WEIGHTED SHARP MAXIMAL FUNCTION INEQUALITIES AND BOUNDEDNESS OF A LINEAR OPERATOR ASSOCIATED TO A SINGULAR INTEGRAL OPERATOR WITH NON-SMOOTH KERNEL

By
DAZHAO CHEN (Shaoyang)

Abstract

We establish weighted sharp maximal function inequalities for a linear operator associated to a singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of a commutator on weighted Lebesgue spaces.

1. Introduction. As a development of singular integral operators (see [GR, [S]), their commutators have been well studied. In [RW], PE, PT, the authors proved that the commutators generated by singular integral operators and BMO functions are bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$. Chanillo [C] proved a similar result when singular integral operators are replaced by fractional integral operators. In [J], PA], the boundedness of commutators generated by singular integral operators and Lipschitz functions on Triebel-Lizorkin and $L^{p}\left(\mathbb{R}^{n}\right)(1<p<\infty)$ spaces was obtained. In [B], HG], the boundedness of commutators generated by singular integral operators and weighted BMO and Lipschitz functions on $L^{p}\left(\mathbb{R}^{n}\right)(1<p<\infty)$ spaces was established (see also HEW]). In [CG], Cohen and Gosselin studied generalized commutators of singular integral operators of the form (see also (DL)

$$
T^{b}(f)(x)=\int_{\mathbb{R}^{n}} \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y) f(y) d y,
$$

and obtained some sharp function estimates and boundedness of the commutators if $D^{\alpha} b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ for all α with $|\alpha|=m$. In [DM, [MA, some singular integral operators with non-smooth kernel were introduced, and the boundedness of these operators and their commutators was obtained (see [DEY, LIU1, [LIU2, [ZL).

Motivated by these, in this paper, we will study certain linear operators generated by singular integral operators with non-smooth kernel and

[^0]weighted Lipschitz and BMO functions, that is, $D^{\alpha} b \in \operatorname{BMO}(w)$ or $D^{\alpha} b \in$ $\operatorname{Lip}_{\beta}(w)$ for all α with $|\alpha|=m$.
2. Preliminaries. We will study some singular integral operators as described below (see [DM]).

Definition 2.1. A family of operators $D_{t}, t>0$, is said to be an approximation to the identity if, for every $t>0, D_{t}$ can be represented by a kernel $a_{t}(x, y)$ in the following sense:

$$
D_{t}(f)(x)=\int_{\mathbb{R}^{n}} a_{t}(x, y) f(y) d y
$$

for every $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $p \geq 1$, and $a_{t}(x, y)$ satisfies

$$
\left|a_{t}(x, y)\right| \leq h_{t}(x, y)=C t^{-n / 2} \rho\left(|x-y|^{2} / t\right)
$$

where ρ is a positive, bounded and decreasing function satisfying

$$
\lim _{r \rightarrow \infty} r^{n+\epsilon} \rho\left(r^{2}\right)=0 \quad \text { for some } \epsilon>0
$$

DEFINITION 2.2. A linear operator T is called a singular integral operator with non-smooth kernel if T is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ and associated with a kernel $K(x, y)$ such that

$$
T(f)(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y
$$

for every continuous function f with compact support, and for almost all x not in the support of f; moreover, we assume that:
(1) There exists an approximation to the identity $\left\{B_{t}, t>0\right\}$ such that $T B_{t}$ has kernel $k_{t}(x, y)$ and there exist $c_{1}, c_{2}>0$ so that

$$
\int_{|x-y|>c_{1} t^{1 / 2}}\left|K(x, y)-k_{t}(x, y)\right| d x \leq c_{2} \quad \text { for all } y \in \mathbb{R}^{n}
$$

(2) There exists an approximation to the identity $\left\{A_{t}, t>0\right\}$ such that $A_{t} T$ has kernel $K_{t}(x, y)$ which satisfies

$$
\begin{array}{rlrl}
\left|K_{t}(x, y)\right| & \leq c_{4} t^{-n / 2} & & \text { if }|x-y| \leq c_{3} t^{1 / 2} \\
\left|K(x, y)-K_{t}(x, y)\right| \leq c_{4} t^{\delta / 2}|x-y|^{-n-\delta} & & \text { if }|x-y| \geq c_{3} t^{1 / 2}
\end{array}
$$ for some $\delta, c_{3}, c_{4}>0$.

Moreover, let m be the positive integer and b be a function on \mathbb{R}^{n}. Set

$$
R_{m+1}(b ; x, y)=b(x)-\sum_{|\alpha| \leq m} \frac{1}{\alpha!} D^{\alpha} b(y)(x-y)^{\alpha}
$$

We relate to T the linear operator defined by

$$
T^{b}(f)(x)=\int_{\mathbb{R}^{n}} \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y) f(y) d y .
$$

Note that the commutator $[b, T](f)=b T(f)-T(b f)$ is a particular case of T^{b} if $m=0$. The linear operator T^{b} is a non-trivial generalization of the commutator. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see [CG], (DL). The main purpose of this paper is to prove sharp maximal inequalities for the linear operator T^{b}. As an application, we obtain the weighted L^{p}-boundedness of T^{b}.

Now, let us introduce some notations. Throughout this paper, Q will denote a cube in \mathbb{R}^{n} with sides parallel to the axes. For a non-negative integrable function ω, let $\omega(Q)=\int_{Q} \omega(x) d x$ and $\omega_{Q}=|Q|^{-1} \int_{Q} \omega(x) d x$.

For any locally integrable function f, the sharp maximal function of f is defined by

$$
M^{\#}(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y .
$$

It is well known (see [GR]) that

$$
M^{\#}(f)(x) \approx \sup _{Q \ni x} \inf _{c \in C} \frac{1}{|Q|} \int_{Q}|f(y)-c| d y .
$$

Let

$$
M(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| d y .
$$

For $\eta>0$, let $M_{\eta}^{\#}(f)(x)=M^{\#}\left(|f|^{\eta}\right)^{1 / \eta}(x)$ and $M_{\eta}(f)(x)=M\left(|f|^{\eta}\right)^{1 / \eta}(x)$.
For $0<\eta<n, 1 \leq p<\infty$ and a non-negative weight function ω, set

$$
\begin{aligned}
M_{\eta, p, \omega}(f)(x) & =\sup _{Q \ni x}\left(\frac{1}{\omega(Q)^{1-p \eta / n}} \int_{Q}|f(y)|^{p} \omega(y) d y\right)^{1 / p}, \\
M_{\omega}(f)(x) & =\sup _{Q \ni x} \frac{1}{\omega(Q)} \int_{Q}|f(y)| \omega(y) d y .
\end{aligned}
$$

The sharp maximal function $M_{A}(f)$ associated with an approximation to the identity $\left\{A_{t}, t>0\right\}$ is defined by

$$
M_{A}^{\#}(f)(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}\left|f(y)-A_{t_{Q}}(f)(y)\right| d y,
$$

where $t_{Q}=l(Q)^{2}$ and $l(Q)$ denotes the side length of Q. For $\eta>0$, let $M_{A, \eta}^{\#}(f)=M_{A}^{\#}\left(|f|^{\eta}\right)^{1 / \eta}$.

The A_{p} weights are defined by (see [GR])
$A_{p}=\left\{\omega \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right): \sup _{Q}\left(\frac{1}{|Q|} \int_{Q} \omega(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty\right\}$
for $1<p<\infty$, and

$$
A_{1}=\left\{\omega \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right): M(\omega)(x) \leq C w(x) \text { a.e. }\right\} .
$$

Given a non-negative weight function ω, and $1 \leq p<\infty$, the weighted Lebesgue space $L^{p}\left(\mathbb{R}^{n}, \omega\right)$ is the space of functions f such that

$$
\|f\|_{L^{p}(\omega)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty
$$

Given a non-negative weight function ω, the weighted BMO space $\mathrm{BMO}(\omega)$ is the space of functions b such that

$$
\|b\|_{\mathrm{BMO}(\omega)}=\sup _{Q} \frac{1}{\omega(Q)} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty .
$$

For $0<\beta<1$, the weighted Lipschitz space $\operatorname{Lip}_{\beta}(\omega)$ is the space of functions b such that

$$
\|b\|_{\operatorname{Lip}_{\beta}(\omega)}=\sup _{Q} \frac{1}{\omega(Q)^{\beta / n}}\left(\frac{1}{\omega(Q)} \int_{Q}\left|b(y)-b_{Q}\right|^{p} \omega(x)^{1-p} d y\right)^{1 / p}<\infty
$$

Remark. (1) It is known (see [G]) that for $b \in \operatorname{Lip}_{\beta}(\omega), \omega \in A_{1}$ and $x \in Q$,

$$
\left|b_{Q}-b_{2^{k} Q}\right| \leq C k\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(x) \omega\left(2^{k} Q\right)^{\beta / n} .
$$

(2) Let $b \in \operatorname{Lip}_{\beta}(\omega)$ and $\omega \in A_{1}$. By [G], we know that the spaces $\operatorname{Lip}_{\beta}(\omega)$ all coincide and the norms $\|b\|_{\operatorname{Lip}_{\beta}(\omega)}$ for different $1 \leq p<\infty$ are all equivalent.

We give some preliminary lemmas.
Lemma 2.3 (see [GR, p. 485]). Let $0<p<q<\infty$. For any function $f \geq 0$ define, with $1 / r=1 / p-1 / q$,

$$
\begin{aligned}
\|f\|_{W L^{q}} & =\sup _{\lambda>0} \lambda\left|\left\{x \in \mathbb{R}^{n}: f(x)>\lambda\right\}\right|^{1 / q} \\
N_{p, q}(f) & =\sup _{Q}\left\|f \chi_{Q}\right\|_{L^{p}} /\left\|\chi_{Q}\right\|_{L^{r}}
\end{aligned}
$$

where the sup is taken over all measurable sets Q with $0<|Q|<\infty$. Then

$$
\|f\|_{W L^{q}} \leq N_{p, q}(f) \leq(q /(q-p))^{1 / p}\|f\|_{W L^{q}}
$$

Lemma 2.4 (see [DM], MA]). Let T be a singular integral operator as in Definition 2.2. Then T is bounded on $L^{p}\left(\mathbb{R}^{n}, \omega\right)$ for $\omega \in A_{p}$ with $1<p<\infty$, and weakly $\left(L^{1}, L^{1}\right)$ bounded.

Lemma 2.5 (see $[\mathrm{B}])$. Let $b \in \operatorname{BMO}(\omega)$. Then

$$
\left|b_{Q}-b_{2^{j} Q}\right| \leq C j\|b\|_{\mathrm{BMO}(\omega)} \omega_{Q_{j}}
$$

where $\omega_{Q_{j}}=\max _{1 \leq i \leq j}\left|2^{i} Q\right|^{-1} \int_{2^{i} Q} \omega(x) d x$.
Lemma 2.6 (see $[\mathrm{B}]$). Let $\omega \in A_{p}$ with $1<p<\infty$. Then there exists $\varepsilon>0$ such that $\omega^{-r / p} \in A_{r}$ for any $p^{\prime} \leq r \leq p^{\prime}+\varepsilon$.

Lemma 2.7 (see $[\mathrm{B}]$). Let $b \in \operatorname{BMO}(\omega)$ with $\omega=\left(\mu \nu^{-1}\right)^{1 / p}, \mu, \nu \in A_{p}$ and $p>1$. Then there exists $\varepsilon>0$ such that for $p^{\prime} \leq r \leq p^{\prime}+\varepsilon$,

$$
\int_{Q}\left|b(x)-b_{Q}\right|^{r} \mu(x)^{-r / p} d x \leq C\|b\|_{\mathrm{BMO}(\omega)}^{r} \int_{Q} \nu(x)^{-r / p} d x \text {. }
$$

Lemma 2.8 (see $[\mathrm{B}]$). Let $\omega \in A_{p}$ with $1<p<\infty$. Then there exists $0<\delta<1$ such that $\omega^{1-r^{\prime} / p} \in A_{p / r^{\prime}}(d \mu)$ for any $p^{\prime}<r<p^{\prime}(1+\delta)$, where $d \mu=\omega^{r^{\prime} / p} d x$.

Lemma 2.9 (see [B]). Let $\mu, \nu \in A_{p}$ and $\omega=\left(\mu \nu^{-1}\right)^{1 / p}$ with $1<p<\infty$. Then there exists $1<q<p$ such that

$$
\omega_{Q}\left(\nu_{Q}\right)^{1 / q}\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-q^{\prime}} \nu(x)^{-q^{\prime} / q} d x\right)^{1 / q^{\prime}} \leq C
$$

Lemma 2.10 (see [C], [GR]). Let $0 \leq \eta<n, 1 \leq s<p<n / \eta, 1 / q=$ $1 / p-\eta / n$ and $\omega \in A_{1}$. Then

$$
\left\|M_{\eta, s, \omega}(f)\right\|_{L^{q}(\omega)} \leq C\|f\|_{L^{p}(\omega)}
$$

LEMMA 2.11 (see [DM], MA]). Let $\left\{A_{t}, t>0\right\}$ be an approximation to the identity. For any $\gamma>0$, there exists a constant $C>0$ independent of γ such that

$$
\begin{aligned}
\mid\left\{x \in \mathbb{R}^{n}: M(f)(x)>D \lambda, M_{A}^{\#}(f)(x)\right. & \leq \gamma \lambda\} \mid \\
& \leq C \gamma\left|\left\{x \in \mathbb{R}^{n}: M(f)(x)>\lambda\right\}\right|
\end{aligned}
$$

for $\lambda>0$, where D is a fixed constant which only depends on n. Thus, for $f \in L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty, 0<\eta<\infty$ and $\omega \in A_{1}$,

$$
\left\|M_{\eta}(f)\right\|_{L^{p}(\omega)} \leq C\left\|M_{A, \eta}^{\#}(f)\right\|_{L^{p}(\omega)}
$$

Lemma 2.12 (see [CG]). Let b be a function on \mathbb{R}^{n} with $D^{\alpha} b \in L^{s}\left(\mathbb{R}^{n}\right)$ for all α with $|\alpha|=m$ and any $s>n$. Then

$$
\left|R_{m}(b ; x, y)\right| \leq C|x-y|^{m} \sum_{|\alpha|=m}\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)}\left|D^{\alpha} b(z)\right|^{s} d z\right)^{1 / s}
$$

where \tilde{Q} is the cube centered at x and having side length $5 \sqrt{n}|x-y|$.

LEMMA 2.13. Let $\left\{A_{t}, t>0\right\}$ be an approximation to the identity, $\omega \in A_{1}, 0<\beta<1,1<r<\infty$ and $b \in \operatorname{Lip}_{\beta}(\omega)$. Then for every $f \in L^{p}(\omega)$, $p>1$ and $\tilde{x} \in \mathbb{R}^{n}$,

$$
\sup _{Q \ni \tilde{x}} \frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}}\left(\left(b-b_{Q}\right) f\right)(y)\right| d y \leq C\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, \omega, r}(f)(\tilde{x})
$$

Proof. We write, for any cube Q with $\tilde{x} \in Q$,

$$
\begin{aligned}
& \frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}}\left(\left(b-b_{Q}\right) f\right)(x)\right| d x \leq \frac{1}{|Q|} \int_{Q \mathbb{R}^{n}} h_{t_{Q}}(x, y)\left|\left(b(y)-b_{Q}\right) f(y)\right| d y d x \\
& \leq \frac{1}{|Q|} \int_{Q} \int_{Q} h_{t_{Q}}(x, y)\left|\left(b(y)-b_{Q}\right) f(y)\right| d y d x \\
&+\sum_{k=0}^{\infty} \frac{1}{|Q|} \int_{Q 2^{k+1} Q \backslash 2^{k} Q} h_{t_{Q}}(x, y)\left|\left(b(y)-b_{Q}\right) f(y)\right| d y d x \\
&= I+I I
\end{aligned}
$$

We have, by Hölder's inequality,

$$
\begin{aligned}
I & \leq \frac{C}{|Q||Q|} \int_{Q} \int_{Q}\left|\left(b(y)-b_{Q}\right) f(y)\right| d y d x \\
& \leq \frac{C}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| \omega(y)^{-1 / r}|f(y)| \omega(y)^{1 / r} d y \\
& \leq \frac{C}{|Q|}\left(\int_{Q}\left|b(y)-b_{Q}\right|^{r^{\prime}} \omega(y)^{1-r^{\prime}} d y\right)^{1 / r^{\prime}}\left(\int_{Q}|f(y)|^{r} \omega(y) d y\right)^{1 / r} \\
& \leq \frac{C}{|Q|}\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(Q)^{\beta / n+1 / r^{\prime}}\left(\int_{Q}|f(y)|^{r} \omega(y) d y\right)^{1 / r} \\
& \leq C\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \frac{\omega(Q)}{|Q|} M_{\beta, r, \omega}(f)(\tilde{x}) \\
& \leq C\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
\end{aligned}
$$

For $I I$, notice that if $x \in Q$ and $y \in 2^{k+1} Q \backslash 2^{k} Q$, then $|x-y| \geq 2^{k-1} t_{Q}$ and $h_{t_{Q}}(x, y) \leq C s\left(2^{2(k-1)}\right) /|Q|$, so

$$
\begin{aligned}
& I I \leq C \sum_{k=0}^{\infty} s\left(2^{2(k-1)}\right) \frac{1}{|Q||Q|} \int_{Q} \int_{2^{k+1} Q}\left|\left(b(y)-b_{Q}\right) f(y)\right| d y d x \\
& \leq C \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right) \frac{1}{\left|2^{k+1} Q\right|} \int_{2^{k+1} Q}\left|\left(b(y)-b_{2^{k+1} Q}\right)+\left(b_{2^{k+1} Q}-b_{Q}\right)\right||f(y)| d y
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right)\left|2^{k+1} Q\right|^{-1}\left(\int_{2^{k+1} Q}\left|b(y)-b_{2^{k+1} Q}\right|^{r^{\prime}} \omega(y)^{1-r^{\prime}} d y\right)^{1 / r^{\prime}} \\
& \quad \times\left(\int_{2^{k+1} Q}|f(y)|^{r} \omega(y) d y\right)^{1 / r} \\
& \quad+C \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right)\left|2^{k+1} Q\right|^{-1} k\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) \omega\left(2^{k+1} Q\right)^{\beta / n} \\
& \quad \times\left(\int_{2^{k+1} Q}|f(y)|^{r} \omega(y) d y\right)^{1 / r}\left(\frac{1}{\left|2^{k+1} Q\right|} \int_{2^{k+1} Q} \omega(y)^{-1 /(r-1)} d y\right)^{(r-1) / r} \\
& \quad \times\left(\frac{1}{\left|2^{k+1} Q\right|} \int_{2^{k+1} Q} \omega(y) d y\right)^{1 / r}\left|2^{k+1} Q\right| \omega\left(2^{k+1} Q\right)^{-1 / r} \\
& \leq C\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \sum_{k=0}^{\infty} k 2^{k n} s\left(2^{2(k-1)}\right)\left(\frac{\omega\left(2^{k+1} Q\right)}{\left|2^{k+1} Q\right|}+\omega(\tilde{x})\right) \\
& \quad \times\left(\frac{1}{\omega\left(2^{k+1} Q\right)^{1-r \beta / n}} \int_{2^{k+1} Q}|f(y)|^{r} \omega(y) d y\right)^{1 / r} \\
& \leq C\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \sum_{k=0}^{\infty} k 2^{k n} s\left(2^{2(k-1)}\right) \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x}) \\
& \leq C\|b\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
\end{aligned}
$$

where the last inequality follows from

$$
\sum_{k=1}^{\infty} k 2^{(k-1) n} s\left(2^{2(k-1)}\right) \leq C \sum_{k=1}^{\infty} k 2^{-(k-1) \varepsilon}<\infty
$$

for some $\varepsilon>0$. This completes the proof.

3. Theorems and proofs

Theorem 3.1. Let T be a singular integral operator with non-smooth kernel as in Definition 2.2, $1<p<\infty, \mu, \nu \in A_{p}, \omega=\left(\mu \nu^{-1}\right)^{1 / p}, 0<\eta<1$ and $D^{\alpha} b \in \operatorname{BMO}(\omega)$ for all α with $|\alpha|=m$. Then there exists a constant $C>0, \varepsilon>0,0<\delta<1,1<q<p$ and $p^{\prime}<r<\min \left(p^{\prime}+\varepsilon, p^{\prime}(1+\delta)\right)$ such that, for any $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\tilde{x} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& M_{A, \eta}^{\#}\left(T^{b}(f)\right)(\tilde{x}) \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \\
& \quad \times\left(\left[M_{\nu}\left(|\omega T(f)|^{q}\right)(\tilde{x})\right]^{1 / q}+\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}+\left[M_{\nu}\left(|\omega f|^{q}\right)(\tilde{x})\right]^{1 / q}\right)
\end{aligned}
$$

Proof. It suffices to prove that for $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and some constant C,

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T^{b}(f)(x)-A_{t_{Q}}\left(T^{b}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\left[M_{\nu}\left(|\omega T(f)|^{q}\right)(\tilde{x})\right]^{1 / q}\right. \\
& \left.\quad+\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}+\left[M_{\nu}\left(|\omega f|^{q}\right)(\tilde{x})\right]^{1 / q}\right)
\end{aligned}
$$

where $t_{Q}=d^{2}$ and d denotes the side length of Q. Fix a cube $Q=Q\left(x_{0}, d\right)$ and $\tilde{x} \in Q$. Let $\tilde{Q}=5 \sqrt{n} Q$ and $\tilde{b}(x)=b(x)-\sum_{|\alpha|=m}(1 / \alpha!)\left(D^{\alpha} b\right)_{\tilde{Q}} x^{\alpha}$. Then $R_{m}(b ; x, y)=R_{m}(\tilde{b} ; x, y)$ and $D^{\alpha} \tilde{b}=D^{\alpha} b-\left(D^{\alpha} b\right)_{\tilde{Q}}$ for $|\alpha|=m$. We write, for $f_{1}=f \chi_{\tilde{Q}}$ and $f_{2}=f \chi_{\mathbb{R}^{n} \backslash \tilde{Q}}$,

$$
\begin{aligned}
T^{b}(f)(x)= & \int_{\mathbb{R}^{n}} \frac{R_{m}(\tilde{b} ; x, y)}{|x-y|^{m}} K(x, y) f_{1}(y) d y \\
& -\sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \frac{(x-y)^{\alpha} D^{\alpha} \tilde{b}(y)}{|x-y|^{m}} K(x, y) f_{1}(y) d y \\
& +\int_{\mathbb{R}^{n}} \frac{R_{m+1}(\tilde{b} ; x, y)}{|x-y|^{m}} K(x, y) f_{2}(y) d y \\
= & T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)-T\left(\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{b}}{|x-\cdot|^{m}} f_{1}\right)+T^{\tilde{b}}\left(f_{2}\right)(x)
\end{aligned}
$$

and

$$
\begin{aligned}
A_{t_{Q}} T^{b}(f)(x)= & \int_{\mathbb{R}^{n}} \frac{R_{m}\left(\tilde{b}_{j} ; x, y\right)}{|x-y|^{m}} K_{t}(x, y) f_{1}(y) d y \\
& -\sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \frac{(x-y)^{\alpha} D^{\alpha} \tilde{b}(y)}{|x-y|^{m}} K_{t}(x, y) f_{1}(y) d y \\
& +\int_{\mathbb{R}^{n}} \frac{R_{m+1}(\tilde{b} ; x, y)}{|x-y|^{m}} K_{t}(x, y) f_{2}(y) d y \\
= & A_{t_{Q}} T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right) \\
& -A_{t_{Q}} T\left(\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{b}}{|x-\cdot|^{m}} f_{1}\right)+A_{t_{Q}} T^{\tilde{b}}\left(f_{2}\right)(x)
\end{aligned}
$$

Then

$$
\begin{aligned}
&\left(\frac{1}{|Q|} \int_{Q}\left|T^{b}(f)(x)-A_{t_{Q}} T^{b}(f)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C\left(\frac{1}{|Q|} \int_{Q}\left|T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
&+C\left(\frac{1}{|Q|} \int_{Q}\left|T\left(\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{b}}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
&+C\left(\frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}} T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
&+C\left(\frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}} T\left(\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{b}}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
&+C\left(\frac{1}{|Q|} \int_{Q}\left|T^{\tilde{b}}\left(f_{2}\right)(x)-A_{t_{Q}} T^{\tilde{b}}\left(f_{2}\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
&= I_{1}+I_{2}+I_{3}+I_{4}+I_{5} .
\end{aligned}
$$

For I_{1}, note that $\omega \in A_{1}$ satisfies the reverse Hölder inequality

$$
\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{p_{0}} d x\right)^{1 / p_{0}} \leq \frac{C}{|Q|} \int_{Q} \omega(x) d x
$$

for all cubes Q and some $1<p_{0}<\infty$ (see [GR]). We take $s=r p_{0} /\left(r+p_{0}-1\right)$ in Lemma 2.12. Then $1<s<r$ and $p_{0}=s(r-1) /(r-s)$. Hence by Lemma 2.12 and Hölder's inequality,

$$
\begin{aligned}
& \left|R_{m}(b ; x, y)\right| \leq C|x-y|^{m} \sum_{|\alpha|=m}\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)}\left|D^{\alpha} b(z)\right|^{s} d z\right)^{1 / s} \\
& \quad \leq C|x-y|^{m} \sum_{|\alpha|=m}|\tilde{Q}|^{-1 / s}\left(\int_{\tilde{Q}(x, y)}\left|D^{\alpha} b(z)\right|^{s} \omega(z)^{s(1-r) / r} \omega(z)^{s(r-1) / r} d z\right)^{1 / s} \\
& \quad \leq C|x-y|^{m} \sum_{|\alpha|=m}|\tilde{Q}|^{-1 / s}\left(\int_{\tilde{Q}(x, y)}\left|D^{\alpha} b(z)\right|^{r} \omega(z)^{1-r} d z\right)^{1 / r} \\
& \quad \times\left(\int_{\tilde{Q}(x, y)} \omega(z)^{s(r-1) /(r-s)} d z\right)^{(r-s) / r s}
\end{aligned}
$$

$$
\begin{aligned}
\leq & C|x-y|^{m} \sum_{|\alpha|=m}|\tilde{Q}|^{-1 / s}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \omega(\tilde{Q})^{1 / r}|\tilde{Q}|^{(r-s) / r s} \\
& \times\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} \omega(z)^{p_{0}} d z\right)^{(r-s) / r s} \\
\leq & C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)}|\tilde{Q}|^{-1 / q} \omega(\tilde{Q})^{1 / r}|\tilde{Q}|^{1 / s-1 / r} \\
& \times\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} \omega(z) d z\right)^{(r-1) / r} \\
\leq & C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)}|\tilde{Q}|^{-1 / q} \omega(\tilde{Q})^{1 / r}|\tilde{Q}|^{1 / s-1 / r} \omega(\tilde{Q})^{1-1 / r}|\tilde{Q}|^{1 / r-1} \\
\leq & C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|}
\end{aligned}
$$

Thus, by Lemma 2.9, we obtain

$$
\begin{aligned}
I_{1} \leq & \frac{C}{|Q|} \int_{Q}\left|T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right| d x \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|} \frac{1}{|Q|} \int_{Q}|T(f)(y)| \omega(y) \nu(y)^{1 / q} \omega(y)^{-1} \nu(y)^{-1 / q} d y \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \omega_{\tilde{Q}}\left(\frac{1}{|Q|} \int_{Q}|\omega(y) T(f)(y)|^{q} \nu(y) d y\right)^{1 / q} \\
& \times\left(\frac{1}{|Q|} \int_{Q} \omega(y)^{-q^{\prime}} \nu(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \omega_{Q}\left(\nu_{Q}\right)^{1 / q}\left(\frac{1}{\nu(Q)} \int_{Q}|\omega(y) T(f)(y)|^{q} \nu(y) d y\right)^{1 / q} \\
& \times\left(\frac{1}{|Q|} \int_{Q} \omega(y)^{-q^{\prime}} \nu(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left[M_{\nu}\left(|\omega T(f)|^{q}\right)(\tilde{x})\right]^{1 / q} \\
& \times \omega_{Q}\left(\nu_{Q}\right)^{1 / q}\left(\frac{1}{|Q|} \int_{Q} \omega(y)^{-q^{\prime}} \nu(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left[M_{\nu}\left(|\omega T(f)|^{q}\right)(\tilde{x})\right]^{1 / q} .
\end{aligned}
$$

For I_{2}, we know $\nu^{-r / p} \in A_{r}$ by Lemma 2.6, thus

$$
\left(\frac{1}{|Q|} \int_{Q} \nu(x)^{-r / p} d x\right)^{1 / r} \leq C\left(\frac{1}{|Q|} \int_{Q} \nu(x)^{r^{\prime} / p} d x\right)^{-1 / r^{\prime}}
$$

Then, by the weak (L^{1}, L^{1}) boundedness of T (see Lemma 2.4) and Kolmogorov's inequality (see Lemma 2.3), we obtain, by Lemma 2.7,

$$
\begin{aligned}
& I_{2} \leq C \sum_{|\alpha|=m}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(D^{\alpha} \tilde{b} f_{1}\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C \sum_{|\alpha|=m} \frac{|Q|^{1 / \eta-1}}{|Q|^{1 / \eta}} \frac{\left\|T\left(D^{\alpha} \tilde{b} f_{1}\right) \chi_{Q}\right\|_{L^{\eta}}}{\left\|\chi_{Q}\right\|_{L^{\eta /(1-\eta)}}} \\
& \leq C \sum_{|\alpha|=m} \frac{1}{|Q|}\left\|T\left(D^{\alpha} \tilde{b} f_{1}\right)\right\|_{W L^{1}} \leq C \sum_{|\alpha|=m} \frac{1}{|Q|} \int_{\mathbb{R}^{n}}\left|D^{\alpha} \tilde{b}(x) f_{1}(x)\right| d x \\
& =C \sum_{|\alpha|=m} \frac{1}{|Q|} \int_{\tilde{Q}}\left|D^{\alpha} b(x)-\left(D^{\alpha} b\right)_{\tilde{Q}}\right| \mu(x)^{-1 / p}|f(x)| \omega(x) \nu(x)^{1 / p} d x \\
& \leq C \sum_{|\alpha|=m}\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}}\left|\left(D^{\alpha} b(x)-\left(D^{\alpha} b\right)_{\tilde{Q}}\right)\right|^{r} \mu(x)^{-r / p} d x\right)^{1 / r} \\
& \times\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}}|f(x)|^{r^{\prime}} \omega(x)^{r^{\prime}} \nu(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)}\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} \nu(x)^{-r / p} d x\right)^{1 / r} \\
& \times\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}}|f(x) \omega(x)|^{r^{\prime}} \nu(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} \nu(x)^{r^{\prime} / p} d x\right)^{-1 / r^{\prime}} \\
& \times\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}}|f(x) \omega(x)|^{r^{\prime}} \nu(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\frac{1}{\nu(\tilde{Q})^{r^{\prime} / p}} \int_{\tilde{Q}}|f(x) \omega(x)|^{r^{\prime}} \nu(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}} .
\end{aligned}
$$

For I_{3}, noticing that if $x \in Q$ and $y \in 2^{k+1} Q \backslash 2^{k} Q$, then $|x-y| \geq 2^{k-1} t_{Q}$ and $h_{t_{Q}}(x, y) \leq C s\left(2^{2(k-1)}\right) /|Q|$, similarly to the proof for I_{1} we get, by Lemma 2.9,

$$
\begin{aligned}
& I_{3} \leq \frac{C}{|Q|} \int_{Q}\left|A_{t_{Q}} T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right| d x \\
& \leq \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|} \frac{1}{|Q|} \int_{Q} \int_{Q} h_{t_{Q}}(x, y)\left|T\left(f_{1}\right)(y)\right| d y d x \\
& +\sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|} \sum_{k=0}^{\infty} \frac{1}{|Q|} \int_{Q 2^{k+1} Q \backslash 2^{k} Q} h_{t_{Q}}(x, y) \\
& \times\left|T\left(f_{1}\right)(y)\right| d y d x \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|} \frac{1}{|Q|} \int_{Q}|T(f)(y)| \\
& \times \omega(y) \nu(y)^{1 / q} \omega(y)^{-1} \nu(y)^{-1 / q} d y \\
& +C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|} \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right) \\
& \times \frac{1}{\left|2^{k+1} Q\right|} \int_{2^{k+1} Q}|T(f)(y)| \omega(y) \nu(y)^{1 / q} \omega(y)^{-1} \nu(y)^{-1 / q} d y \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\frac{1}{\nu(Q)} \int_{Q}|\omega(y) T(f)(y)|^{q} \nu(y) d y\right)^{1 / q} \\
& \times \omega_{Q}\left(\nu_{Q}\right)^{1 / q}\left(\frac{1}{|Q|} \int_{Q} \omega(y)^{-q^{\prime}} \nu(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
& +C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right) \\
& \times\left(\frac{1}{\left|2^{k+1} Q\right|} \int_{2^{k+1} Q}|\omega(y) T(f)(y)|^{q} \nu(y) d y\right)^{1 / q} \\
& \times \omega_{2^{k+1} Q}\left(\nu_{2^{k+1} Q}\right)^{1 / q}\left(\frac{1}{\left|2^{k} \tilde{Q}\right|} \int_{Q} \omega(y)^{-q^{\prime}} \nu(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left[M_{\nu}\left(|\omega T(f)|^{q}\right)(\tilde{x})\right]^{1 / q} .
\end{aligned}
$$

For I_{4}, similarly to the proofs for I_{2} and I_{3}, we get

$$
\begin{aligned}
I_{4} \leq & \sum_{|\alpha|=m}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(D^{\alpha} \tilde{b} f_{1}\right)(y)\right|^{\eta} d y\right)^{1 / \eta} \\
& +\sum_{|\alpha|=m} \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right)\left(\frac{1}{\left|2^{k+1} Q\right|} \int_{2^{k+1} Q}\left|T\left(D^{\alpha} \tilde{b} f_{1}\right)(y)\right|^{\eta} d y\right)^{1 / \eta} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\frac{1}{\nu(\tilde{Q})^{r^{\prime} / p}} \int_{\tilde{Q}}|f(x) \omega(x)|^{r^{\prime}} \nu(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
& +C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \sum_{k=0}^{\infty} 2^{k n} s\left(2^{2(k-1)}\right) \\
& \times\left(\frac{1}{\left.\nu\left(2^{k+1} \tilde{Q}\right)^{r^{\prime} / p} \int_{2^{k+1} \tilde{Q}}|f(x) \omega(x)|^{r^{\prime}} \nu(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}}}\right. \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}} .
\end{aligned}
$$

For I_{5}, noting that $|x-y| \approx\left|x_{0}-y\right|$ for $x \in Q$ and $y \in \mathbb{R}^{n} \backslash Q$, similarly to the proof for I_{1} we have

$$
\left|R_{m}(\tilde{b} ; x, y)\right| \leq C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \frac{\omega\left(2^{k} \tilde{Q}\right)}{\left|2^{k} \tilde{Q}\right|} .
$$

Thus, by the conditions on K and K_{t}, we get

$$
\begin{aligned}
& \left|T^{\tilde{b}}\left(f_{2}\right)(x)-A_{t_{Q}} T^{\tilde{b}}\left(f_{2}\right)\left(x_{0}\right)\right| \\
& \leq \leq \int_{\mathbb{R}^{n}} \frac{\left|R_{m}(\tilde{b} ; x, y)\right|}{|x-y|^{m}}\left|K(x, y)-K_{t}(x, y)\right|\left|f_{2}(y)\right| d y \\
& \quad+\sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \frac{\left|D^{\alpha} \tilde{b}_{1}(y)\right|\left|(x-y)^{\alpha_{1}}\right|}{|x-y|^{m}}\left|K(x, y)-K_{t}(x, y)\right|\left|f_{2}(y)\right| d y \\
& \leq \sum_{k=0}^{\infty} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \frac{\omega\left(2^{k+1} \tilde{Q}\right)}{\left|2^{k+1} \tilde{Q}\right|} \int_{2^{k+1} \tilde{Q} \backslash 2^{k} \tilde{Q}} \frac{d^{\delta}}{\left|x_{0}-y\right|^{n+\delta}}|f(y)| d y \\
& \quad+C \sum_{|\alpha|=m} \sum_{k=0}^{\infty} \int_{2^{k+1} \tilde{Q}}\left|\left(D^{\alpha} b\right)_{2^{k+1} \tilde{Q}}-\left(D^{\alpha} b\right)_{\tilde{Q}}\right| \frac{d^{\delta}}{\left|x_{0}-y\right|^{n+\delta}}|f(y)| d y \\
& \quad+C \sum_{|\alpha|=m} \sum_{k=0}^{\infty} \int_{2^{k+1} \tilde{Q}}\left|D^{\alpha} b(y)-\left(D^{\alpha} b\right)_{2^{k+1} \tilde{Q}}\right| \frac{d^{\delta}}{\left|x_{0}-y\right|^{n+\delta}}|f(y)| d y
\end{aligned}
$$

$$
\begin{array}{r}
\leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)} \sum_{k=1}^{\infty} k 2^{-k \delta}\left(\frac{1}{\nu\left(2^{k} \tilde{Q}\right)} \int_{2^{k} \tilde{Q}}|\omega(y) f(y)|^{q} \nu(y) d y\right)^{1 / q} \\
\times \omega_{2^{k} \tilde{Q}^{2}}\left(\nu_{2^{k} \tilde{Q}}\right)^{1 / q}\left(\frac{1}{\left|2^{k} \tilde{Q}\right|} \int_{2^{k} \tilde{Q}} \omega(y)^{-q^{\prime}} \nu(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
+C \sum_{k=1}^{\infty} 2^{-k \delta}\left(\left.\frac{1}{\left|2^{k} \tilde{Q}\right|} \int_{2^{k} \tilde{Q}} \right\rvert\, D^{\alpha} b(y)-\left(D^{\alpha} b\right)_{\left.\left.2^{k} \tilde{Q}^{\prime}\right|^{r} \mu(y)^{-r / p} d y\right)^{1 / r}}\right. \\
\times\left(\frac{1}{\left|2^{k} \tilde{Q}\right|} \int_{2^{k} \tilde{Q}}|f(y)|^{r^{\prime}} \omega(y)^{r^{\prime}} \nu(y)^{r^{\prime} / p} d y\right)^{1 / r^{\prime}} \\
\leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\left[M_{\nu}\left(|\omega f|^{q}\right)(\tilde{x})\right]^{1 / q}+\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}\right)
\end{array}
$$

Thus

$$
I_{3} \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\mathrm{BMO}(\omega)}\left(\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}+\left[M_{\nu}\left(|\omega f|^{q}\right)(\tilde{x})\right]^{1 / q}\right)
$$

This completes the proof of Theorem 3.1.
Theorem 3.2. Let T be a singular integral operator with non-smooth kernel as in Definition 2.2, $\omega \in A_{1}, 0<\eta<1,1<r<\infty, 0<\beta<1$ and $D^{\alpha} b \in \operatorname{Lip}_{\beta}(\omega)$ for all α with $|\alpha|=m$. Then there exists a constant $C>0$ such that, for any $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\tilde{x} \in \mathbb{R}^{n}$,

$$
M_{A, \eta}^{\#}\left(T^{b}(f)\right)(\tilde{x}) \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
$$

Proof. It suffices to prove that, for $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and some constant C,

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T^{b}(f)(x)-A_{t_{Q}}\left(T^{b}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \quad \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
\end{aligned}
$$

where $t_{Q}=d^{2}$ and d denotes the side length of Q. Fix a cube $Q=Q\left(x_{0}, d\right)$ and $\tilde{x} \in Q$. Similarly to the proof of Theorem 3.1, we have, for $f_{1}=f \chi_{\tilde{Q}}$ and $f_{2}=f \chi_{\mathbb{R}^{n} \backslash \tilde{Q}}$,

$$
\begin{aligned}
\left(\left.\frac{1}{|Q|} \int_{Q} \right\rvert\, T^{b}(f)(x)-A_{t_{Q}} T^{b}(f)\right. & \left.\left.(x)\right|^{\eta} d x\right)^{1 / \eta} \leq\left(\frac{1}{|Q|} \int_{Q}\left|T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
& +\left(\frac{1}{|Q|} \int_{Q}\left|T\left(\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{b}}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}} T\left(\frac{R_{m}(\tilde{b} ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
& +\left(\frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}} T\left(\sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-\cdot)^{\alpha} D^{\alpha} \tilde{b}}{|x-\cdot|^{m}} f_{1}\right)\right|^{\eta} d x\right)^{1 / \eta} \\
& +\left(\frac{1}{|Q|} \int_{Q}\left|T^{\tilde{b}}\left(f_{2}\right)(x)-A_{t_{Q}} T^{\tilde{b}}\left(f_{2}\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& =J_{1}+J_{2}+J_{3}+J_{4}+J_{5}
\end{aligned}
$$

For J_{1} and J_{2}, by using the same argument as in the proof of Theorem 3.1, we get

$$
\begin{aligned}
& \left|R_{m}(\tilde{b} ; x, y)\right| \\
& \quad \leq C|x-y|^{m} \sum_{|\alpha|=m}|\tilde{Q}|^{-1 / q}\left(\int_{\tilde{Q}(x, y)}\left|D^{\alpha} \tilde{b}(z)\right|^{q} \omega(z)^{q(1-r) / r} \omega(z)^{q(r-1) / r} d z\right)^{1 / q} \\
& \leq \\
& \leq C|x-y|^{m} \sum_{|\alpha|=m}|\tilde{Q}|^{-1 / q}\left(\int_{\tilde{Q}(x, y)}\left|D^{\alpha} \tilde{b}(z)\right|^{r} \omega(z)^{1-r} d z\right)^{1 / r} \\
& \quad \times\left(\int_{\tilde{Q}(x, y)} \omega(z)^{q(r-1) /(r-q)} d z\right)^{(r-q) / r q} \\
& \leq C|x-y|^{m} \sum_{|\alpha|=m}|\tilde{Q}|^{-1 / q}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(w)} \omega(\tilde{Q})^{\beta / n+1 / r}|\tilde{Q}|^{(r-q) / r q} \\
& \quad \times\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} \omega(z)^{p_{0}} d z\right)^{(r-q) / r q} \\
& \leq C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)|\tilde{Q}|^{-1 / q} \omega(\tilde{Q})^{\beta / n+1 / r}|\tilde{Q}|^{1 / q-1 / r}} \\
& \quad \times\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)} \omega(z) d z\right)^{(r-1) / r} \\
& \leq C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)}|\tilde{Q}|^{-1 / q} \omega(\tilde{Q})^{\beta / n+1 / r}|\tilde{Q}|^{1 / q-1 / r} \\
& \leq \\
& \leq C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \frac{\omega(\tilde{Q})^{\beta / n+1}}{|\tilde{Q}|} \\
& \leq C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{Q})^{\beta / n} \omega(\tilde{x}),
\end{aligned}
$$

and thus

$$
\begin{aligned}
J_{1} \leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{Q})^{\beta / n} \omega(\tilde{x})|Q|^{-1 / s}\left(\int_{\mathbb{R}^{n}}\left|f_{1}(x)\right|^{s} d x\right)^{1 / s} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{Q})^{\beta / n} \omega(\tilde{x})|Q|^{-1 / s}\left(\int_{\tilde{Q}}|f(x)|^{r} \omega(x) d x\right)^{1 / r} \\
& \times\left(\int_{\tilde{Q}} \omega(x)^{-s /(r-s)} d x\right)^{(r-s) / r s} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x})|\tilde{Q}|^{-1 / s} \omega(\tilde{Q})^{1 / r}\left(\frac{1}{\omega(\tilde{Q})^{1-r \beta / n}} \int_{\tilde{Q}}|f(x)|^{r} \omega(x) d x\right)^{1 / r} \\
& \times\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} \omega(x)^{-s /(r-s)} d x\right)^{(r-s) / r s}\left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} \omega(x) d x\right)^{1 / r}|\tilde{Q}|^{1 / s} \omega(\tilde{Q})^{-1 / r} \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
\end{aligned}
$$

and

$$
\begin{aligned}
J_{2} \leq & C \sum_{|\alpha|=m} \frac{1}{|Q|} \int_{\tilde{Q}}\left|D^{\alpha} b(x)-\left(D^{\alpha} b\right)_{\tilde{Q}}\right| \omega(x)^{-1 / r}|f(x)| \omega(x)^{1 / r} d x \\
\leq & C \sum_{|\alpha|=m} \frac{1}{|Q|}\left(\int_{\tilde{Q}}\left|D^{\alpha} b(x)-\left(D^{\alpha} b\right)_{\tilde{Q}}\right|^{r^{\prime}} \omega(x)^{1-r^{\prime}} d x\right)^{1 / r^{\prime}}\left(\int_{\tilde{Q}}|f(x)|^{r} \omega(x) d x\right)^{1 / r} \\
\leq & C \sum_{|\alpha|=m} \frac{1}{|Q|}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{Q})^{\beta / n+1 / r^{\prime}} \omega(\tilde{Q})^{1 / r-\beta / n} \\
& \times\left(\frac{1}{\left.\omega(\tilde{Q})^{1-r \beta / n} \int_{\tilde{Q}}|f(x)|^{r} \omega(x) d x\right)^{1 / r}}\right. \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \frac{\omega(\tilde{Q})}{|\tilde{Q}|} M_{\beta, r, \omega}(f)(\tilde{x}) \\
\leq & C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
\end{aligned}
$$

For J_{3} and J_{4}, by Lemmas 2.12 and 2.13, and similarly to the proof for J_{1} and J_{2}, we get

$$
J_{3}+J_{4} \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
$$

For J_{5}, by Lemma 2.12 and similarly to the proof of J_{1}, for $k \geq 0$,

$$
\left|R_{m}(\tilde{b} ; x, y)\right| \leq C|x-y|^{m} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega\left(2^{k} \tilde{Q}\right)^{\beta / n} \omega(\tilde{x}),
$$

thus

$$
\begin{aligned}
& \left|T^{\tilde{b}}\left(f_{2}\right)(x)-A_{t_{Q}} T^{\tilde{b}}\left(f_{2}\right)\left(x_{0}\right)\right| \\
& \leq \int_{\mathbb{R}^{n}} \frac{\left|R_{m}(\tilde{b} ; x, y)\right|}{|x-y|^{m}}\left|K(x, y)-K_{t}(x, y)\right|\left|f_{2}(y)\right| d y \\
& +\sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \frac{\left|D^{\alpha} \tilde{b}_{1}(y)\right|\left|(x-y)^{\alpha_{1}}\right|}{|x-y|^{m}}\left|K(x, y)-K_{t}(x, y)\right|\left|f_{2}(y)\right| d y \\
& \leq \sum_{k=0}^{\infty} \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) \omega\left(2^{k} \tilde{Q}\right)^{\beta / n} \\
& \times \int_{2^{k+1} \tilde{Q} \backslash 2^{k} \tilde{Q}} \frac{d^{\delta}}{\left|x_{0}-y\right|^{n+\delta}}|f(y)| \omega(y)^{1 / r} \omega(y)^{-1 / r} d y \\
& +C \sum_{|\alpha|=m} \sum_{k=0}^{\infty} \int_{2^{k+1} \tilde{Q}}\left|\left(D^{\alpha} b\right)_{2^{k+1} \tilde{Q}}-\left(D^{\alpha} b\right)_{\tilde{Q}}\right| \frac{d^{\delta}}{\left|x_{0}-y\right|^{n+\delta}}|f(y)| \\
& \times \omega(y)^{1 / r} \omega(y)^{-1 / r} d y \\
& +C \sum_{|\alpha|=m} \sum_{k=0}^{\infty} \int_{2^{k+1} \tilde{Q}}\left|D^{\alpha} b(y)-\left(D^{\alpha} b\right)_{2^{k+1} \tilde{Q}}\right| \frac{d^{\delta}}{\left|x_{0}-y\right|^{n+\delta}}|f(y)| \\
& \times \omega(y)^{1 / r} \omega(y)^{-1 / r} d y \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{\infty} k \frac{d^{\delta}}{\left(2^{k} d\right)^{n+\delta}} \omega\left(2^{k} \tilde{Q}\right)^{\beta / n} \\
& \times\left(\int_{2^{k} \tilde{Q}}|f(y)|^{r} \omega(y) d x\right)^{1 / r}\left(\frac{1}{\left|2^{k} \tilde{Q}\right|} \int_{2^{k} \tilde{Q}} \omega(y)^{-1 /(r-1)} d y\right)^{(r-1) / r} \\
& \times\left(\frac{1}{\left|2^{k} \tilde{Q}\right|} \int_{2^{k} \tilde{Q}} \omega(y) d y\right)^{1 / r}\left|2^{k} \tilde{Q}\right| \omega\left(2^{k} \tilde{Q}\right)^{-1 / r} \\
& +C \sum_{|\alpha|=m} \sum_{k=1}^{\infty} \frac{d^{\delta}}{\left(2^{k} d\right)^{n+\delta}}\left(\int_{2^{k} \tilde{Q}}\left|D^{\alpha} b(y)-\left(D^{\alpha} b\right)_{2^{k} \tilde{Q}}\right|^{r^{\prime}} \omega(y)^{1-r^{\prime}} d y\right)^{1 / r^{\prime}} \\
& \times\left(\int_{2^{k} \tilde{Q}}|f(y)|^{r} \omega(y) d y\right)^{1 / r}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{\infty} k 2^{-k \delta}\left(\frac{1}{\omega\left(2^{k} \tilde{Q}\right)^{1-r \beta / n}} \int_{2^{k} \tilde{Q}}|f(y)|^{r} \omega(y) d x\right)^{1 / r} \\
&+C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \sum_{k=1}^{\infty} 2^{-k \delta} \frac{\omega\left(2^{k} \tilde{Q}\right)}{\left|2^{k} \tilde{Q}\right|} \\
& \quad \times\left(\frac{1}{\omega\left(2^{k} \tilde{Q}\right)^{1-r \beta / n}} \int_{2^{k} \tilde{Q}}|f(y)|^{r} \omega(y) d x\right)^{1 / r} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x})
\end{aligned}
$$

and

$$
J_{5} \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, r, \omega}(f)(\tilde{x}) .
$$

This completes the proof of Theorem 3.2.
Theorem 3.3. Let T be a singular integral operator with non-smooth kernel as in Definition 2.2, $1<p<\infty, \mu, \nu \in A_{p}, \omega=\left(\mu \nu^{-1}\right)^{1 / p}$ and $D^{\alpha} b \in \operatorname{BMO}(\omega)$ for all α with $|\alpha|=m$. Then T^{b} is bounded from $L^{p}\left(\mathbb{R}^{n}, \mu\right)$ to $L^{p}\left(\mathbb{R}^{n}, \nu\right)$.

Proof. Notice $\nu^{r^{\prime} / p} \in A_{r^{\prime}+1-r^{\prime} / p} \subset A_{p}$ and $\nu(x) d x \in A_{p / r^{\prime}}\left(\nu(x)^{r^{\prime} / p} d x\right)$ by Lemma 2.8. Thus, by Theorem 3.1, Lemmas 2.4 and 2.11, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|T^{b}(f)(x)\right|^{p} \nu(x) d x \leq \int_{\mathbb{R}^{n}}\left|M_{\eta}\left(T^{b}(f)\right)(x)\right|^{p} \nu(x) d x \\
& \leq C \int_{\mathbb{R}^{n}}\left|M_{A, \eta}^{\#}\left(T^{b}(f)\right)(x)\right|^{p} \nu(x) d x \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \int_{\mathbb{R}^{n}}\left(\left[M_{\nu}\left(|\omega T(f)|^{q}\right)(x)\right]^{p / q}+\left[M_{\nu^{r^{\prime} / p}}\left(|\omega f|^{r^{\prime}}\right)(x)\right]^{p / r^{\prime}}\right. \\
& \left.\quad+\left[M_{\nu}\left(|\omega f|^{q}\right)(x)\right]^{p / q}\right) \nu(x) d x \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\int_{\mathbb{R}^{n}}|\omega(x) f(x)|^{p} \nu(x) d x+\int_{\mathbb{R}^{n}}|\omega(x) T(f)(x)|^{p} \nu(x) d x\right) \\
& =C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} \mu(x) d x+\int_{\mathbb{R}^{n}}|T(f)(x)|^{p} \mu(x) d x\right) \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{BMO}(\omega)} \int_{\mathbb{R}^{n}}|f(x)|^{p} \mu(x) d x .
\end{aligned}
$$

Theorem 3.4. Let T be a singular integral operator with non-smooth kernel as in Definition 2.2, $\omega \in A_{1}, 0<\beta<1,1<p<n / \beta, 1 / q=$
$1 / p-\beta / n$ and $D^{\alpha} b \in \operatorname{Lip}_{\beta}(\omega)$ for all α with $|\alpha|=m$. Then T^{b} is bounded from $L^{p}\left(\mathbb{R}^{n}, \omega\right)$ to $L^{q}\left(\mathbb{R}^{n}, \omega^{1-q}\right)$.

Proof. Choose $1<r<p$ in Theorem 3.2 and notice $\omega^{1-q} \in A_{1}$. Then we have, by Lemmas 2.10 and 2.11,

$$
\begin{aligned}
\left\|T^{b}(f)\right\|_{L^{q}\left(\omega^{1-q}\right)} & \leq\left\|M_{\eta}\left(T^{b}(f)\right)\right\|_{L^{q}\left(\omega^{1-q}\right)} \leq C\left\|M_{A, \eta}^{\#}\left(T^{b}(f)\right)\right\|_{L^{q}\left(\omega^{1-q}\right)} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)}\left\|\omega M_{\beta, r, \omega}(f)\right\|_{L^{q}\left(\omega^{1-q}\right)} \\
& =C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)}\left\|M_{\beta, r, \omega}(f)\right\|_{L^{q}(\omega)} \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} b\right\|_{\operatorname{Lip}_{\beta}(\omega)}\|f\|_{L^{p}(\omega)} .
\end{aligned}
$$

Corollary 3.5. Let $[b, T](f)=b T(f)-T(b f)$ be the commutator generated by a singular integral operator T as in Definition 2.2 and b. Then the conclusion of Theorems 3.1-3.4 hold for $[b, T]$ in place of T^{b}.
4. Applications. In this section we shall apply the theorems of this paper to the holomorphic functional calculus of linear elliptic operators. First, we review some definitions regarding holomorphic functional calculus (see [DM, [MA]). Given $0 \leq \theta<\pi$, define

$$
S_{\theta}=\{z \in \mathbb{C}:|\arg (z)| \leq \theta\} \cup\{0\}
$$

and denote its interior by S_{θ}^{0}. Set $\tilde{S}_{\theta}=S_{\theta} \backslash\{0\}$. A closed linear elliptic operator L on some Banach space E is said to be of type θ if its spectrum $\sigma(L)$ is contained in S_{θ} and for every $\nu \in(\theta, \pi]$, there exists a constant C_{ν} such that

$$
|\eta|\left\|(\eta I-L)^{-1}\right\| \leq C_{\nu}, \quad \eta \notin \tilde{S}_{\theta} .
$$

By the Hille-Yosida theorem, such an operator with $\theta<\pi / 2$ is the generator of a bounded holomorphic semigroup $e^{-z L}$ in the sector S_{μ}^{0} with $\mu=\pi / 2-\theta$. For $\nu \in(0, \pi]$, let

$$
H_{\infty}\left(S_{\mu}^{0}\right)=\left\{f: S_{\theta}^{0} \rightarrow \mathbb{C}: f \text { is holomorphic and }\|f\|_{L^{\infty}}<\infty\right\},
$$

where $\|f\|_{L^{\infty}}=\sup \left\{|f(z)|: z \in S_{\mu}^{0}\right\}$. Set

$$
\Psi\left(S_{\mu}^{0}\right)=\left\{g \in H_{\infty}\left(S_{\mu}^{0}\right): \exists s, c>0 \text { such that }|g(z)| \leq c \frac{|z|^{s}}{1+|z|^{2 s}}\right\} .
$$

If L is of type θ and $g \in H_{\infty}\left(S_{\mu}^{0}\right)$, we define an operator $g(L) \in L(E)$ by

$$
g(L)=-(2 \pi i)^{-1} \int_{\Gamma}(\eta I-L)^{-1} g(\eta) d \eta,
$$

where Γ is the contour $\left\{\xi=r e^{ \pm i \phi}: r \geq 0\right\}$ parameterized clockwise around S_{θ} with $\theta<\phi<\mu$. If, in addition, L is one-one and has dense range, then, for $f \in H_{\infty}\left(S_{\mu}^{0}\right)$,

$$
f(L)=[h(L)]^{-1}(f h)(L),
$$

where $h(z)=z(1+z)^{-2}$. By [DM, MA, $f(L)$ is a well-defined linear operator in E for $f \in \Psi\left(S_{\mu}^{0}\right)$. The definition of $f(L)$ can even be extended to unbounded holomorphic functions f (see DM, MA for details). L is said to have a bounded holomorphic functional calculus on the sector S_{μ} if

$$
\|g(L)\| \leq N\|g\|_{L^{\infty}}
$$

for some $N>0$ and for all $g \in H_{\infty}\left(S_{\mu}^{0}\right)$.
Now, let L be a linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$ with $\theta<\pi / 2$ so that $-L$ generates a holomorphic semigroup $e^{-z L}, 0 \leq|\arg (z)|<\pi / 2-\theta$. Applying [DM, Theorem 6], [MA, Theorem 7.2] and Theorems 3.1-3.4, we get

Corollary 4.1. Assume the following conditions are satisfied:
(i) The holomorphic semigroup $e^{-z L}, 0 \leq|\arg (z)|<\pi / 2-\theta$, is represented by kernels $a_{z}(x, y)$ which satisfy, for all $\nu>\theta$, an upper bound

$$
\left|a_{z}(x, y)\right| \leq c_{\nu} h_{|z|}(x, y)
$$

for $x, y \in \mathbb{R}^{n}$ and $0 \leq|\arg (z)|<\pi / 2-\theta$, where $h_{t}(x, y)=$ $C t^{-n / 2} s\left(|x-y|^{2} / t\right)$ and s is a positive, bounded and decreasing function satisfying

$$
\lim _{r \rightarrow \infty} r^{n+\epsilon} s\left(r^{2}\right)=0 \quad \text { for some } \epsilon>0
$$

(ii) The operator L has a bounded holomorphic functional calculus in $L^{2}\left(\mathbb{R}^{n}\right)$, that is, for all $\nu>\theta$ and $g \in H_{\infty}\left(S_{\mu}^{0}\right)$, the operator $g(L)$ satisfies

$$
\|g(L)(f)\|_{L^{2}} \leq c_{\nu}\|g\|_{L^{\infty}}\|f\|_{L^{2}}
$$

We relate to the operator $g(L)$ and b the linear operator defined by

$$
g(L)^{b}(f)(x)=\int_{\mathbb{R}^{n}} \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y) f(y) d y
$$

Then the conclusion of Theorems 1-4 holds for the linear operator $g(L)^{b}$ in place of T^{b}.

In fact, it suffices to justify that the operator $g(L)$ satisfies the conditions of Definition 2.2. From MA, for such an operator, taking the approximation to the identity $A_{t}=D_{t}=e^{-t L}$ yields $K_{t}=k_{t}$, and using the assumption (i),
it was proved in [MA, Theorem 6] that the conditions of Definition 2.2 are satisfied. Thus the operator $g(L)$ satisfies the conditions in the corresponding theorem by Theorem 7.3 of [MA].

Acknowledgments. The author would like to express his gratitude to the referee for his comments and suggestions.

REFERENCES

[B] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103-122.
[C] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16.
[CG] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445-465.
[CRW] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[DEY] D. G. Deng and L. X. Yan, Commutators of singular integral operators with non-smooth kernels, Acta Math. Sci. 25 (2005), 137-144.
[DL] Y. Ding and S. Z. Lu, Weighted boundedness for a class of rough multilinear operators, Acta Math. Sinica 17 (2001), 517-526.
[DM] X. T. Duong and A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamer. 15 (1999), 233-265.
[G] J. García-Cuerva, Weighted H^{p} spaces, Dissertationes Math. 162 (1979).
[GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 16, North-Holland, Amsterdam, 1985.
[HEW] Y. X. He and Y. S. Wang, Commutators of Marcinkiewicz integrals and weighted BMO, Acta Math. Sinica (Chinese Ser.) 54 (2011), 513-520.
[HG] B. Hu and J. Gu, Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces, J. Math. Anal. Appl. 340 (2008), 598-605.
[J] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978), 263-270.
[LIU1] L. Z. Liu, Sharp function boundedness for vector-valued multilinear singular integral operators with non-smooth kernels, J. Contemp. Math. Anal. 45 (2010), 185-196.
[LIU2] L. Z. Liu, Multilinear singular integral operators on Triebel-Lizorkin and Lebesgue spaces, Bull. Malaysian Math. Sci. Soc. 35 (2012), 1075-1086.
[MA] J. M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math. 161 (2004), 113-145.
[PA] M. Paluszyński, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J. 44 (1995), 1-17.
[PE] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185.
[PT] C. Pérez and R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), 672-692.
[S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
[ZL] X. S. Zhou and L. Z. Liu, Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey space, Rev. Real Acad. Ciencias Exactas Ser. A Mat. 104 (2010), 115-127.

Dazhao Chen
Department of Science and Information Science
Shaoyang University
Shaoyang, Hunan 422000, P.R. China
E-mail: chendazhao27@sina.com

Received 4 August 2013;
revised 22 January 2014

[^0]: 2010 Mathematics Subject Classification: Primary 42B20; Secondary 42B25.
 Key words and phrases: singular integral operator, commutator, sharp maximal function, weighted BMO, weighted Lipschitz function.

