GLOBAL WELL-POSEDNESS FOR THE 2-D BOUSSINESQ SYSTEM WITH TEMPERATURE-DEPENDENT THERMAL DIFFUSIVITY

BY
QIONGLEI CHEN (Beijing) and LIYA JIANG (Hangzhou)

Abstract

We prove the global well-posedness of the 2-D Boussinesq system with temperature dependent thermal diffusivity and zero viscosity coefficient.

1. Introduction. The following 2-D Boussinesq system is one of the most popular models in fluid and geophysical fluid dynamics:

$$
\left\{\begin{array}{l}
\partial_{t} u-\nabla \cdot(\nu \nabla u)+u \cdot \nabla u+\nabla p=\theta e_{2}, \quad e_{2}=(0,1) \tag{1.1}\\
\partial_{t} \theta-\nabla \cdot(\kappa \nabla \theta)+u \cdot \nabla \theta=0 \\
\nabla \cdot u=0 \\
u(0, x)=u_{0}(x), \quad \theta(0, x)=\theta_{0}(x)
\end{array}\right.
$$

Here u and θ denote the velocity and temperature of the fluid, respectively. The viscosity ν and the thermal diffusivity κ depend on the temperature.

Owing to the similarity with the incompressible Navier-Stokes equation, system (1.1) has been studied extensively by many researchers. In the case when ν and κ are positive constants, global well-posedness results were proved by numerous authors in various function spaces (see [3, 16] and the references therein). For the case that one of ν and κ is zero and the other is a positive constant, results on global well-posedness in various function spaces can be found in [1, 5, 6, 7, 9, 10, 11]. There is also extensive literature on the global well-posedness of the anisotropic Boussinesq system (see [4, 8, 13, 14]). Recently, using methods based on the De Giorgi technique, Wang and Zhang [19] proved global well-posedness results for system (1.1) with $\nu=\nu(\theta)$ and $\kappa=\kappa(\theta)$, where $\nu(\cdot)$ and $\kappa(\cdot)$ are smooth functions satisfing

$$
\begin{equation*}
C_{0}^{-1} \leq \nu(\theta) \leq C_{0}, \quad C_{0}^{-1} \leq \kappa(\theta) \leq C_{0}, \quad \theta \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

for some positive constant C_{0}.

[^0]In this paper, we consider the case $\nu=0$ and $\kappa=\kappa(\theta)$, i.e.,

$$
\left\{\begin{array}{l}
\partial_{t} u+u \cdot \nabla u+\nabla p=\theta e_{2}, \quad e_{2}=(0,1), \tag{1.3}\\
\partial_{t} \theta-\nabla \cdot(\kappa \nabla \theta)+u \cdot \nabla \theta=0, \\
\nabla \cdot u=0, \\
u(0, x)=u_{0}(x), \quad \theta(0, x)=\theta_{0}(x) .
\end{array}\right.
$$

Our main result reads as follows.
Theorem 1.1. Let $s>2$ and $\left(u_{0}, \theta_{0}\right) \in H^{s}\left(\mathbb{R}^{2}\right)$. Assume that $\kappa(\theta)$ satisfies (1.2). Then the Boussinesq system (1.3) has a unique global in time solution (u, θ) such that

$$
u \in C\left(\mathbb{R}^{+} ; H^{s}\left(\mathbb{R}^{2}\right)\right), \quad \theta \in C\left(\mathbb{R}^{+} ; H^{s}\left(\mathbb{R}^{2}\right)\right) \cap L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{+} ; H^{s+1}\left(\mathbb{R}^{2}\right)\right)
$$

2. Preliminaries. We first recall the nonhomogeneous Littlewood-Paley decomposition and some classical spaces. Choose a function $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ supported in the unit ball and satisfying $\varphi(\xi)=1$ for $|\xi| \leq 1 / 2$. Let $\psi(\xi)=$ $\varphi(\xi / 2)-\varphi(\xi)$, so $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ is supported in $\{1 / 2 \leq|\xi| \leq 2\}$ and satisfies the identity

$$
\varphi(\xi)+\sum_{j \geq 0} \psi\left(2^{-j} \xi\right)=1, \quad \forall \xi \in \mathbb{R}^{n}
$$

We denote by Δ_{j} and S_{j} the convolution operators with symbols respectively $\psi\left(2^{-j} \xi\right)$ and $\varphi\left(2^{-j} \xi\right)$, and set $\Delta_{-1} f=S_{0} f, \Delta_{k} f=0$ for $k \leq-2$. We can easily verify that

$$
\begin{equation*}
\Delta_{j} \Delta_{k} \equiv 0 \quad \text { if }|j-k| \geq 3, \quad \Delta_{j}\left(S_{k-1} f \Delta_{k} g\right) \equiv 0 \quad \text { if }|j-k| \geq 4 . \tag{2.1}
\end{equation*}
$$

The Sobolev space $H^{s, p}\left(\mathbb{R}^{d}\right)(1<p<\infty)$ is defined by

$$
H^{s, p}\left(\mathbb{R}^{d}\right)=\left\{f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right):\|f\|_{H^{s, p}} \sim\left\|\left(\sum_{j \geq-1} 2^{2 s j}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{p}<\infty\right\}
$$

If $p=2$, it is just the classical Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$ whose norm is defined by $\left\|\Lambda^{s} f\right\|_{2}$, where Λ^{s} is the Fourier multiplier operator with symbol $\left(1+|\xi|^{2}\right)^{s / 2}$. Moreover, we introduce the following space-time Sobolev spaces:

$$
\begin{aligned}
& L^{\infty}\left(0, T ; H^{s}\right)=\left\{f \in \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right):\right. \\
&\left.\|f\|_{L^{\infty}\left(0, T ; H^{s}\right)} \sim\| \| f\left\|_{H^{s}}\right\|_{L^{\infty}(0, T)}<\infty\right\}, \\
& \tilde{L}_{T}^{\infty}\left(H^{s}\right)=\left\{f \in \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right):\right. \\
&\left.\|f\|_{\tilde{L}_{T}^{\infty}\left(H^{s}\right)} \sim\left(\sum_{j \geq-1} 2^{2 s j}\left\|\Delta_{j} f\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}^{2}\right)^{1 / 2}<\infty\right\} .
\end{aligned}
$$

It is obvious that $\tilde{L}_{T}^{\infty}\left(H^{s}\right) \subset L^{\infty}\left(0, T ; H^{s}\right)$.
Next we recall some lemmas which will be used throughout this paper.

Lemma 2.1 (see [12]). Let $1<p<\infty$ and $s>0$. Assume that $f, g \in$ $H^{s, p}\left(\mathbb{R}^{d}\right)$. Then there exists a constant C independent of f, g such that

$$
\left\|\left[\Lambda^{s}, g\right] f\right\|_{p} \leq C\left(\|\nabla g\|_{p_{1}}\|f\|_{H^{s-1, p_{2}}}+\|g\|_{H^{s, p_{3}}}\|f\|_{p_{4}}\right)
$$

with $p_{2}, p_{3} \in(1, \infty)$ such that

$$
\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}}
$$

where [,] is the commutator.
Lemma 2.2 (see [18]). Let $s>0$ and $f \in H^{s}\left(\mathbb{R}^{d}\right)$. Assume that $F(\cdot)$ is a smooth function on \mathbb{R} with $F(0)=0$. Then

$$
\|F(f)\|_{H^{s}} \leq C\left(1+\|f\|_{\infty}\right)^{[s]+1}\|f\|_{H^{s}}
$$

where the constant C depends on $\sup _{k \leq[s]+2,|t| \leq\|f\|_{\infty}}\left\|F^{(k)}(t)\right\|_{\infty}$.
Lemma 2.3 (see [19]). Let $s>d / 2$ and $f \in H^{s}\left(\mathbb{R}^{d}\right)$. Then

$$
\|f\|_{\infty} \leq C\left(1+\|f\|_{H^{d / 2}}\right) \log ^{1 / 2}\left(e+\|f\|_{H^{s}}\right)
$$

Lemma 2.4 (see [15]). Let $s>1+d / 2$ and $f \in H^{s}\left(\mathbb{R}^{d}\right)$. Then

$$
\|\nabla f\|_{\infty} \leq C\left(1+\|\operatorname{curl} f\|_{\infty}\right) \log \left(e+\|f\|_{H^{s}}\right)
$$

Lemma 2.5. Let $s>0$ and $f, g \in H^{s}\left(\mathbb{R}^{d}\right) \cap W^{1, \infty}$. Then

$$
\left(\sum_{j \geq-1} 2^{2 s j}\left\|\left[\Delta_{j}, f\right] \cdot \nabla g\right\|_{2}^{2}\right)^{1 / 2} \leq C\left(\|\nabla f\|_{\infty}\|g\|_{H^{s}}+\|\nabla g\|_{\infty}\|f\|_{H^{s}}\right)
$$

Proof. The proof is standard; we give a sketch for the sake of completeness. Recall Bony's decomposition (see [2])

$$
f g=T_{f} g+T_{g} f+R(f, g)
$$

where

$$
T_{f} g=\sum_{j \geq-1} S_{j-3} f \Delta_{j} g, \quad R(f, g)=\sum_{j \geq-1} \Delta_{j} f \tilde{\Delta}_{j} g, \quad \tilde{\Delta}_{j}:=\sum_{\nu=-2}^{2} \Delta_{j+\nu}
$$

Then we decompose

$$
\begin{aligned}
{\left[\Delta_{j}, f\right] \cdot \nabla g=} & {\left[\Delta_{j}, f_{i}\right] \partial_{i} g } \\
= & {\left[\Delta_{j}, T_{f_{i}}\right] \partial_{i} g-T_{\Delta_{j} \partial_{i} g} f_{i}-R\left(\Delta_{j} \partial_{i} g, f_{i}\right) } \\
& +\Delta_{j}\left(T_{\partial_{i} g}\right) f_{i}+\Delta_{j}\left(R\left(f_{i}, \partial_{i} g\right)\right) \\
= & I-I I-I I I+I V+V
\end{aligned}
$$

where the Einstein convention on the summation over repeated indices $i=$ 1,2 is used. Thanks to the condition (2.1), and denoting $h=\mathcal{F}^{-1} \psi$, we have

$$
\begin{aligned}
I= & \sum_{j^{\prime} \sim j}\left[\Delta_{j}, S_{j^{\prime}-3} f_{i}\right] \partial_{i} \Delta_{j^{\prime}} g \\
= & \sum_{j^{\prime} \sim j} \int_{\mathbb{R}^{2}} 2^{2 j} h\left(2^{j}(x-y)\right)\left(S_{j^{\prime}-3} f_{i}(y)-S_{j^{\prime}-3} f_{i}(x)\right) \partial_{i} \Delta_{j^{\prime}} g(y) d y \\
= & -\sum_{j^{\prime} \sim j} \int_{\mathbb{R}^{2}} 2^{3 j}\left(\partial_{i} h\right)\left(2^{j}(x-y)\right)\left(S_{j^{\prime}-3} f_{i}(y)-S_{j^{\prime}-3} f_{i}(x)\right) \partial_{i} \Delta_{j^{\prime}} g(y) d y \\
& -\sum_{j^{\prime} \sim j} \int_{\mathbb{R}^{2}} 2^{2 j} h\left(2^{j}(x-y)\right) \partial_{i}\left(S_{j^{\prime}-3} f_{i}\right)(y) \partial_{i} \Delta_{j^{\prime}} g(y) d y
\end{aligned}
$$

Applying Taylor's formula and the usual convolution inequalities yields

$$
\|I\|_{2} \leq C\|\nabla f\|_{\infty} \sum_{j^{\prime} \sim j}\left\|\Delta_{j^{\prime}} g\right\|_{2}
$$

Thus we get the desired estimate

$$
\left(\sum_{j \geq-1} 2^{2 s j}\|I\|_{2}^{2}\right)^{1 / 2} \leq C\|\nabla f\|_{\infty}\|g\|_{H^{s}}
$$

For the term $I I$, we can write

$$
|I I|=\left|\sum_{j^{\prime} \geq j-3} S_{j^{\prime}-3} \Delta_{j} \partial_{i} g \Delta_{j^{\prime}} f_{i}\right| \leq C\|\nabla g\|_{\infty} \sum_{j^{\prime} \geq j-3}\left|\Delta_{j^{\prime}} f_{i}\right|
$$

Then thanks to the convolution inequality for series we get, for $s>0$,

$$
\begin{aligned}
\left(\sum_{j \geq-1} 2^{2 s j}\|I I\|_{2}^{2}\right)^{1 / 2} & \leq C\|\nabla g\|_{\infty}\left\|\sum_{j^{\prime} \geq j+2} 2^{\left(j-j^{\prime}\right) s} 2^{j^{\prime} s}\right\| \Delta_{j^{\prime}} f_{i}\left\|_{2}\right\|_{\ell^{2}} \\
& \leq C\|\nabla g\|_{\infty}\|f\|_{H^{s}}
\end{aligned}
$$

For the term $I I I$, it is easy to see that

$$
|I I I|=\left|\sum_{j^{\prime} \sim j} \Delta_{j^{\prime}}\left(\Delta_{j} \partial_{i} g\right) \tilde{\Delta}_{j^{\prime}} f_{i}\right| \leq C\|\nabla g\|_{\infty} \sum_{j^{\prime} \sim j} \tilde{\Delta}_{j^{\prime}} f_{i}
$$

hence

$$
\left(\sum_{j \geq-1} 2^{2 s j}\|I I I\|_{2}^{2}\right)^{1 / 2} \leq C\|\nabla g\|_{\infty}\|f\|_{H^{s}}
$$

By the same argument, we obtain

$$
\left(\sum_{j \geq-1} 2^{2 s j}\|I V\|_{2}^{2}\right)^{1 / 2} \leq C\|\nabla g\|_{\infty}\|f\|_{H^{s}}
$$

The last term can be written as

$$
V=\sum_{j^{\prime} \geq j-5} \Delta_{j}\left(\Delta_{j^{\prime}} \partial_{i} g \tilde{\Delta}_{j^{\prime}} f_{i}\right)
$$

Hence

$$
\|V\|_{2} \leq C\|\nabla g\|_{\infty} \sum_{j^{\prime} \geq j-5}\left\|\tilde{\Delta}_{j^{\prime}} f_{i}\right\|_{2}
$$

and again using the convolution inequality for series as for $I I$, we get, for $s>0$,

$$
\left(\sum_{j \geq-1} 2^{2 s j}\|V\|_{2}^{2}\right)^{1 / 2} \leq C\|\nabla g\|_{\infty}\|f\|_{H^{s}}
$$

Thus the lemma is completely proved.
3. The proof of the main theorem. We divide the proof into three parts. In the following, the same generic constant C will be used to denote various constants that depend on C_{0}, T and $\left\|u_{0}\right\|_{H^{2}},\left\|\theta_{0}\right\|_{H^{2}}$. Here C_{0} comes from inequalities 1.2 .

Step 1. A priori estimates in $H^{s}\left(\mathbb{R}^{2}\right)$. First, we prove the following a priori estimate:

Proposition 3.1. Let $s>2$ and $\left(u_{0}, \theta_{0}\right) \in H^{s}\left(\mathbb{R}^{2}\right)$. There exists a constant C such that if (u, θ) is a solution of 1.3 , then

$$
\begin{align*}
\|u\|_{H^{s}}^{2}+\|\theta\|_{H^{s}}^{2}+C_{0}^{-1} \int_{0}^{t} & \|\nabla \theta(\tau)\|_{H^{s}}^{2} d \tau \tag{3.1}\\
& \leq\left(\left\|u_{0}\right\|_{H^{s}}^{2}+\left\|\theta_{0}\right\|_{H^{s}}^{2}\right) \exp \left\{C \int_{0}^{t} G(\tau) d \tau\right\}
\end{align*}
$$

with $G(\tau)=1+\|\nabla u(\tau)\|_{L^{\infty}}+\|\nabla \theta(\tau)\|_{L^{2}}^{2}$.
Proof. First, we will obtain an H^{1} estimate. The straightforward energy estimate for 1.3 and Gronwall's inequality give

$$
\|\theta\|_{2}^{2}+\int_{0}^{t} C_{0}^{-1}\|\nabla \theta(\tau)\|_{2}^{2} d \tau \leq\left\|\theta_{0}\right\|_{2}^{2}, \quad\|u\|_{2} \leq\left\|u_{0}\right\|_{2}+\int_{0}^{t}\|\theta(\tau)\|_{2} d \tau
$$

so

$$
\begin{equation*}
\|u\|_{2} \leq C, \quad\|\theta\|_{2} \leq C, \quad \int_{0}^{t}\|\nabla \theta(\tau)\|_{2}^{2} d \tau \leq C, \quad \forall t \leq T \tag{3.2}
\end{equation*}
$$

Let $p>2$. Multiplying the second equation of (1.3) by $|\theta|^{p-2} \theta$ and integrating by parts leads to

$$
\frac{1}{p} \frac{d}{d t}\|\theta\|_{p}^{p}+(p-1) \int_{\mathbb{R}^{2}} \kappa(\theta)|\nabla \theta|^{2}|\theta|^{p-2} d x=0
$$

Thus we have $\|\theta\|_{p} \leq\left\|\theta_{0}\right\|_{p}$, which implies

$$
\begin{equation*}
\|\theta\|_{\infty} \leq\left\|\theta_{0}\right\|_{\infty} . \tag{3.3}
\end{equation*}
$$

It is well-known that u can be recovered from the vorticity ω via the BiotSavart law:

$$
u=\text { P.V. } K * \omega, \quad K(x)=\frac{1}{2 \pi|x|^{2}}\left(-x_{2}, x_{1}\right) .
$$

Thus $\|\nabla u\|_{2} \simeq\|\omega\|_{2}$ and $\|\Delta u\|_{2} \simeq\|\nabla \omega\|_{2}$. The vorticity equation is given by

$$
\begin{equation*}
\partial_{t} \omega+u \cdot \nabla \omega=-\partial_{1} \theta . \tag{3.4}
\end{equation*}
$$

Hence, the energy estimate and Gronwall's inequality give

$$
\|\omega\|_{2} \leq\left\|\omega_{0}\right\|_{2}+\int_{0}^{t}\|\nabla \theta(\tau)\|_{2} d \tau
$$

which implies

$$
\begin{equation*}
\|\nabla u\|_{2} \leq C . \tag{3.5}
\end{equation*}
$$

For the high order energy estimate for θ, it follows from [17] that the quantity $\Theta=K(\theta)=\int_{0}^{\theta} \kappa(z) d z$ satisfies the following simple equation:

$$
\left\{\begin{array}{l}
k^{\prime}(\Theta)\left(\partial_{t} \Theta+u \cdot \nabla \Theta\right)-\Delta \Theta=0 \tag{3.6}\\
\Theta(0, x)=K\left(\theta_{0}(x)\right)
\end{array}\right.
$$

with k an increasing smooth such that $k(\Theta)=k(K(\theta))=\theta$ and

$$
K^{\prime}(\theta)=\kappa(\theta), \quad k^{\prime}(\Theta)=\left(K^{\prime}(\theta)\right)^{-1}=\frac{1}{\kappa(\theta)} .
$$

By the energy estimate (for more details, see [17, Step 2 in Section 4, Proof of Theorem 1.2]), we finally deduce that

$$
\frac{1}{2 C_{0}} \int_{\mathbb{R}^{2}} \Theta_{t}^{2}(t) d x+\frac{d}{d t} \int_{\mathbb{R}^{2}}|\nabla \Theta|^{2} d x \leq C\left(1+\|u\|_{L^{2}}^{2}\|\nabla u\|_{L^{2}}^{2}\right)\|\nabla \Theta\|_{L^{2}}^{2},
$$

from which, (3.2), (3.5) and Gronwall's inequality, it follows that

$$
\begin{equation*}
\|\nabla \Theta\|_{L_{T}^{\infty}\left(L^{2}\right)}+\left\|\Theta_{t}\right\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|\nabla \Theta_{0}\right\|_{L^{2}} \leq C\left\|\theta_{0}\right\|_{H^{1}} . \tag{3.7}
\end{equation*}
$$

From (3.6) and Gagliardo-Nirenberg's inequality, we get
$\left\|\nabla^{2} \Theta\right\|_{L^{2}} \leq C\|\Delta \Theta\|_{L^{2}} \leq C\left\|\Theta_{t}\right\|_{L^{2}}+\frac{1}{2}\|\nabla \Theta\|_{H^{1}}+C\|u\|_{L^{2}}\|\nabla u\|_{L^{2}}\|\nabla \Theta\|_{L^{2}}$.

Moreover, we have

$$
\begin{aligned}
\|\nabla \theta\|_{L^{2}} & =\left\|k^{\prime}(\Theta) \nabla \Theta\right\|_{L^{2}} \leq C\|\nabla \Theta\|_{L^{2}}, \\
\left\|\nabla^{2} \theta\right\|_{L^{2}} & =\left\|k^{\prime}(\Theta) \nabla^{2} \Theta+k^{\prime \prime}(\Theta) \nabla \Theta \otimes \nabla \Theta\right\|_{L^{2}} \leq C\left(1+\|\nabla \Theta\|_{L^{2}}\right)\left\|\nabla^{2} \Theta\right\|_{L^{2}} .
\end{aligned}
$$

Thus we infer that

$$
\begin{equation*}
\|\nabla \theta\|_{2} \leq C, \quad \int_{0}^{t}\|\Delta \theta\|_{2}^{2} \leq C, \quad \forall t \leq T \tag{3.8}
\end{equation*}
$$

Next we will get an H^{s} estimate. Applying Λ^{s} to the velocity equation and computing the $L^{2}\left(\mathbb{R}^{2}\right)$ inner product with $\Lambda^{s} u$, we get

$$
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{s} u\right\|_{2}^{2}=-\int_{\mathbb{R}^{2}} \Lambda^{s} u\left[\Lambda^{s}, u\right] \cdot \nabla u d x+\int_{\mathbb{R}^{2}} \Lambda^{s} u \Lambda^{s}\left(\theta e_{2}\right) d x
$$

where we have used the fact $\operatorname{div} u=0$. It follows from Hölder's inequality and Lemma 2.1 that

$$
\begin{align*}
\frac{d}{d t}\|u\|_{H^{s}}^{2} & \leq 2\|\theta\|_{H^{s}}\|u\|_{H^{s}}+C\|u\|_{H^{s}}^{2}\|\nabla u\|_{\infty} \tag{3.9}\\
& \leq\left(\|\theta\|_{H^{s}}^{2}+\|u\|_{H^{s}}^{2}\right)\left(1+C\|\nabla u\|_{\infty}\right) .
\end{align*}
$$

Similarly, applying Λ^{s} to the temperature equation and taking the $L^{2}\left(\mathbb{R}^{2}\right)$ inner product with $\Lambda^{s} \theta$, we obtain

$$
\begin{align*}
\frac{1}{2} & \frac{d}{d t}\left\|\Lambda^{s} \theta\right\|_{2}^{2}+\int_{\mathbb{R}^{2}} \kappa(\theta)\left|\Lambda^{s} \nabla \theta\right|^{2} d x \tag{3.10}\\
& =-\int_{\mathbb{R}^{2}} \Lambda^{s} \theta\left[\Lambda^{s}, u\right] \cdot \nabla \theta d x-\int_{\mathbb{R}^{2}} \Lambda^{s} \nabla \theta \cdot\left[\Lambda^{s}, \kappa(\theta)-\kappa(0)\right] \nabla \theta d x
\end{align*}
$$

Obviously,

$$
\begin{equation*}
\left.\left|\int_{\mathbb{R}^{2}} \kappa(\theta)\right| \Lambda^{s} \nabla \theta\right|^{2} d x \mid \geq C_{0}^{-1}\|\nabla \theta\|_{H^{s}}, \tag{3.11}
\end{equation*}
$$

and by Lemmas 2.1 and 2.2,

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{2}} \Lambda^{s} \nabla \theta \cdot\left[\Lambda^{s}, \kappa(\theta)-\kappa(0)\right] \nabla \theta d x\right| \tag{3.12}\\
& \quad \leq\|\nabla \theta\|_{H^{s}}\left\{\left(1+\|\theta\|_{\infty}\right)^{1+[s]}\|\theta\|_{H^{s}}\|\nabla \theta\|_{\infty}+\|\nabla \theta\|_{\infty}\|\theta\|_{H^{s}}\right\} \\
& \quad \leq C\|\theta\|_{H^{s}}\|\nabla \theta\|_{H^{s}}\|\nabla \theta\|_{\infty} \leq \frac{C_{0}^{-1}}{4}\|\nabla \theta\|_{H^{s}}^{2}+C\|\theta\|_{H^{s}}^{2}\|\nabla \theta\|_{\infty}^{2}
\end{align*}
$$

where in the second inequality the estimates (3.3) and $\left\|\theta_{0}\right\|_{\infty} \leq C\left\|\theta_{0}\right\|_{H^{2}}$ are used. For the last term of the right hand side of (3.10), we have

$$
\left|\int_{\mathbb{R}^{2}} \Lambda^{s} \theta\left[\Lambda^{s}, u\right] \cdot \nabla \theta d x\right| \leq\left\|\Lambda^{s} \theta\right\|_{4}\left\|\left[\Lambda^{s}, u\right] \cdot \nabla \theta\right\|_{4 / 3}
$$

Using the Gagliardo-Nirenberg inequality in 2-D, we obtain

$$
\left\|\Lambda^{s} \theta\right\|_{4} \leq C\left\|\Lambda^{s} \theta\right\|_{2}^{1 / 2}\left\|\Lambda^{s} \nabla \theta\right\|_{2}^{1 / 2}=C\|\theta\|_{H^{s}}^{1 / 2}\|\nabla \theta\|_{H^{s}}^{1 / 2}
$$

Lemma 2.1 and the Gagliardo-Nirenberg inequality give

$$
\begin{aligned}
\left\|\left[\Lambda^{s}, u\right] \cdot \nabla \theta\right\|_{4 / 3} & \leq C\left(\|\nabla u\|_{2}\|\nabla \theta\|_{H^{s-1,4}}+\|u\|_{H^{s}}\|\nabla \theta\|_{4}\right) \\
& \leq C\left(\|\nabla u\|_{2}\|\theta\|_{H^{s}}^{1 / 2}\|\nabla \theta\|_{H^{s}}^{1 / 2}+\|u\|_{H^{s}}\|\nabla \theta\|_{2}^{1 / 2}\|\Delta \theta\|_{2}^{1 / 2}\right)
\end{aligned}
$$

Collecting the above three estimates, we finally get

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{2}} \Lambda^{s} \theta\left[\Lambda^{s}, u\right] \cdot \nabla \theta d x\right| \tag{3.13}\\
& \leq \frac{C_{0}^{-1}}{4}\|\nabla \theta\|_{H^{s}}^{2}+C\left(\|\theta\|_{H^{s}}^{2}+\|u\|_{H^{s}}^{2}\right)\left(\|\nabla u\|_{2}^{2}+\|\nabla \theta\|_{2}^{2}+\|\Delta \theta\|_{2}^{2}\right)
\end{align*}
$$

Combining (3.10 with 3.11)-3.13 yields

$$
\begin{aligned}
\frac{d}{d t}\|\theta\|_{H^{s}}^{2}+ & C_{0}^{-1}\|\nabla \theta\|_{H^{s}}^{2} \\
& \leq C\left(\|\theta\|_{H^{s}}^{2}+\|u\|_{H^{s}}^{2}\right)\left(\|\nabla \theta\|_{\infty}^{2}+\|\nabla u\|_{2}^{2}+\|\nabla \theta\|_{2}^{2}+\|\Delta \theta\|_{2}^{2}\right)
\end{aligned}
$$

This estimate together with (3.9) leads to

$$
\begin{align*}
& \frac{d}{d t}\left(\|u\|_{H^{s}}^{2}+\|\theta\|_{H^{s}}^{2}\right)+C_{0}^{-1}\|\nabla \theta\|_{H^{s}}^{2} \tag{3.14}\\
\leq & C\left(\|\theta\|_{H^{s}}^{2}+\|u\|_{H^{s}}^{2}\right)\left(\|\nabla u\|_{\infty}+\|\nabla \theta\|_{\infty}^{2}+\|\nabla u\|_{2}^{2}+\|\nabla \theta\|_{2}^{2}+\|\Delta \theta\|_{2}^{2}\right)
\end{align*}
$$

By Gronwall's inequality, we deduce

$$
\begin{aligned}
E_{n} \triangleq & \|u\|_{H^{s}}^{2}+\|\theta\|_{H^{s}}^{2}+C_{0}^{-1} \int_{0}^{t}\|\nabla \theta(\tau)\|_{H^{s}}^{2} d \tau \\
\leq & \left(\left\|u_{0}\right\|_{H^{s}}^{2}+\left\|\theta_{0}\right\|_{H^{s}}^{2}\right) \\
& \quad \times \exp \left(C \int_{0}^{t}\left(1+\|\nabla u\|_{\infty}+\|\nabla \theta\|_{\infty}^{2}+\|\nabla u\|_{2}^{2}+\|\nabla \theta\|_{2}^{2}+\|\Delta \theta\|_{2}^{2}\right) d \tau\right)
\end{aligned}
$$

This inequality combined with 3.5 and (3.8) implies (3.1).
Step 2. Local well-posedness. Here, we construct local in time solutions.

Theorem 3.2. Let $s>2$ and $\left(u_{0}, \theta_{0}\right) \in H^{s}\left(\mathbb{R}^{2}\right)$. Then there exist $T>0$ and a unique solution (u, θ) on $[0, T)$ of the Boussinesq system (1.3) such that

$$
u \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right), \quad \theta \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right) \cap L^{2}\left(0, T ; H^{s+1}\left(\mathbb{R}^{2}\right)\right)
$$

Furthermore,

$$
\begin{align*}
& \|u\|_{\tilde{L}^{\infty}\left(0, t ; H^{s}\right)}^{2}+\|\theta\|_{\tilde{L}^{\infty}\left(0, t ; H^{s}\right)}^{2}+\|\nabla \theta\|_{\tilde{L}^{2}\left(0, t ; H^{s}\right)}^{2} \tag{3.15}\\
& \leq\left(\left\|u_{0}\right\|_{H^{s}}^{2}+\left\|\theta_{0}\right\|_{H^{s}}^{2}\right) \exp \left(\int_{0}^{t} Z(\tau) d \tau\right)
\end{align*}
$$

with $Z(\tau)=F\left(\|\theta\|_{L^{\infty}}\right)\left(1+\|\nabla u(t)\|_{L^{\infty}}^{2}+\|\nabla \theta(t)\|_{L^{\infty}}^{2}\right)$, where $F(\cdot)$ is a nondecreasing function on \mathbb{R}^{+}.

Proof. We modify the proof in [19, Theorem 3.1] using Friedrichs' method to construct approximate solutions. Define the projector operator P_{n} by

$$
\mathcal{F}\left(P_{n} f\right)(\xi)=\chi_{B_{n}} \mathcal{F}(f)(\xi), \quad \mathcal{F} f(\xi)=\int_{\mathbb{R}^{2}} f(x) e^{-i x \xi} d x
$$

where $\chi_{B_{n}}$ is the characteristic function on the ball B_{n} centered at the origin with radius n. The approximate system of 1.3 is

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}+P_{n} \mathcal{P}\left(P_{n} u_{n} \cdot \nabla P_{n} u_{n}\right)=\mathcal{P}\left(P_{n} \theta_{n} e_{2}\right) \tag{3.16}\\
\partial_{t} \theta_{n}-P_{n} \nabla \cdot\left(\kappa\left(P_{n} \theta_{n}\right) \nabla P_{n} \theta_{n}\right)+P_{n} \mathcal{P}\left(P_{n} u_{n} \cdot \nabla P_{n} \theta_{n}\right)=0 \\
u_{n}(0, x)=P_{n} u_{0}(x), \quad \theta_{n}(0, x)=P_{n} \theta_{0}(x)
\end{array}\right.
$$

Here \mathcal{P} denotes the Helmholtz projection operator onto the divergence-free fields, which is given by

$$
\mathcal{P}=\left(\delta_{i j}+\mathcal{R}_{i} \mathcal{R}_{j}\right)_{1 \leq i, j \leq 2}
$$

with Riesz transform \mathcal{R}_{i} defined by

$$
\mathcal{F}\left(\mathcal{R}_{i} f\right)(\xi)=\frac{i \xi_{i}}{|\xi|} \mathcal{F} f(\xi)
$$

It is clear that $P_{n} \mathcal{P}=\mathcal{P} P_{n}$. It is known that system 3.16 has a unique solution $\left(u_{n}, \theta_{n}\right) \in C\left(\left[0, T_{n}\right] ; L^{2}\left(\mathbb{R}^{2}\right)\right)$ for some $T_{n}>0$. Thanks to $P_{n}^{2}=P_{n}$, $\left(P_{n} u_{n}, P_{n} \theta_{n}\right)$ is also a solution of (3.16), so $\left(P_{n} u_{n}, P_{n} \theta_{n}\right)=\left(u_{n}, \theta_{n}\right)$. Thus approximate system (3.16) can be rewritten as

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}+P_{n} \mathcal{P}\left(u_{n} \cdot \nabla u_{n}\right)=\mathcal{P}\left(\theta_{n} e_{2}\right) \tag{3.17}\\
\partial_{t} \theta_{n}-P_{n} \nabla \cdot\left(\kappa\left(\theta_{n}\right) \nabla \theta_{n}\right)+P_{n} \mathcal{P}\left(u_{n} \cdot \nabla \theta_{n}\right)=0 \\
u_{n}(0, x)=P_{n} u_{0}(x), \quad \theta_{n}(0, x)=P_{n} \theta_{0}(x)
\end{array}\right.
$$

Next we will show energy estimates. Applying the operator Δ_{j} to 3.17) yields

$$
\left\{\begin{array}{l}
\partial_{t} \Delta_{j} u_{n}+P_{n} \mathcal{P} \Delta_{j}\left(u_{n} \cdot \nabla u_{n}\right)=\mathcal{P} \Delta_{j}\left(\theta_{n} e_{2}\right) \tag{3.18}\\
\partial_{t} \Delta_{j} \theta_{n}-P_{n} \Delta_{j} \nabla \cdot\left(\kappa_{n} \nabla \theta_{n}\right)+P_{n} \mathcal{P} \Delta_{j}\left(u_{n} \cdot \nabla \theta_{n}\right)=0 \\
\Delta_{j} u_{n}(0, x)=P_{n} \Delta_{j} u_{0}(x), \quad \Delta_{j} \theta_{n}(0, x)=P_{n} \Delta_{j} \theta_{0}(x)
\end{array}\right.
$$

Multiplying both sides of the first equation in (3.18) by $\Delta_{j} u_{n}$ and integrating over \mathbb{R}^{2}, we obtain

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|\Delta_{j} u_{n}\right\|_{2}^{2} & \left.=-\left\langle\left[\Delta_{j}, u_{n}\right] \cdot \nabla u_{n}\right), \Delta_{j} u_{n}\right\rangle+\left\langle\mathcal{P} \Delta_{j}\left(\theta_{n} e_{2}\right), \Delta_{j} u_{n}\right\rangle \tag{3.19}\\
& \leq\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla u_{n}\right\|_{2}\left\|\Delta_{j} u_{n}\right\|_{2}+C\left\|\Delta_{j} \theta_{n}\right\|_{2}\left\|\Delta_{j} u_{n}\right\|_{2} \\
& \leq\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla u_{n}\right\|_{2}^{2}+C\left\|\Delta_{j} \theta_{n}\right\|_{2}^{2}+C\left\|\Delta_{j} u_{n}\right\|_{2}^{2}
\end{align*}
$$

Here we have used the fact that $\operatorname{div} u_{n}=0$. Similarly, from the second equation of (3.18) and $\operatorname{div} u_{n}=0$ we get

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\Delta_{j} \theta_{n}\right\|_{2}^{2}= & -\left\langle\Delta_{j}\left(\kappa_{n} \nabla \theta_{n}\right), \Delta_{j} \nabla \theta_{n}\right\rangle-\left\langle\Delta_{j}\left(u_{n} \cdot \nabla \theta_{n}\right), \Delta_{j} \theta_{n}\right\rangle \\
= & -\left\langle\kappa_{n} \Delta_{j} \nabla \theta_{n}, \Delta_{j} \nabla \theta_{n}\right\rangle-\left\langle\left[\Delta_{j}, \kappa_{n}\right] \nabla \theta_{n}, \Delta_{j} \nabla \theta_{n}\right\rangle \\
& -\left\langle\left[\Delta_{j}, u_{n}\right] \cdot \nabla \theta_{n}, \Delta_{j} \theta_{n}\right\rangle
\end{aligned}
$$

This equality implies that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|\Delta_{j} \theta_{n}\right\|_{2}^{2}+\frac{C_{0}^{-1}}{2}\left\|\Delta_{j} \nabla \theta_{n}\right\|_{2}^{2} \tag{3.20}\\
& \leq C\left\|\left[\Delta_{j}, \kappa_{n}-\kappa_{n}(0)\right] \nabla \theta_{n}\right\|_{2}^{2}+C\left\|\Delta_{j} \theta_{n}\right\|_{2}^{2}+C\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla \theta_{n}\right\|_{2}^{2}
\end{align*}
$$

Summing up 3.19 and (3.20 yields

$$
\begin{aligned}
& \frac{d}{d t}\left(\left\|\Delta_{j} u_{n}\right\|_{2}^{2}+\left\|\Delta_{j} \theta_{n}\right\|_{2}^{2}\right)+C_{0}^{-1}\left\|\Delta_{j} \nabla \theta_{n}\right\|_{2}^{2} \\
& \leq C\left(\left\|\Delta_{j} u_{n}\right\|_{2}^{2}+\left\|\Delta_{j} \theta_{n}\right\|_{2}^{2}+\left\|\left[\Delta_{j}, \kappa_{n}-\kappa_{n}(0)\right] \nabla \theta_{n}\right\|_{2}^{2}\right. \\
&\left.+\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla u_{n}\right\|_{2}^{2}+\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla \theta_{n}\right\|_{2}^{2}\right)
\end{aligned}
$$

Applying Gronwall's lemma, it follows that

$$
\begin{aligned}
&\left\|\Delta_{j} u_{n}\right\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}+\left\|\Delta_{j} \theta_{n}\right\|_{L_{t}^{\infty}\left(L^{2}\right)}^{2}+\int_{0}^{t}\left\|\Delta_{j} \nabla \theta_{n}(\tau)\right\|_{2}^{2} d \tau \\
& \leq e^{C t}\left\{\left\|\Delta_{j} u_{0}\right\|_{2}^{2}+\right.\left\|\Delta_{j} \theta_{0}\right\|_{2}^{2}+C \int_{0}^{t} e^{-C \tau}\left(\left\|\left[\Delta_{j}, \kappa_{n}-\kappa_{n}(0)\right] \nabla \theta_{n}(\tau)\right\|_{2}^{2}\right. \\
&\left.\left.+\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla u_{n}(\tau)\right\|_{2}^{2}+\left\|\left[\Delta_{j}, u_{n}\right] \cdot \nabla \theta_{n}(\tau)\right\|_{2}^{2}\right) d \tau\right\}
\end{aligned}
$$

According to Lemma 2.5, we have, for $s>2$,

$$
\begin{aligned}
& \left\|u_{n}\right\|_{\tilde{L}_{t}^{\infty}\left(H^{s}\right)}^{2}+\left\|\theta_{n}\right\|_{\tilde{L}_{t}^{\infty}\left(H^{s}\right)}^{2}+\left\|\nabla \theta_{n}\right\|_{\tilde{L}_{t}^{2}\left(H^{s}\right)}^{2} \\
& \leq e^{C t}\left(\left\|u_{0}\right\|_{H^{s}}^{2}+\left\|\theta_{0}\right\|_{H^{s}}^{2}\right)+C e^{C t} \int_{0}^{t} e^{-C \tau}\left\{\left(1+\left\|\theta_{n}(\tau)\right\|_{\infty}\right)^{2[s]+2}\right. \\
& \left.\quad \times\left(\left\|\nabla u_{n}(\tau)\right\|_{\infty}^{2}+\left\|\nabla \theta_{n}(\tau)\right\|_{\infty}^{2}\right)\left(\left\|u_{n}\right\|_{H^{s}}^{2}+\left\|\theta_{n}\right\|_{H^{s}}^{2}\right)\right\} d \tau
\end{aligned}
$$

whence, owing to Gronwall's inequality, we get

$$
\begin{aligned}
\left\|u_{n}\right\|_{\tilde{L}_{t}^{\infty}\left(H^{s}\right)}^{2}+\left\|\theta_{n}\right\|_{\tilde{L}_{t}^{\infty}\left(H^{s}\right)}^{2}+ & \left\|\nabla \theta_{n}\right\|_{\tilde{L}_{t}^{2}\left(H^{s}\right)}^{2} \\
& \leq\left(\left\|u_{0}\right\|_{H^{s}}^{2}+\left\|\theta_{0}\right\|_{H^{s}}^{2}\right) \exp \left(C \int_{0}^{t} Z_{n}(\tau) d \tau\right)
\end{aligned}
$$

with $Z_{n}(t)=F\left(\left\|\theta_{n}(t)\right\|_{L^{\infty}}\right)\left(1+\left\|\nabla u_{n}(t)\right\|_{L^{\infty}}^{2}+\left\|\nabla \theta_{n}(t)\right\|_{L^{\infty}}^{2}\right)$.
These a priori estimates are sufficient to show the convergence of the sequence $\left(u_{n}, \theta_{n}\right)$ towards a unique solution of problem (1.3). We refer the reader to [19] for more details.

Step 3. Global well-posedness. Let us prove the following blow-up criterion first.

Theorem 3.3. Let $\left(u_{0}, \theta_{0}\right) \in H^{s}\left(\mathbb{R}^{2}\right)$, $s>2$. Suppose that $u \in C([0, T]$; $\left.H^{s}\left(\mathbb{R}^{2}\right)\right), \theta \in C\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right) \cap L^{2}\left(0, T ; H^{s+1}\left(\mathbb{R}^{2}\right)\right)$ is the smooth solution to (1.3). If the vorticity ω corresponding to the solution u satisfies

$$
\int_{0}^{T}\|\omega(\tau)\|_{\infty} d \tau<\infty
$$

then the solution (u, θ) can be extended beyond $t=T$.
Proof. Using Lemma 2.3 with $f=\nabla \theta$, we deduce

$$
\|\nabla \theta\|_{\infty}^{2} \leq C\left(1+\|\theta\|_{H^{1}}\right)^{2} \log \left(e+\|\theta\|_{H^{s}}^{2}\right)
$$

Applying Lemma 2.4, we obtain

$$
\|\nabla u\|_{\infty} \leq C\left(1+\|\omega\|_{\infty}\right) \log \left(e+\|u\|_{H^{s}}^{2}\right)
$$

So, by Theorem 3.1, we have

$$
\begin{aligned}
& \|u\|_{H^{s}}^{2}+\|\theta\|_{H^{s}}^{2} \leq\left(\left\|u_{0}\right\|_{H^{s}}^{2}+\left\|\theta_{0}\right\|_{H^{s}}^{2}\right) \\
& \quad \times \exp \left(C T+C \int_{0}^{t}\left(1+\|\theta\|_{H^{1}}^{2}+\|\omega(\tau)\|_{\infty}\right) \log \left(e+\|u(\tau)\|_{H^{s}}^{2}+\|\theta(\tau)\|_{H^{s}}^{2}\right) d \tau\right)
\end{aligned}
$$

Setting $E(t) \triangleq \log \left(e+\|u(t)\|_{H^{s}}^{2}+\|\theta(t)\|_{H^{s}}^{2}\right)$, the above inequality implies

$$
E(t) \leq E(0)+C T+C \int_{0}^{t}\left(1+\|\theta\|_{H^{1}}^{2}+\|\omega(\tau)\|_{\infty}\right) E(\tau) d \tau
$$

for all $0<t<T$. Applying Gronwall's inequality and (3.2), we obtain

$$
E(t) \leq(E(0)+C T) \exp \left(C \int_{0}^{t}\left(1+\|\omega(\tau)\|_{\infty}\right) d \tau\right)
$$

This completes the proof.

Now let us turn to global well-posedness; we just need to show that

$$
\begin{equation*}
\int_{0}^{T}\|\omega\|_{\infty}<\infty . \tag{3.21}
\end{equation*}
$$

In fact, recall the vorticity equation

$$
\partial_{t} \omega+u \cdot \nabla \omega=-\partial_{1} \theta
$$

Let $p>2$. Multiplying the vorticity equation by $|\omega|^{p-2} \omega$ and integrating by parts leads to

$$
\frac{1}{p} \frac{d}{d t}\|\omega\|_{p}^{p}=\int_{\mathbb{R}^{2}} \partial_{1} \theta|\omega|^{p-2} \omega d x \leq\|\omega\|_{p}^{p-1}\|\nabla \theta\|_{p}
$$

where, in the last inequality, we have used Hölder's inequality. Thus we have

$$
\frac{d}{d t}\|\omega\|_{p} \leq\|\nabla \theta\|_{p}
$$

By integrating in time over $[0, T]$, we deduce

$$
\|\omega\|_{p} \leq\left\|\omega_{0}\right\|_{p}+\int_{0}^{T}\|\nabla \theta(\tau)\|_{p} d \tau
$$

This implies that

$$
\|\omega\|_{\infty} \leq\left\|\omega_{0}\right\|_{\infty}+\int_{0}^{T}\|\nabla \theta(\tau)\|_{\infty} d \tau
$$

It follows from [19, Proposition 5.1] that

$$
\int_{0}^{T}\|\nabla \theta\|_{\infty}<\infty .
$$

Therefore estimate (3.21) holds true.
This completes the proof of Theorem 1.1.
Acknowledgements. Q. Chen was supported by the NSF of China (grant 11171034). L. Jiang was supported by the Zhejiang Provincial NSF of China (grant GB12041090067).

REFERENCES

[1] H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Diffential Equations 233 (2007), 199-220.
[2] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209-246.
[3] J. R. Cannon and E. DiBenedetto, The initial value problem for the Boussinesq equations with data in L^{p}, in: Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math. 771, Springer, Berlin, 1980, 129-144.
[4] D. Adhikari, C. Cao and J. Wu, Global regularity results for the 2D Boussinesq equations with vertical dissipation, J. Differential Equations 251 (2011), 1637-1655.
[5] D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math. 203 (2006), 497-513.
[6] R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D 237 (2008), 1444-1460.
[7] R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys. 290 (2009), 1-14.
[8] R. Danchin and M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two, Math. Models Methods Appl. Sci. 21 (2011), 421-457.
[9] T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations 12 (2007), 461-480.
[10] T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J. 58 (2009), 1591-1618.
[11] T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dynam. Systems 12 (2005), 1-12.
[12] T. Kato and G. Ponce, Commutator estimates and Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907.
[13] C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Comm. Math. Phys. 321 (2013), 33-67.
[14] C. Miao and X. Zheng, Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl., to appear.
[15] T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow, SIAM J. Math. Anal. 34 (2003), 1318-1330.
[16] O. Sawada and Y. Taniuchi, On the Boussinesq flow with nondecaying initial data, Funkcial. Ekvac. 47 (2004), 225-250.
[17] Y. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity, J. Differential Equations 255 (2013), 1069-1085.
[18] H. Triebel, Theory of Function Spaces, Monogr. Math., Birkhäuser, Basel, Boston, 1983.
[19] C. Wang and Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math. 228 (2011), 43-62.

Qionglei Chen
Institute of Applied Physics
and Computational Mathematics
P.O. Box 8009

Beijing 100088, P.R. China
E-mail: chen_qionglei@iapcm.ac.cn

Liya Jiang
Zhejiang University of Technology
18, Chaowang Road
Hangzhou 310014, P.R. China
E-mail: mathjly@163.com

Received 16 December 2013;
revised 13 February 2014

[^0]: 2010 Mathematics Subject Classification: Primary 35Q30.
 Key words and phrases: Boussinesq system, global well-posedness, Littlewood-Paley analysis.

