Ps(I).
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Proof. The first inequality is obtained in [5, proof of Theorem 6.6] while
the second one is obtained in [4, proof of Proposition 5.2].

Remark 1.3. Since P 2
s (I) = Ps(I)Qs ◦ Ps(I)Ps(I), we obtain the fol-

lowing inequality: P 2
s (I) ≥ Ps(I)2.

2. Main result. The purpose of this note is to prove the following
inequality for spherical Cauchy dual tuples:

Theorem 2.1. Let T be a spherical 2-expansive m-tuple of commuting
bounded linear Hilbert space operators. Assume that the spherical Cauchy
dual T s of T is commuting. Let Ps (resp. Rs) denote the spherical generating
1-tuple associated with the m-tuple T s (resp. (T s)∗). Then

Rks (I) ≤
(
k +m− 1

k

)
P ks (I) for every positive integer k.(2.3)

Proof. By Remark 1.3, P 2
s (I) ≥ Ps(I)2. It is easy to see that

P ks (I)− P k+1
s (I) ≤ P k−1s (I)− P ks (I) (k ∈ N),(2.4)

where P 0(I) = I. We prove the following by induction on k ≥ 1:

P ks (I) + k(P k−1s (I)− P ks (I)) ≤ I (k ∈ N).(2.5)

The case k = 1 is trivial with equality in (2.5). Suppose (2.5) holds for some
integer k ≥ 1. By (2.4),

P k+1
s (I) + (k + 1)(P ks (I)− P k+1

s (I)) = P ks (I) + k(P ks (I)− P k+1
s (I))

≤ P ks (I) + k(P k−1s (I)− P ks (I)).

The desired conclusion is now immediate from the induction hypothesis.
Let Qs denote the spherical generating 1-tuple associated with T. It was

observed in [5, proof of Proposition 4.1(i)] that Qs satisfies

Qks(I) ≤ I + k(Qs(I)− I) (k ∈ N).(2.6)

We claim that for all positive integers k, P ks ◦Qks(I) ≤ I. The case k = 1 is
already recorded in Lemma 1.2. It now follows from (2.6) that

P ks ◦Qks(I) ≤ P ks (I + k(Qs(I)− I)) = P ks (I) + k(P ks ◦Qs(I)− P ks (I))

≤ P ks (I) + k(P k−1s (I)− P ks (I)).

By (2.5), P ks ◦Qks(I) ≤ I. Thus the claim stands verified.
Before we obtain the desired estimate, let us note some combinatorial

identities. Consider the elementary operator ET ∗,T s (see the discussion prior
to (1.1)), and observe that ET ∗,T s(I) = I. It follows that∑

|α|=k

k!

α!
(T ∗)α(T s)α = EkT ∗,T s(I) = I (k ∈ N).
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It is now clear that cαβ :=
√
k!/α!

√
k!/β! (Tα(T s)β)∗ satisfies√

k!/β! (T s)∗β =
∑
|α|=k

cαβ
√
k!/α! (T s)α (β ∈ Nm).(2.7)

Let l =
(
k+m−1

k

)
and let H(l) be the orthogonal direct sum of l copies

of H. For the l × l B(H)-valued matrix [cαβ] := [cαβ]|α|=k, |β|=k, we define

the linear operator Φ : H(l) → H(l) by

Φ(X) = [cαβ]X (X ∈ H(l)).

Note that P ks ◦Qks(I) ≤ I is equivalent to∑
|α|=k

∑
|β|=k

cαβ(cαβ)∗ ≤ I,

which holds if and only if∥∥∥ ∑
|α|=k

∑
|β|=k

cαβhα,β

∥∥∥2 ≤ ∑
|α|=k

∑
|β|=k

‖hα,β‖2 (hα,β ∈ H).

For the last equivalence, see [1, Remark 3.2]. It is now easy to see that for
every X ∈ H(l),

‖Φ(X)‖ ≤
∣∣{α ∈ Nm : |α| = k}

∣∣1/2‖X‖ =
√
l ‖X‖.

For h ∈ H, let X = (
√
k!/α! (T s)αh)|α|=k. By (2.7),

Φ(X) = (
√
k!/β! (T s)∗βh)|β|=k.

In particular,

‖(
√
k!/β! (T s)∗βh)|β|=k‖ ≤

√
l ‖(
√
k!/α! (T s)αh)|α|=k‖.

It follows that ∑
|β|=k

k!

β!
‖(T s)∗βh‖2 ≤ l

∑
|α|=k

k!

α!
‖(T s)αh‖2.

Since h was arbitrary, the desired inequality follows.

The special case m = 1, k = 1 of Theorem 2.1 was independently ob-
tained by Shimorin [13] and the author [3]. For m arbitrary and k = 1,
Theorem 2.1 recovers [5, Corollary 6.8]. To see this, note that the com-
mutativity of T s is not required for the deduction of (2.3) in case k = 1.
Unfortunately, for m ≥ 2, there is one shortcoming of Theorem 2.1: it is not
clear whether or not equality holds in (2.3) for some spherical 2-expansive
m-tuple T.
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Question 2.2. Let Ps, Rs be as in the statement of Theorem 2.1. What
is the smallest positive number γm,k such that the inequality

Rks (I) ≤ γm,kP ks (I)

holds for all spherical 2-expansive m-tuples T with commuting T s?

Thus Theorem 2.1 says that γm,k is at most
(
k+m−1

k

)
. Let us see what

happens if we relax the commutativity of the spherical Cauchy dual in Ques-
tion 2.2 for the case k = 1. To see that, we borrow the following example
from unpublished notes of Prof. Stefan Richter.

Let α = (α1, . . . , αm) be such that |α1|2 + · · · + |αm|2 = 1. Let V =
(V1, . . . , Vm) be an m-tuple of bounded linear operators from H into K such
that

∑m
i=1 ᾱiVi = 0. Define the m-tuple SV,α = (S1, . . . , Sm) by

Si :=

(
αiI Vi

0 αiI

)
on H⊕K (i = 1, . . . ,m).(2.8)

Then SV,α is a spherical 2-isometry. This follows from

m∑
i=1

(Si)
∗Si =

(
I 0

0 A

)
,

m∑
i,j=1

S∗j (Si)
∗SiSj =

(
I 0

0 2A− I

)
,

where A := I +
∑m

i=1 V
∗
i Vi. Note further that spherical Cauchy dual of SV,α

is given by

Ss
i =

(
αiI ViA

−1

0 αiA
−1

)
(i = 1, . . . ,m).

Let α = (1, 0), V = (0, I), and consider the 2-tuple SV,α = (S1, S2). It
is easy to see that γ2,1 ≥ 5/4. Since components of a jointly hyponormal
m-tuple are hyponormal [2] and Ss

2 is not hyponormal, Ss
V,α is not jointly

hyponormal. In particular, in dimension greater than 1, the spherical Cauchy
dual tuple of a spherical 2-isometry is not necessarily jointly hyponormal.
This answers [5, Question 6.9] in the negative. Note, however, that Ss

V,α is
not commuting.

3. Dimension m = 1. We state below a special case of Theorem 2.1,
which is a small but important step towards the question of subnormality
of the Cauchy dual of a complete hyperexpansion [3].

Theorem 3.1. Let T be a 2-expansion and let T ′ denote its Cauchy
dual. Then T ′k is hyponormal for every positive integer k.

Corollary 3.2. If S in B(H) satisfies

‖Sx+ y‖2 ≤ 2(‖x‖2 + ‖Sy‖2) (x, y ∈ H),(3.9)

then Sk is hyponormal for every positive integer k.



270 S. CHAVAN

Proof. If S satisfies (3.9) then S′ is 2-expansive [12, proof of Theo-
rem 3.6]. Now the required conclusion is immediate from the identity S =
(S′)′ and the last theorem.

Let T ∈ B(H) be left-invertible. Consider the 2-parameter family

FT := {(((T p)′)q)′ : p, q ∈ N}
associated with T. Note that all operators in FT are left-invertible.

Corollary 3.3. Suppose T is a 2-expansion with finite-dimensional co-
kernel. Then all operators in FT admit trace-class self-commutator.

Proof. We first assume that A ∈ FT is of the form (T ′q)′ for some
positive integer q. Since any 2-expansion can be written as a direct sum of a
unitary and a completely non-unitary 2-expansion, we may assume that T
is completely non-unitary. By [3, Lemma 2.19], T ′ (and hence T ′q) is finitely
multi-cyclic. By Theorem 3.1, and the Berger–Shaw Theorem [11], A′ = T ′q

admits a trace-class self-commutator.
We now imitate the argument of [3, Proposition 2.21] to see that A has

a trace-class self-commutator. Check first that

[A∗, A]A = −A∗A([A′∗, A′]A)A∗A.

In particular, the operator [A∗, A]A, and hence [A∗, A]AA′∗, is trace-class.
It is easy to see that

[A∗, A] = [A∗, A]AA′∗ + [A∗, A]Pker(A∗),

where Pker(A∗), the orthogonal projection onto ker(A∗), is a finite-rank op-
erator. It follows that [A∗, A] is a trace-class operator.

The general case follows from the fact that a positive integral power of
a 2-expansion is again a 2-expansion [8, Proposition 4.2].
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