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WEIGHTED SHARP MAXIMAL FUNCTION INEQUALITIES
AND BOUNDEDNESS OF A LINEAR OPERATOR

ASSOCIATED TO A SINGULAR INTEGRAL OPERATOR
WITH NON-SMOOTH KERNEL

BY

DAZHAO CHEN (Shaoyang)

Abstract. We establish weighted sharp maximal function inequalities for a linear
operator associated to a singular integral operator with non-smooth kernel. As an appli-
cation, we obtain the boundedness of a commutator on weighted Lebesgue spaces.

1. Introduction. As a development of singular integral operators (see
[GR], [S]), their commutators have been well studied. In [CRW], [PE], [PT],
the authors proved that the commutators generated by singular integral op-
erators and BMO functions are bounded on Lp(Rn) for 1 < p <∞. Chanillo
[C] proved a similar result when singular integral operators are replaced
by fractional integral operators. In [J], [PA], the boundedness of commu-
tators generated by singular integral operators and Lipschitz functions on
Triebel–Lizorkin and Lp(Rn) (1 < p <∞) spaces was obtained. In [B], [HG],
the boundedness of commutators generated by singular integral operators
and weighted BMO and Lipschitz functions on Lp(Rn) (1 < p <∞) spaces
was established (see also [HEW]). In [CG], Cohen and Gosselin studied
generalized commutators of singular integral operators of the form (see
also [DL])

T b(f)(x) =
�

Rn

Rm+1(b;x, y)

|x− y|m
K(x, y)f(y) dy,

and obtained some sharp function estimates and boundedness of the com-
mutators if Dαb ∈ BMO(Rn) for all α with |α| = m. In [DM], [MA], some
singular integral operators with non-smooth kernel were introduced, and
the boundedness of these operators and their commutators was obtained
(see [DEY], [LIU1], [LIU2], [ZL]).

Motivated by these, in this paper, we will study certain linear opera-
tors generated by singular integral operators with non-smooth kernel and
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weighted Lipschitz and BMO functions, that is, Dαb ∈ BMO(w) or Dαb ∈
Lipβ(w) for all α with |α| = m.

2. Preliminaries. We will study some singular integral operators as
described below (see [DM]).

Definition 2.1. A family of operators Dt, t > 0, is said to be an ap-
proximation to the identity if, for every t > 0, Dt can be represented by a
kernel at(x, y) in the following sense:

Dt(f)(x) =
�

Rn
at(x, y)f(y) dy

for every f ∈ Lp(Rn) with p ≥ 1, and at(x, y) satisfies

|at(x, y)| ≤ ht(x, y) = Ct−n/2ρ(|x− y|2/t),

where ρ is a positive, bounded and decreasing function satisfying

lim
r→∞

rn+ερ(r2) = 0 for some ε > 0.

Definition 2.2. A linear operator T is called a singular integral operator
with non-smooth kernel if T is bounded on L2(Rn) and associated with a
kernel K(x, y) such that

T (f)(x) =
�

Rn
K(x, y)f(y) dy

for every continuous function f with compact support, and for almost all x
not in the support of f ; moreover, we assume that:

(1) There exists an approximation to the identity {Bt, t > 0} such that
TBt has kernel kt(x, y) and there exist c1, c2 > 0 so that

�

|x−y|>c1t1/2
|K(x, y)− kt(x, y)| dx ≤ c2 for all y ∈ Rn.

(2) There exists an approximation to the identity {At, t > 0} such that
AtT has kernel Kt(x, y) which satisfies

|Kt(x, y)| ≤ c4t−n/2 if |x− y| ≤ c3t1/2,
|K(x, y)−Kt(x, y)| ≤ c4tδ/2|x− y|−n−δ if |x− y| ≥ c3t1/2,

for some δ, c3, c4 > 0.

Moreover, let m be the positive integer and b be a function on Rn. Set

Rm+1(b;x, y) = b(x)−
∑
|α|≤m

1

α!
Dαb(y)(x− y)α.
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We relate to T the linear operator defined by

T b(f)(x) =
�

Rn

Rm+1(b;x, y)

|x− y|m
K(x, y)f(y) dy.

Note that the commutator [b, T ](f) = bT (f)−T (bf) is a particular case
of T b if m = 0. The linear operator T b is a non-trivial generalization of
the commutator. It is well known that commutators are of great interest
in harmonic analysis and have been widely studied by many authors (see
[CG], [DL]). The main purpose of this paper is to prove sharp maximal
inequalities for the linear operator T b. As an application, we obtain the
weighted Lp-boundedness of T b.

Now, let us introduce some notations. Throughout this paper, Q will
denote a cube in Rn with sides parallel to the axes. For a non-negative
integrable function ω, let ω(Q) =

	
Q ω(x) dx and ωQ = |Q|−1

	
Q ω(x) dx.

For any locally integrable function f , the sharp maximal function of f
is defined by

M#(f)(x) = sup
Q3x

1

|Q|

�

Q

|f(y)− fQ| dy.

It is well known (see [GR]) that

M#(f)(x) ≈ sup
Q3x

inf
c∈C

1

|Q|

�

Q

|f(y)− c| dy.

Let

M(f)(x) = sup
Q3x

1

|Q|

�

Q

|f(y)| dy.

For η > 0, let M#
η (f)(x) = M#(|f |η)1/η(x) and Mη(f)(x) = M(|f |η)1/η(x).

For 0 < η < n, 1 ≤ p <∞ and a non-negative weight function ω, set

Mη,p,ω(f)(x) = sup
Q3x

(
1

ω(Q)1−pη/n

�

Q

|f(y)|pω(y) dy

)1/p

,

Mω(f)(x) = sup
Q3x

1

ω(Q)

�

Q

|f(y)|ω(y) dy.

The sharp maximal function MA(f) associated with an approximation
to the identity {At, t > 0} is defined by

M#
A (f)(x) = sup

x∈Q

1

|Q|

�

Q

|f(y)−AtQ(f)(y)| dy,

where tQ = l(Q)2 and l(Q) denotes the side length of Q. For η > 0, let

M#
A,η(f) = M#

A (|f |η)1/η.
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The Ap weights are defined by (see [GR])

Ap =

{
ω ∈ L1

loc(Rn) : sup
Q

(
1

|Q|

�

Q

ω(x) dx

)(
1

|Q|

�

Q

ω(x)−1/(p−1) dx

)p−1
<∞

}
for 1 < p <∞, and

A1 = {ω ∈ Lploc(R
n) : M(ω)(x) ≤ Cw(x) a.e.}.

Given a non-negative weight function ω, and 1 ≤ p < ∞, the weighted
Lebesgue space Lp(Rn, ω) is the space of functions f such that

‖f‖Lp(ω) =
( �

Rn
|f(x)|pω(x) dx

)1/p
<∞.

Given a non-negative weight function ω, the weighted BMO space
BMO(ω) is the space of functions b such that

‖b‖BMO(ω) = sup
Q

1

ω(Q)

�

Q

|b(y)− bQ| dy <∞.

For 0 < β < 1, the weighted Lipschitz space Lipβ(ω) is the space of functions
b such that

‖b‖Lipβ(ω) = sup
Q

1

ω(Q)β/n

(
1

ω(Q)

�

Q

|b(y)− bQ|pω(x)1−p dy

)1/p

<∞.

Remark. (1) It is known (see [G]) that for b ∈ Lipβ(ω), ω ∈ A1 and
x ∈ Q,

|bQ − b2kQ| ≤ Ck‖b‖Lipβ(ω)ω(x)ω(2kQ)β/n.

(2) Let b ∈ Lipβ(ω) and ω ∈ A1. By [G], we know that the spaces
Lipβ(ω) all coincide and the norms ‖b‖Lipβ(ω) for different 1 ≤ p < ∞ are
all equivalent.

We give some preliminary lemmas.

Lemma 2.3 (see [GR, p. 485]). Let 0 < p < q < ∞. For any function
f ≥ 0 define, with 1/r = 1/p− 1/q,

‖f‖WLq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q,

Np,q(f) = sup
Q
‖fχQ‖Lp/‖χQ‖Lr ,

where the sup is taken over all measurable sets Q with 0 < |Q| <∞. Then

‖f‖WLq ≤ Np,q(f) ≤ (q/(q − p))1/p‖f‖WLq .

Lemma 2.4 (see [DM], [MA]). Let T be a singular integral operator as in
Definition 2.2. Then T is bounded on Lp(Rn, ω) for ω ∈ Ap with 1 < p <∞,
and weakly (L1, L1) bounded.



LINEAR OPERATOR ASSOCIATED TO A SINGULAR INTEGRAL 153

Lemma 2.5 (see [B]). Let b ∈ BMO(ω). Then

|bQ − b2jQ| ≤ Cj‖b‖BMO(ω)ωQj ,

where ωQj = max1≤i≤j |2iQ|−1
	
2iQ ω(x) dx.

Lemma 2.6 (see [B]). Let ω ∈ Ap with 1 < p < ∞. Then there exists
ε > 0 such that ω−r/p ∈ Ar for any p′ ≤ r ≤ p′ + ε.

Lemma 2.7 (see [B]). Let b ∈ BMO(ω) with ω = (µν−1)1/p, µ, ν ∈ Ap
and p > 1. Then there exists ε > 0 such that for p′ ≤ r ≤ p′ + ε,�

Q

|b(x)− bQ|rµ(x)−r/p dx ≤ C‖b‖rBMO(ω)

�

Q

ν(x)−r/p dx.

Lemma 2.8 (see [B]). Let ω ∈ Ap with 1 < p < ∞. Then there exists

0 < δ < 1 such that ω1−r′/p ∈ Ap/r′(dµ) for any p′ < r < p′(1 + δ), where

dµ = ωr
′/p dx.

Lemma 2.9 (see [B]). Let µ, ν ∈ Ap and ω = (µν−1)1/p with 1 < p <∞.
Then there exists 1 < q < p such that

ωQ(νQ)1/q
(

1

|Q|

�

Q

ω(x)−q
′
ν(x)−q

′/q dx

)1/q′

≤ C.

Lemma 2.10 (see [C], [GR]). Let 0 ≤ η < n, 1 ≤ s < p < n/η, 1/q =
1/p− η/n and ω ∈ A1. Then

‖Mη,s,ω(f)‖Lq(ω) ≤ C‖f‖Lp(ω).

Lemma 2.11 (see [DM], [MA]). Let {At, t > 0} be an approximation to
the identity. For any γ > 0, there exists a constant C > 0 independent of γ
such that

|{x ∈ Rn : M(f)(x) > Dλ, M#
A (f)(x) ≤ γλ}|

≤ Cγ|{x ∈ Rn : M(f)(x) > λ}|
for λ > 0, where D is a fixed constant which only depends on n. Thus, for
f ∈ Lp(Rn), 1 < p <∞, 0 < η <∞ and ω ∈ A1,

‖Mη(f)‖Lp(ω) ≤ C‖M
#
A,η(f)‖Lp(ω).

Lemma 2.12 (see [CG]). Let b be a function on Rn with Dαb ∈ Ls(Rn)
for all α with |α| = m and any s > n. Then

|Rm(b;x, y)| ≤ C|x− y|m
∑
|α|=m

(
1

|Q̃(x, y)|

�

Q̃(x,y)

|Dαb(z)|s dz
)1/s

,

where Q̃ is the cube centered at x and having side length 5
√
n|x− y|.
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Lemma 2.13. Let {At, t > 0} be an approximation to the identity,
ω ∈ A1, 0 < β < 1, 1 < r <∞ and b ∈ Lipβ(ω). Then for every f ∈ Lp(ω),
p > 1 and x̃ ∈ Rn,

sup
Q3x̃

1

|Q|

�

Q

|AtQ((b− bQ)f)(y)| dy ≤ C‖b‖Lipβ(ω)ω(x̃)Mβ,ω,r(f)(x̃).

Proof. We write, for any cube Q with x̃ ∈ Q,

1

|Q|

�

Q

|AtQ((b− bQ)f)(x)| dx ≤ 1

|Q|

�

Q

�

Rn
htQ(x, y)|(b(y)− bQ)f(y)| dy dx

≤ 1

|Q|

�

Q

�

Q

htQ(x, y)|(b(y)− bQ)f(y)| dy dx

+
∞∑
k=0

1

|Q|

�

Q

�

2k+1Q\2kQ

htQ(x, y)|(b(y)− bQ)f(y)| dy dx

= I + II.

We have, by Hölder’s inequality,

I ≤ C

|Q| |Q|

�

Q

�

Q

|(b(y)− bQ)f(y)| dy dx

≤ C

|Q|

�

Q

|b(y)− bQ|ω(y)−1/r|f(y)|ω(y)1/r dy

≤ C

|Q|

( �
Q

|b(y)− bQ|r
′
ω(y)1−r

′
dy
)1/r′( �

Q

|f(y)|rω(y) dy
)1/r

≤ C

|Q|
‖b‖Lipβ(ω)ω(Q)β/n+1/r′

( �
Q

|f(y)|rω(y) dy
)1/r

≤ C‖b‖Lipβ(ω)
ω(Q)

|Q|
Mβ,r,ω(f)(x̃)

≤ C‖b‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃).

For II, notice that if x ∈ Q and y ∈ 2k+1Q \ 2kQ, then |x − y| ≥ 2k−1tQ
and htQ(x, y) ≤ Cs(22(k−1))/|Q|, so

II ≤ C
∞∑
k=0

s(22(k−1))
1

|Q| |Q|

�

Q

�

2k+1Q

|(b(y)− bQ)f(y)| dy dx

≤ C
∞∑
k=0

2kns(22(k−1))
1

|2k+1Q|

�

2k+1Q

|(b(y)−b2k+1Q) + (b2k+1Q−bQ)| |f(y)| dy
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≤ C
∞∑
k=0

2kns(22(k−1))|2k+1Q|−1
( �

2k+1Q

|b(y)− b2k+1Q|r
′
ω(y)1−r

′
dy
)1/r′

×
( �

2k+1Q

|f(y)|rω(y) dy
)1/r

+ C
∞∑
k=0

2kns(22(k−1))|2k+1Q|−1k‖b‖Lipβ(ω)ω(x̃)ω(2k+1Q)β/n

×
( �

2k+1Q

|f(y)|rω(y) dy
)1/r( 1

|2k+1Q|

�

2k+1Q

ω(y)−1/(r−1) dy

)(r−1)/r

×
(

1

|2k+1Q|

�

2k+1Q

ω(y) dy

)1/r

|2k+1Q|ω(2k+1Q)−1/r

≤ C‖b‖Lipβ(ω)
∞∑
k=0

k2kns(22(k−1))

(
ω(2k+1Q)

|2k+1Q|
+ ω(x̃)

)

×
(

1

ω(2k+1Q)1−rβ/n

�

2k+1Q

|f(y)|rω(y) dy

)1/r

≤ C‖b‖Lipβ(ω)
∞∑
k=0

k2kns(22(k−1))ω(x̃)Mβ,r,ω(f)(x̃)

≤ C‖b‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃),

where the last inequality follows from
∞∑
k=1

k2(k−1)ns(22(k−1)) ≤ C
∞∑
k=1

k2−(k−1)ε <∞

for some ε > 0. This completes the proof.

3. Theorems and proofs

Theorem 3.1. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, 1 < p <∞, µ, ν ∈ Ap, ω = (µν−1)1/p, 0 < η < 1
and Dαb ∈ BMO(ω) for all α with |α| = m. Then there exists a constant
C > 0, ε > 0, 0 < δ < 1, 1 < q < p and p′ < r < min(p′ + ε, p′(1 + δ)) such
that, for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#
A,η(T

b(f))(x̃) ≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

×
(
[Mν(|ωT (f)|q)(x̃)]1/q + [Mνr

′/p(|ωf |r
′
)(x̃)]1/r

′
+ [Mν(|ωf |q)(x̃)]1/q

)
.
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Proof. It suffices to prove that for f ∈ C∞0 (Rn) and some constant C,(
1

|Q|

�

Q

|T b(f)(x)−AtQ(T b(f))(x)|η dx
)1/η

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
[Mν(|ωT (f)|q)(x̃)]1/q

+ [Mνr
′/p(|ωf |r

′
)(x̃)]1/r

′
+ [Mν(|ωf |q)(x̃)]1/q

)
,

where tQ = d2 and d denotes the side length of Q. Fix a cube Q = Q(x0, d)

and x̃ ∈ Q. Let Q̃ = 5
√
nQ and b̃(x) = b(x) −

∑
|α|=m(1/α!)(Dαb)Q̃x

α.

Then Rm(b;x, y) = Rm(b̃;x, y) and Dαb̃ = Dαb − (Dαb)Q̃ for |α| = m. We
write, for f1 = fχQ̃ and f2 = fχRn\Q̃,

T b(f)(x) =
�

Rn

Rm(b̃;x, y)

|x− y|m
K(x, y)f1(y) dy

−
∑
|α|=m

1

α!

�

Rn

(x− y)αDαb̃(y)

|x− y|m
K(x, y)f1(y) dy

+
�

Rn

Rm+1(b̃;x, y)

|x− y|m
K(x, y)f2(y) dy

= T

(
Rm(b̃;x, ·)
|x− ·|m

f1

)
− T

( ∑
|α|=m

1

α!

(x− ·)αDαb̃

|x− ·|m
f1

)
+ T b̃(f2)(x)

and

AtQT
b(f)(x) =

�

Rn

Rm(b̃j ;x, y)

|x− y|m
Kt(x, y)f1(y) dy

−
∑
|α|=m

1

α!

�

Rn

(x− y)αDαb̃(y)

|x− y|m
Kt(x, y)f1(y) dy

+
�

Rn

Rm+1(b̃;x, y)

|x− y|m
Kt(x, y)f2(y) dy

= AtQT

(
Rm(b̃;x, ·)
|x− ·|m

f1

)
−AtQT

( ∑
|α|=m

1

α!

(x− ·)αDαb̃

|x− ·|m
f1

)
+AtQT

b̃(f2)(x).
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Then(
1

|Q|

�

Q

|T b(f)(x)−AtQT
b(f)(x)|η dx

)1/η

≤ C
(

1

|Q|

�

Q

∣∣∣∣T(Rm(b̃;x, ·)
|x− ·|m

f1

)∣∣∣∣η dx)1/η

+ C

(
1

|Q|

�

Q

∣∣∣∣T( ∑
|α|=m

1

α!

(x− ·)αDαb̃

|x− ·|m
f1

)∣∣∣∣η dx)1/η

+ C

(
1

|Q|

�

Q

∣∣∣∣AtQT(Rm(b̃;x, ·)
|x− ·|m

f1

)∣∣∣∣η dx)1/η

+ C

(
1

|Q|

�

Q

∣∣∣∣AtQT( ∑
|α|=m

1

α!

(x− ·)αDαb̃

|x− ·|m
f1

)∣∣∣∣η dx)1/η

+ C

(
1

|Q|

�

Q

|T b̃(f2)(x)−AtQT
b̃(f2)(x)|η dx

)1/η

= I1 + I2 + I3 + I4 + I5.

For I1, note that ω ∈ A1 satisfies the reverse Hölder inequality(
1

|Q|

�

Q

ω(x)p0 dx

)1/p0

≤ C

|Q|

�

Q

ω(x) dx

for all cubes Q and some 1 < p0 <∞ (see [GR]). We take s = rp0/(r+p0−1)
in Lemma 2.12. Then 1 < s < r and p0 = s(r − 1)/(r − s). Hence by
Lemma 2.12 and Hölder’s inequality,

|Rm(b;x, y)| ≤ C|x− y|m
∑
|α|=m

(
1

|Q̃(x, y)|

�

Q̃(x,y)

|Dαb(z)|s dz
)1/s

≤ C|x− y|m
∑
|α|=m

|Q̃|−1/s
( �

Q̃(x,y)

|Dαb(z)|sω(z)s(1−r)/rω(z)s(r−1)/r dz
)1/s

≤ C|x− y|m
∑
|α|=m

|Q̃|−1/s
( �

Q̃(x,y)

|Dαb(z)|rω(z)1−r dz
)1/r

×
( �

Q̃(x,y)

ω(z)s(r−1)/(r−s) dz
)(r−s)/rs
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≤ C|x− y|m
∑
|α|=m

|Q̃|−1/s‖Dαb‖BMO(ω)ω(Q̃)1/r|Q̃|(r−s)/rs

×
(

1

|Q̃(x, y)|

�

Q̃(x,y)

ω(z)p0 dz

)(r−s)/rs

≤ C|x− y|m
∑
|α|=m

‖Dαb‖BMO(ω)|Q̃|−1/qω(Q̃)1/r|Q̃|1/s−1/r

×
(

1

|Q̃(x, y)|

�

Q̃(x,y)

ω(z) dz

)(r−1)/r

≤ C|x− y|m
∑
|α|=m

‖Dαb‖BMO(ω)|Q̃|−1/qω(Q̃)1/r|Q̃|1/s−1/rω(Q̃)1−1/r|Q̃|1/r−1

≤ C|x− y|m
∑
|α|=m

‖Dαb‖BMO(ω)
ω(Q̃)

|Q̃|
.

Thus, by Lemma 2.9, we obtain

I1 ≤
C

|Q|

�

Q

∣∣∣∣T(Rm(b̃;x, ·)
|x− ·|m

f1

)∣∣∣∣ dx
≤ C

∑
|α|=m

‖Dαb‖BMO(ω)
ω(Q̃)

|Q̃|
1

|Q|

�

Q

|T (f)(y)|ω(y)ν(y)1/qω(y)−1ν(y)−1/q dy

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)ωQ̃

(
1

|Q|

�

Q

|ω(y)T (f)(y)|qν(y) dy

)1/q

×
(

1

|Q|

�

Q

ω(y)−q
′
ν(y)−q

′/q dy

)1/q′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)ωQ(νQ)1/q
(

1

ν(Q)

�

Q

|ω(y)T (f)(y)|qν(y) dy

)1/q

×
(

1

|Q|

�

Q

ω(y)−q
′
ν(y)−q

′/q dy

)1/q′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)[Mν(|ωT (f)|q)(x̃)]1/q

× ωQ(νQ)1/q
(

1

|Q|

�

Q

ω(y)−q
′
ν(y)−q

′/q dy

)1/q′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)[Mν(|ωT (f)|q)(x̃)]1/q.
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For I2, we know ν−r/p ∈ Ar by Lemma 2.6, thus(
1

|Q|

�

Q

ν(x)−r/p dx

)1/r

≤ C
(

1

|Q|

�

Q

ν(x)r
′/p dx

)−1/r′
.

Then, by the weak (L1, L1) boundedness of T (see Lemma 2.4) and Kol-
mogorov’s inequality (see Lemma 2.3), we obtain, by Lemma 2.7,

I2 ≤ C
∑
|α|=m

(
1

|Q|

�

Q

|T (Dαb̃f1)(x)|η dx
)1/η

≤ C
∑
|α|=m

|Q|1/η−1

|Q|1/η
‖T (Dαb̃f1)χQ‖Lη
‖χQ‖Lη/(1−η)

≤ C
∑
|α|=m

1

|Q|
‖T (Dαb̃f1)‖WL1 ≤ C

∑
|α|=m

1

|Q|

�

Rn
|Dαb̃(x)f1(x)| dx

= C
∑
|α|=m

1

|Q|

�

Q̃

|Dαb(x)− (Dαb)Q̃|µ(x)−1/p|f(x)|ω(x)ν(x)1/p dx

≤ C
∑
|α|=m

(
1

|Q̃|

�

Q̃

|(Dαb(x)− (Dαb)Q̃)|rµ(x)−r/p dx

)1/r

×
(

1

|Q̃|

�

Q̃

|f(x)|r′ω(x)r
′
ν(x)r

′/p dx

)1/r′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
1

|Q̃|

�

Q̃

ν(x)−r/p dx

)1/r

×
(

1

|Q̃|

�

Q̃

|f(x)ω(x)|r′ν(x)r
′/p dx

)1/r′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
1

|Q̃|

�

Q̃

ν(x)r
′/p dx

)−1/r′

×
(

1

|Q̃|

�

Q̃

|f(x)ω(x)|r′ν(x)r
′/p dx

)1/r′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
1

ν(Q̃)r′/p

�

Q̃

|f(x)ω(x)|r′ν(x)r
′/p dx

)1/r′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)[Mνr
′/p(|ωf |r

′
)(x̃)]1/r

′
.
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For I3, noticing that if x ∈ Q and y ∈ 2k+1Q \ 2kQ, then |x − y| ≥ 2k−1tQ
and htQ(x, y) ≤ Cs(22(k−1))/|Q|, similarly to the proof for I1 we get, by
Lemma 2.9,

I3 ≤
C

|Q|

�

Q

∣∣∣∣AtQT(Rm(b̃;x, ·)
|x− ·|m

f1

)∣∣∣∣ dx
≤

∑
|α|=m

‖Dαb‖BMO(ω)
ω(Q̃)

|Q̃|
1

|Q|

�

Q

�

Q

htQ(x, y)|T (f1)(y)| dy dx

+
∑
|α|=m

‖Dαb‖BMO(ω)
ω(Q̃)

|Q̃|

∞∑
k=0

1

|Q|

�

Q

�

2k+1Q\2kQ

htQ(x, y)

× |T (f1)(y)| dy dx

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)
ω(Q̃)

|Q̃|
1

|Q|

�

Q

|T (f)(y)|

× ω(y)ν(y)1/qω(y)−1ν(y)−1/q dy

+ C
∑
|α|=m

‖Dαb‖BMO(ω)
ω(Q̃)

|Q̃|

∞∑
k=0

2kns(22(k−1))

× 1

|2k+1Q|

�

2k+1Q

|T (f)(y)|ω(y)ν(y)1/qω(y)−1ν(y)−1/q dy

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
1

ν(Q)

�

Q

|ω(y)T (f)(y)|qν(y) dy

)1/q

× ωQ(νQ)1/q
(

1

|Q|

�

Q

ω(y)−q
′
ν(y)−q

′/q dy

)1/q′

+ C
∑
|α|=m

‖Dαb‖BMO(ω)

∞∑
k=0

2kns(22(k−1))

×
(

1

|2k+1Q|

�

2k+1Q

|ω(y)T (f)(y)|qν(y) dy

)1/q

× ω2k+1Q(ν2k+1Q)1/q
(

1

|2kQ̃|

�

Q

ω(y)−q
′
ν(y)−q

′/q dy

)1/q′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)[Mν(|ωT (f)|q)(x̃)]1/q.
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For I4, similarly to the proofs for I2 and I3, we get

I4 ≤
∑
|α|=m

(
1

|Q|

�

Q

|T (Dαb̃f1)(y)|η dy
)1/η

+
∑
|α|=m

∞∑
k=0

2kns(22(k−1))

(
1

|2k+1Q|

�

2k+1Q

|T (Dαb̃f1)(y)|η dy
)1/η

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
1

ν(Q̃)r′/p

�

Q̃

|f(x)ω(x)|r′ν(x)r
′/p dx

)1/r′

+ C
∑
|α|=m

‖Dαb‖BMO(ω)

∞∑
k=0

2kns(22(k−1))

×
(

1

ν(2k+1Q̃)r′/p

�

2k+1Q̃

|f(x)ω(x)|r′ν(x)r
′/p dx

)1/r′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)[Mνr
′/p(|ωf |r

′
)(x̃)]1/r

′
.

For I5, noting that |x− y| ≈ |x0 − y| for x ∈ Q and y ∈ Rn \Q, similarly to
the proof for I1 we have

|Rm(b̃;x, y)| ≤ C|x− y|m
∑
|α|=m

‖Dαb‖BMO(ω)
ω(2kQ̃)

|2kQ̃|
.

Thus, by the conditions on K and Kt, we get

|T b̃(f2)(x)−AtQT
b̃(f2)(x0)|

≤
�

Rn

|Rm(b̃;x, y)|
|x− y|m

|K(x, y)−Kt(x, y)| |f2(y)| dy

+
∑
|α|=m

1

α!

�

Rn

|Dαb̃1(y)| |(x− y)α1 |
|x− y|m

|K(x, y)−Kt(x, y)| |f2(y)| dy

≤
∞∑
k=0

∑
|α|=m

‖Dαb‖BMO(ω)
ω(2k+1Q̃)

|2k+1Q̃|

�

2k+1Q̃\2kQ̃

dδ

|x0 − y|n+δ
|f(y)| dy

+ C
∑
|α|=m

∞∑
k=0

�

2k+1Q̃

|(Dαb)2k+1Q̃ − (Dαb)Q̃|
dδ

|x0 − y|n+δ
|f(y)| dy

+ C
∑
|α|=m

∞∑
k=0

�

2k+1Q̃

|Dαb(y)− (Dαb)2k+1Q̃|
dδ

|x0 − y|n+δ
|f(y)| dy
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≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

∞∑
k=1

k2−kδ
(

1

ν(2kQ̃)

�

2kQ̃

|ω(y)f(y)|qν(y) dy

)1/q

× ω2kQ̃(ν2kQ̃)1/q
(

1

|2kQ̃|

�

2kQ̃

ω(y)−q
′
ν(y)−q

′/q dy

)1/q′

+ C

∞∑
k=1

2−kδ
(

1

|2kQ̃|

�

2kQ̃

|Dαb(y)− (Dαb)2kQ̃|
rµ(y)−r/p dy

)1/r

×
(

1

|2kQ̃|

�

2kQ̃

|f(y)|r′ω(y)r
′
ν(y)r

′/p dy

)1/r′

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
[Mν(|ωf |q)(x̃)]1/q + [Mνr

′/p(|ωf |r
′
)(x̃)]1/r

′)
.

Thus

I3 ≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

(
[Mνr

′/p(|ωf |r
′
)(x̃)]1/r

′
+ [Mν(|ωf |q)(x̃)]1/q

)
.

This completes the proof of Theorem 3.1.

Theorem 3.2. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, ω ∈ A1, 0 < η < 1, 1 < r < ∞, 0 < β < 1 and
Dαb ∈ Lipβ(ω) for all α with |α| = m. Then there exists a constant C > 0
such that, for any f ∈ C∞0 (Rn) and x̃ ∈ Rn,

M#
A,η(T

b(f))(x̃) ≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃).

Proof. It suffices to prove that, for f ∈ C∞0 (Rn) and some constant C,(
1

|Q|

�

Q

|T b(f)(x)−AtQ(T b(f))(x)|η dx
)1/η

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃),

where tQ = d2 and d denotes the side length of Q. Fix a cube Q = Q(x0, d)
and x̃ ∈ Q. Similarly to the proof of Theorem 3.1, we have, for f1 = fχQ̃
and f2 = fχRn\Q̃,(

1

|Q|

�

Q

|T b(f)(x)−AtQT
b(f)(x)|η dx

)1/η
≤
(

1

|Q|

�

Q

∣∣∣∣T(Rm(b̃;x, ·)
|x− ·|m

f1

)∣∣∣∣ηdx)1/η

+

(
1

|Q|

�

Q

∣∣∣∣T( ∑
|α|=m

1

α!

(x− ·)αDαb̃

|x− ·|m
f1

)∣∣∣∣η dx)1/η
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+

(
1

|Q|

�

Q

∣∣∣∣AtQT(Rm(b̃;x, ·)
|x− ·|m

f1

)∣∣∣∣η dx)1/η

+

(
1

|Q|

�

Q

∣∣∣∣AtQT( ∑
|α|=m

1

α!

(x− ·)αDαb̃

|x− ·|m
f1

)∣∣∣∣η dx)1/η

+

(
1

|Q|

�

Q

|T b̃(f2)(x)−AtQT
b̃(f2)(x)|η dx

)1/η

= J1 + J2 + J3 + J4 + J5.

For J1 and J2, by using the same argument as in the proof of Theorem 3.1,
we get

|Rm(b̃;x, y)|

≤ C|x− y|m
∑
|α|=m

|Q̃|−1/q
( �

Q̃(x,y)

|Dαb̃(z)|qω(z)q(1−r)/rω(z)q(r−1)/r dz
)1/q

≤ C|x− y|m
∑
|α|=m

|Q̃|−1/q
( �

Q̃(x,y)

|Dαb̃(z)|rω(z)1−r dz
)1/r

×
( �

Q̃(x,y)

ω(z)q(r−1)/(r−q) dz
)(r−q)/rq

≤ C|x− y|m
∑
|α|=m

|Q̃|−1/q‖Dαb‖Lipβ(w)ω(Q̃)β/n+1/r|Q̃|(r−q)/rq

×
(

1

|Q̃(x, y)|

�

Q̃(x,y)

ω(z)p0 dz

)(r−q)/rq

≤ C|x− y|m
∑
|α|=m

‖Dαb‖Lipβ(ω)|Q̃|
−1/qω(Q̃)β/n+1/r|Q̃|1/q−1/r

×
(

1

|Q̃(x, y)|

�

Q̃(x,y)

ω(z) dz

)(r−1)/r

≤ C|x− y|m
∑
|α|=m

‖Dαb‖Lipβ(ω)|Q̃|
−1/qω(Q̃)β/n+1/r|Q̃|1/q−1/r

× ω(Q̃)1−1/r|Q̃|1/r−1

≤ C|x− y|m
∑
|α|=m

‖Dαb‖Lipβ(ω)
ω(Q̃)β/n+1

|Q̃|

≤ C|x− y|m
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(Q̃)β/nω(x̃),
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and thus

J1 ≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(Q̃)β/nω(x̃)|Q|−1/s
( �

Rn
|f1(x)|s dx

)1/s
≤ C

∑
|α|=m

‖Dαb‖Lipβ(ω)ω(Q̃)β/nω(x̃)|Q|−1/s
( �
Q̃

|f(x)|rω(x) dx
)1/r

×
( �
Q̃

ω(x)−s/(r−s) dx
)(r−s)/rs

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)|Q̃|−1/sω(Q̃)1/r
(

1

ω(Q̃)1−rβ/n

�

Q̃

|f(x)|rω(x) dx

)1/r

×
(

1

|Q̃|

�

Q̃

ω(x)−s/(r−s) dx

)(r−s)/rs( 1

|Q̃|

�

Q̃

ω(x) dx

)1/r

|Q̃|1/sω(Q̃)−1/r

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃),

and

J2 ≤ C
∑
|α|=m

1

|Q|

�

Q̃

|Dαb(x)− (Dαb)Q̃|ω(x)−1/r|f(x)|ω(x)1/r dx

≤ C
∑
|α|=m

1

|Q|

(�
Q̃

|Dαb(x)− (Dαb)Q̃|
r′ω(x)1−r

′
dx
)1/r′(�

Q̃

|f(x)|rω(x) dx
)1/r

≤ C
∑
|α|=m

1

|Q|
‖Dαb‖Lipβ(ω)ω(Q̃)β/n+1/r′ω(Q̃)1/r−β/n

×
(

1

ω(Q̃)1−rβ/n

�

Q̃

|f(x)|rω(x) dx

)1/r

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)
ω(Q̃)

|Q̃|
Mβ,r,ω(f)(x̃)

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃).

For J3 and J4, by Lemmas 2.12 and 2.13, and similarly to the proof for J1
and J2, we get

J3 + J4 ≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃).
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For J5, by Lemma 2.12 and similarly to the proof of J1, for k ≥ 0,

|Rm(b̃;x, y)| ≤ C|x− y|m
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(2kQ̃)β/nω(x̃),

thus

|T b̃(f2)(x)−AtQT
b̃(f2)(x0)|

≤
�

Rn

|Rm(b̃;x, y)|
|x− y|m

|K(x, y)−Kt(x, y)| |f2(y)| dy

+
∑
|α|=m

1

α!

�

Rn

|Dαb̃1(y)‖(x− y)α1 |
|x− y|m

|K(x, y)−Kt(x, y)| |f2(y)| dy

≤
∞∑
k=0

∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)ω(2kQ̃)β/n

×
�

2k+1Q̃\2kQ̃

dδ

|x0 − y|n+δ
|f(y)|ω(y)1/rω(y)−1/r dy

+ C
∑
|α|=m

∞∑
k=0

�

2k+1Q̃

|(Dαb)2k+1Q̃ − (Dαb)Q̃|
dδ

|x0 − y|n+δ
|f(y)|

× ω(y)1/rω(y)−1/r dy

+ C
∑
|α|=m

∞∑
k=0

�

2k+1Q̃

|Dαb(y)− (Dαb)2k+1Q̃|
dδ

|x0 − y|n+δ
|f(y)|

× ω(y)1/rω(y)−1/r dy

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)

∞∑
k=1

k
dδ

(2kd)n+δ
ω(2kQ̃)β/n

×
( �

2kQ̃

|f(y)|rω(y) dx
)1/r( 1

|2kQ̃|

�

2kQ̃

ω(y)−1/(r−1) dy

)(r−1)/r

×
(

1

|2kQ̃|

�

2kQ̃

ω(y) dy

)1/r

|2kQ̃|ω(2kQ̃)−1/r

+ C
∑
|α|=m

∞∑
k=1

dδ

(2kd)n+δ

( �

2kQ̃

|Dαb(y)− (Dαb)2kQ̃|
r′ω(y)1−r

′
dy
)1/r′

×
( �

2kQ̃

|f(y)|rω(y) dy
)1/r
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≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)

∞∑
k=1

k2−kδ
(

1

ω(2kQ̃)1−rβ/n

�

2kQ̃

|f(y)|rω(y) dx

)1/r

+ C
∑
|α|=m

‖Dαb‖Lipβ(ω)
∞∑
k=1

2−kδ
ω(2kQ̃)

|2kQ̃|

×
(

1

ω(2kQ̃)1−rβ/n

�

2kQ̃

|f(y)|rω(y) dx

)1/r

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃)

and

J5 ≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)ω(x̃)Mβ,r,ω(f)(x̃).

This completes the proof of Theorem 3.2.

Theorem 3.3. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, 1 < p < ∞, µ, ν ∈ Ap, ω = (µν−1)1/p and
Dαb ∈ BMO(ω) for all α with |α| = m. Then T b is bounded from Lp(Rn, µ)
to Lp(Rn, ν).

Proof. Notice νr
′/p ∈ Ar′+1−r′/p ⊂ Ap and ν(x) dx ∈ Ap/r′(ν(x)r

′/p dx)
by Lemma 2.8. Thus, by Theorem 3.1, Lemmas 2.4 and 2.11, we get
�

Rn
|T b(f)(x)|pν(x) dx ≤

�

Rn
|Mη(T

b(f))(x)|pν(x) dx

≤ C
�

Rn
|M#

A,η(T
b(f))(x)|pν(x) dx

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

�

Rn

(
[Mν(|ωT (f)|q)(x)]p/q + [Mνr

′/p(|ωf |r
′
)(x)]p/r

′

+ [Mν(|ωf |q)(x)]p/q
)
ν(x) dx

≤ C
∑
|α|=m

‖Dαb‖BMO(ω)

( �

Rn
|ω(x)f(x)|pν(x) dx+

�

Rn
|ω(x)T (f)(x)|pν(x) dx

)
= C

∑
|α|=m

‖Dαb‖BMO(ω)

( �

Rn
|f(x)|pµ(x) dx+

�

Rn
|T (f)(x)|pµ(x) dx

)
≤ C

∑
|α|=m

‖Dαb‖BMO(ω)

�

Rn
|f(x)|pµ(x) dx.

Theorem 3.4. Let T be a singular integral operator with non-smooth
kernel as in Definition 2.2, ω ∈ A1, 0 < β < 1, 1 < p < n/β, 1/q =
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1/p − β/n and Dαb ∈ Lipβ(ω) for all α with |α| = m. Then T b is bounded

from Lp(Rn, ω) to Lq(Rn, ω1−q).

Proof. Choose 1 < r < p in Theorem 3.2 and notice ω1−q ∈ A1. Then
we have, by Lemmas 2.10 and 2.11,

‖T b(f)‖Lq(ω1−q) ≤ ‖Mη(T
b(f))‖Lq(ω1−q) ≤ C‖M

#
A,η(T

b(f))‖Lq(ω1−q)

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)‖ωMβ,r,ω(f)‖Lq(ω1−q)

= C
∑
|α|=m

‖Dαb‖Lipβ(ω)‖Mβ,r,ω(f)‖Lq(ω)

≤ C
∑
|α|=m

‖Dαb‖Lipβ(ω)‖f‖Lp(ω).

Corollary 3.5. Let [b, T ](f) = bT (f)− T (bf) be the commutator gen-
erated by a singular integral operator T as in Definition 2.2 and b. Then the
conclusion of Theorems 3.1–3.4 hold for [b, T ] in place of T b.

4. Applications. In this section we shall apply the theorems of this
paper to the holomorphic functional calculus of linear elliptic operators.
First, we review some definitions regarding holomorphic functional calculus
(see [DM], [MA]). Given 0 ≤ θ < π, define

Sθ = {z ∈ C : |arg(z)| ≤ θ} ∪ {0}
and denote its interior by S0

θ . Set S̃θ = Sθ \ {0}. A closed linear elliptic
operator L on some Banach space E is said to be of type θ if its spectrum
σ(L) is contained in Sθ and for every ν ∈ (θ, π], there exists a constant Cν
such that

|η| ‖(ηI − L)−1‖ ≤ Cν , η /∈ S̃θ.
By the Hille–Yosida theorem, such an operator with θ < π/2 is the generator

of a bounded holomorphic semigroup e−zL in the sector S0
µ with µ = π/2−θ.

For ν ∈ (0, π], let

H∞(S0
µ) = {f : S0

θ → C : f is holomorphic and ‖f‖L∞ <∞},

where ‖f‖L∞ = sup{|f(z)| : z ∈ S0
µ}. Set

Ψ(S0
µ) =

{
g ∈ H∞(S0

µ) : ∃s, c > 0 such that |g(z)| ≤ c |z|s

1 + |z|2s

}
.

If L is of type θ and g ∈ H∞(S0
µ), we define an operator g(L) ∈ L(E) by

g(L) = −(2πi)−1
�

Γ

(ηI − L)−1g(η) dη,
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where Γ is the contour {ξ = re±iφ : r ≥ 0} parameterized clockwise around
Sθ with θ < φ < µ. If, in addition, L is one-one and has dense range, then,
for f ∈ H∞(S0

µ),

f(L) = [h(L)]−1(fh)(L),

where h(z) = z(1 + z)−2. By [DM], [MA], f(L) is a well-defined linear op-

erator in E for f ∈ Ψ(S0
µ). The definition of f(L) can even be extended

to unbounded holomorphic functions f (see [DM], [MA] for details). L
is said to have a bounded holomorphic functional calculus on the sector
Sµ if

‖g(L)‖ ≤ N‖g‖L∞

for some N > 0 and for all g ∈ H∞(S0
µ).

Now, let L be a linear operator on L2(Rn) with θ < π/2 so that −L
generates a holomorphic semigroup e−zL, 0 ≤ |arg(z)| < π/2− θ. Applying
[DM, Theorem 6], [MA, Theorem 7.2] and Theorems 3.1–3.4, we get

Corollary 4.1. Assume the following conditions are satisfied:

(i) The holomorphic semigroup e−zL, 0 ≤ |arg(z)| < π/2 − θ, is rep-
resented by kernels az(x, y) which satisfy, for all ν > θ, an upper
bound

|az(x, y)| ≤ cνh|z|(x, y)

for x, y ∈ Rn and 0 ≤ |arg(z)| < π/2 − θ, where ht(x, y) =
Ct−n/2s(|x−y|2/t) and s is a positive, bounded and decreasing func-
tion satisfying

lim
r→∞

rn+εs(r2) = 0 for some ε > 0.

(ii) The operator L has a bounded holomorphic functional calculus in
L2(Rn), that is, for all ν > θ and g ∈ H∞(S0

µ), the operator g(L)
satisfies

‖g(L)(f)‖L2 ≤ cν‖g‖L∞‖f‖L2 .

We relate to the operator g(L) and b the linear operator defined by

g(L)b(f)(x) =
�

Rn

Rm+1(b;x, y)

|x− y|m
K(x, y)f(y) dy.

Then the conclusion of Theorems 1–4 holds for the linear operator g(L)b in
place of T b.

In fact, it suffices to justify that the operator g(L) satisfies the conditions
of Definition 2.2. From [MA], for such an operator, taking the approximation
to the identity At = Dt = e−tL yields Kt = kt, and using the assumption (i),
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it was proved in [MA, Theorem 6] that the conditions of Definition 2.2 are
satisfied. Thus the operator g(L) satisfies the conditions in the corresponding
theorem by Theorem 7.3 of [MA].
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