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GENERALIZED QUIVERS ASSOCIATED TO REDUCTIVE GROUPS

BY

HARM DERKSEN (Ann Arbor, MI) and JERZY WEYMAN (Boston, MA)

Abstract. We generalize the definition of quiver representation to arbitrary reductive
groups. The classical definition corresponds to the general linear group. We also show
that for classical groups our definition gives symplectic and orthogonal representations of
quivers with involution inverting the direction of arrows.

0. Introduction. The representation theory of quivers has played an
important role in the representation theory of Artin algebras for more than
twenty years. It can be viewed as a formalization of a natural class of lin-
ear algebra problems. However if viewed in such a way, this theory has the
drawback that it deals only with representations of general linear groups.

In this paper we make an attempt to generalize quivers to arbitrary re-
ductive groups. In this setup a quiver representation is just a representation
whose irreducible summands have a particularly simple form—they are the
representations occurring in the restriction of the adjoint representation of
a bigger reductive group.

This definition has a particularly nice meaning for classical groups. It
turns out that in that case the generalized quiver S can be viewed as a
quiver S◦ equipped with a contravariant involution. We call such an object
a symmetric quiver.

The symplectic and orthogonal representations of a symmetric quiver S
are just the selfdual representations of the quiver S◦. The key result about
the symmetric quivers is Theorem 2.6, which shows that the symplectic and
orthogonal representations of a symmetric quiver S are in a natural bijection
with a subset of representations of the associated quiver S◦.

This principle allows us to classify the symmetric quivers of finite and
tame type, thus extending the results of Gabriel ([G]) and Donovan–Freislich
and Nazarova ([D-F], [N]). The main result says that a symmetric quiver S
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is of finite type (resp. tame type) if and only if the quiver S◦ is of Dynkin
(resp. extended Dynkin) type.

The results of this paper are related to the results of the Ukrainian
school in the theory of quivers (Rŏıter, Sergĕıchuk, Kruglyak). It seems that
our approach gives a more natural parametrization of the resulting matrix
problems, bringing out the role of the orthogonal and symplectic group. This
is important in applications and in relating this kind of problems to other
natural classification problems (for example to multiple flag varieties, cf.
[M-W-Z]). We explain the relation between the two approaches in Section 5.

In a subsequent paper we plan to investigate the structure of orbits and
of rings of semiinvariants for symmetric quivers.

The paper is organized as follows. In Section 1 we recall basic notions
related to quivers and define generalized quivers.

In Section 2 we prove that in the case of classical groups the notions
of generalized quivers and symmetric quivers overlap. We show that the
orthogonal and symplectic representations of symmetric quivers correspond
to the selfdual objects with respect to the involution of S◦.

In Section 3 we classify the symmetric quivers of finite type. We describe
the indecomposable symplectic and orthogonal representations of symmetric
quivers of finite type. In Section 4 we classify the symmetric quivers of
tame type. We also describe the structure of one-dimensional families of
indecomposable symplectic and orthogonal representations.

In Section 5 we explain the relation of our results to the results of Rŏıter,
Sergĕıchuk and Kruglyak and to the classification of multiple flag varieties
of finite type for the symplectic group given in [M-W-Z].

We want to thank Peter Magyar and Andrei Zelevinsky for helpful dis-
cussions and for pointing out some errors in an earlier version of this work.

1. Quivers. Throughout this and the next section we will use some
facts concerning algebraic groups, especially the description of their adjoint
representations. For general facts concerning reductive groups we refer to
Humphreys’s book [H]. The description of the adjoint representations for
the symplectic and orthogonal groups can be found in [Bou, Ch. VII].

We will work over an algebraically closed base field K of characteristic
6= 2. We start with the definitions of basic notions related to representations
of quivers.

Definition. A quiver is a quadruple S = (S0, S1, i, f), where S0, S1 are
finite sets and i, f : S1 → S0 are maps.

We think of a quiver S as of the collection S0 of vertices, and the collec-
tion S1 of arrows. To the element g ∈ S1 we associate an arrow from i(g) to
f(g).
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Definition. A representation of a quiver S is a pair (V, φ) where V is a
collection of finite-dimensional vector spaces Vp, p ∈ S0, and φ is a collection
of maps φg, g ∈ S1, such that φg : Vi(g) → Vf(g) is a linear map.

Definition. A morphism between two quiver representations ψ : (V, φ)
→ (V ′, φ′) is a collection of linear maps ψp : Vp → V ′p , p ∈ S0, such that
φ′g ◦ ψi(g) = ψf(g) ◦ φg for all g ∈ S1. The identity morphism id : (V, φ) →
(V, φ) is the collection idp, p ∈ S0, where idp is the identity map Vp → Vp
for all p ∈ S0. If ψ : (V, φ) → (V ′, φ′) and τ : (V ′, φ′) → (V ′′, φ′′) are two
morphisms, then the composition τ ◦ψ is given by (τ ◦ψ)p = τp ◦ψp, p ∈ S0.
Two quiver representations (V, φ) and (V ′, φ′) are called isomorphic if there
exist morphisms ψ : (V, φ) → (V ′, φ′) and τ : (V ′, φ′) → (V, φ) such that
ψ ◦ τ = id and τ ◦ ψ = id.

The representations of a quiver S form a category Rep(S), whose ob-
jects and morphisms are defined above. The category Rep(S) is an abelian
category, which is equivalent to the category of modules over the so-called
path algebra of S (cf. [D-R]).

Let us recall the definition of the direct sum of objects (V, φ) and (V ′, φ′).

Definition. If (V, φ) and (V ′, φ′) are representations of a quiver S,
then the direct sum is the pair (W,ψ) where Wp = Vp ⊕ V ′p and where ψg :
Vi(g)⊕V ′i(g) → Vf(g)⊕V ′f(g) is given by (v, w) 7→ (φg(v), φ′g(w)) for all g ∈ S1.
A representation (V, φ) is called indecomposable if it is nontrivial and it is
not isomorphic to the direct sum of two nontrivial representations.

Let us reformulate the definition of a quiver representation. Let S be
a quiver and (V, φ) a representation. Suppose that S0 = {1, . . . , k} and
S1 = {1, . . . , l} and we have vector spaces V1, . . . , Vk where Vi is isomorphic
to Kdi . We call d := (d1, . . . , dk) the dimension vector of the representation
(V, φ). For each element g ∈ S1 we have a map φg ∈ Hom(Vi(g), Vf(g)). So
the representation (V, φ) gives an element of

Hom(Vi(1), Vf(1))⊕ Hom(Vi(2), Vf(2))⊕ . . .⊕ Hom(Vi(l), Vf(l)).

Two representations with dimension vector d are isomorphic if and only if
they are in the same R := GL(V1)× . . .×GL(Vk)-orbit.

Let V = V1 ⊕ . . . ⊕ Vk. Let H = K∗k be a torus consisting of matrices
which are multiples of the identity matrix in each block Vi. The centralizer
of H is equal to R = GL(V1)× . . .×GL(Vk). Let gl(V ) be the Lie algebra of
GL(V ). We have an isomorphism of R-modules gl(V ) =

⊕
i,j Hom(Vi, Vj).

This means that a variety of representations of a fixed dimension vector
of the quiver S is a representation of R whose irreducible summands occur
in gl(V ) considered as an R-module.

This fact inspires us to generalize the notion of quiver:
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Definition. A generalized quiver with dimension vector is a triple
(G,R, V ) where G is a reductive group, R is a centralizer of a Zariski closed
abelian reductive subgroup H of G (R is also a reductive group) and V is a
representation of R which decomposes into irreducible representations which
also appear in g, the Lie algebra of G, seen as an R-module. We assume that
the trivial representation does not occur as a summand of V .

Definition. A generalized quiver representation is a quadruple (G,R,
V,Rv) where (G,R, V ) is a generalized quiver with dimension vector, v ∈ V
and Rv is an R-orbit.

Remark 1.1. The subgroup H is not unique. For example instead of the
torus K∗ we might choose its cyclic subgroup of large enough order (so that
it has the same centralizer).

Remark 1.2. Suppose that (G,R, V ) is a generalized quiver with di-
mension vector. If H ′ is an abelian closed reductive subgroup of R, then
(ZG(H ′), ZR(H ′), V H

′
) (where V H

′
denotes the set ofH ′-invariants) is again

a generalized quiver with dimension vector, unless some trivial direct sum-
mands appear. Indeed, H ⊂ ZG(H ′), and ZR(H ′) = ZG(H ′) ∩ R is the
centralizer of H in ZG(H ′). The irreducible representations appearing in
V H

′
all appear in gH

′
, which is the Lie algebra of ZG(H ′).

Remark 1.3. Our assumption that if (G,R, V ) is a quiver with dimen-
sion vector then the representation V does not contain a trivial direct sum-
mand means that when the trivial representation appears as a direct sum-
mand in gl(V ) considered as an R-module, we disregard it.

A lot of interesting representations appear as a generalized quiver with
dimension vector.

In fact several results from [K1] can be restated in that language.
Suppose that (G,R, V ) is a generalized quiver with dimension vector.

The subgroup R is the centralizer of some abelian subgroup H ⊆ G. We
have a decomposition

g =
⊕

χ

gχ

where χ runs through all characters of H. Suppose that V ⊂ gχ for some χ.
The following facts were proven by Kac in [K1].

Proposition 1.4 (Kac, [K1]). (a) If χ is not of finite order , then G has
only finitely many orbits in V .

(b) If χ is of finite order , then the quotient map V → V//G is equidi-
mensional and each fiber contains finitely many orbits.

Kac also shows that most irreducible R-representations V with finitely
many orbits appear as a generalized quiver (G,R, V ) with dimension vector.
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Also, most of the irreducible cofree representations (classified in [L]) appear
in this way.

Example 1.5. Let G be an algebraic group of type E6. The Dynkin
diagram of E6 is:

2
◦
|

◦ — ◦ — ◦ — ◦ — ◦
1 3 4 5 6

The fundamental weight λ4 corresponds to a subgroup H of E6 which is
isomorphic to K∗. The centralizer R of H is isomorphic to SL2×SL3×SL3.
Write SL2×SL3×SL3 = SL(U)×SL(V )×SL(W ) where U is a vector space
of dimension 2, and V,W are vector spaces of dimension 3.

Then we have an isomorphism of SL(U)× SL(V )× SL(W )-modules

g|R = S1,−1U ⊕ S1,0,−1V ⊕ S1,0,−1W ⊕ (U ⊗ V ⊗W )

⊕ (U∗ ⊗ V ∗ ⊗W ∗)⊕ (V ⊗W )⊕ (V ∗ ⊗W ∗)⊕ U ⊕ U∗ ⊕K.
Example 1.6. Let G be an algebraic group of type G2. The Dynkin

diagram of G2 is:
1 2
◦ ≡≡ ◦

Let α1, α2 be the simple roots, and let λ1, λ2 be the fundamental weights.
If T is a maximal torus of G, then there is an element a ∈ T of order 2
which acts trivially on gα1 and by multiplication by −1 on gα2 . Let H be
the cyclic group generated by a. Then the centralizer R of H is isomorphic
to SL2×SL2. If V , W are the standard representations of the two copies of
SL2×SL2, then g|R = S2V ⊕ S2W ⊕ S3V ⊗W .

2. Symmetric quivers. In this section we describe the generalized
quivers in the case when G is a symplectic (resp. orthogonal) group. It turns
out that the representations of generalized quivers in this case are the same
as symplectic (resp. orthogonal) representations of symmetric quivers, i.e.
the quivers with contravariant involution (see the definition and Proposition
2.3 below).

Definition. A symmetric quiver is a pentuple S := (S0, S1, i, f, σ)
where S◦ := (S0, S1, i, f) is a quiver (called the underlying quiver), and σ is
a bijective map from the disjoint union S0qS1 to itself such that σ(S0) = S0

and σ(S1) = S1, σ2 = id, i(σ(g)) = σ(f(g)) and f(σ(g)) = σ(i(g)) for all
g ∈ S1, and σ(g) = g whenever g ∈ S1 and σ(i(g)) = f(g). The assumptions
just mean that σ is an involution of the vertices of the quiver S and of its
arrows, reversing the orientation of arrows.
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If S is a quiver and (V, φ) is a representation of S, then we set VΣ =⊕
p∈S0

Vp. If (V ′, φ′) is another representation and ψ : (V, φ)→ (V ′, φ′) is a
morphism, then ψΣ : VΣ → V ′Σ is the linear map which maps v to ψp(v) for
all p ∈ S0 and all v ∈ Vp.

If S is a symmetric quiver, and (V, φ) is a representation of the underlying
quiver S◦, then the dual (V, φ)∗ is defined as (V ∗, φ∗), where (V ∗)p :=
(Vσ(p))∗ for all p ∈ S0 and (φ∗)g = −(φσ(g))∗ for all g ∈ S1. If (V ′, φ′) is
another representation of S◦ and ψ : (V, φ) → (V ′, φ′) is a morphism, then
ψ∗ : (V ′, φ′)∗ → (V, φ)∗ is defined by (ψ∗)p = (ψσ(p))∗ : ((V ′)∗)p → (V ∗)p.

Throughout this section we follow the convention that if (V, 〈·, ·〉) is a vec-
tor space with a nondegenerate symmetric (skew-symmetric) scalar product
on V , then V can be canonically identified with V ∗ via the map x 7→ 〈x, ·〉.

Definition. An orthogonal (resp. symplectic) representation of a sym-
metric quiver S = (S0, S1, i, f, σ) is a triple (V, φ, 〈·, ·〉), where (V, φ) is
a representation of the underlying quiver S◦. The scalar product 〈·, ·〉 is
a nondegenerate symmetric (resp. skew-symmetric) scalar product on VΣ
such that the restriction of 〈·, ·〉 to Vp×Vq is 0 if q 6= σ(p), and 〈φg(v), w〉+
〈v, φσ(g)(w)〉 = 0 for all v ∈ Vi(g) and all w ∈ Vσ(f(g)).

If (V, φ, 〈·, ·〉) is an orthogonal or symplectic representation of a symmet-
ric quiver S, then we can identify (V, φ) and (V, φ)∗ in a natural way, since
Vp and Vσ(p) are dual to each other, so (V ∗)p = (Vσ(p))∗ = Vp. Furthermore,
φp is the dual of −φσ(p), so (φ∗)p = −(φσ(p))∗ = φp.

Definition. Suppose that S is a symmetric quiver. Two orthogonal
(resp. symplectic) representations (V, φ, 〈·, ·〉) and (V ′, φ′, 〈·, ·〉′) are isomor-
phic if there exists a morphism ψ : (V, φ) → (V ′, φ′) of representations of
S◦ such that ψ∗ ◦ ψ = id and ψ ◦ ψ∗ = id.

Note that ψΣ : VΣ → V ′Σ preserves the scalar product.

Definition. If (V, φ, 〈·, ·〉), (V ′, φ′, 〈·, ·〉′) are two orthogonal (or sym-
plectic) representations of a symmetric quiver S = (S0, S1, i, f, σ), then their
direct sum is given by (W,ψ, 〈·, ·〉W ) where (W,ψ) is the direct sum of (V, φ)
and (V ′, φ′), and the scalar product 〈·, ·〉W on WΣ

∼= VΣ ⊕ V ′Σ is the sum of
〈·, ·〉 and 〈·, ·〉′.

An orthogonal (resp. symplectic) representation is called indecomposable
if it is nontrivial and it is not isomorphic to the direct sum of two nontrivial
orthogonal (resp. symplectic) representations.

Graphically we represent a symmetric quiver S by drawing the quiver S◦,
indicating the involution and drawing the nodes fixed under the involution
as closed nodes, with other nodes drawn as open nodes. Sometimes we skip
the definition of the involution σ when there is only one nontrivial choice
of σ.
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Example 2.1. Consider the symmetric quiver

S :

◦
↓

◦ → • → ◦
↓
◦

where σ interchanges the antipodal nodes and leaves the closed node fixed.
An orthogonal representation of S is an orthogonal space W and two vector
spaces V1 and V2 together with maps g1 : V1 → W and g2 : V2 → W . Of
course this also induces the dual map −g∗1 : W → V ∗1 and −g∗2 : W → V ∗2
so we get the following diagram:

V1

↓
V2 → W → V ∗2

↓
V ∗1

Orthogonal representations of S are GL(V1) × GL(V2) × O(W )-orbits in
Hom(V1,W )⊕ Hom(V2,W ).

Example 2.2. Consider the symmetric quiver

S : ◦ → ◦ → ◦ → ◦
The involution σ is determined uniquely here, as it has to reverse the ori-
entation of arrows. A symplectic representation of S is a set of two vector
spaces V1 and V2 together with a map g : V1 → V2 and an element h ∈ S2V ∗2
(a symmetric form on V2). We also have the dual map −g∗ : V2 → V1. So
we get the following diagram:

V1 → V2 → V ∗2 → V ∗1

where the three maps are given by g, h and −g∗ respectively. The scalar
product on V1 ⊕ V2 ⊕ V ∗2 ⊕ V ∗1 is given by

〈(v1, v2, u2, u1), (v′1, v
′
2, u
′
2, u
′
1)〉 = u′1(v1)− u1(v′1) + u′2(v2)− u2(v′2).

Note that h∗ = h. In this case, symplectic quiver representations of S are
GL(V1)×GL(V2)-orbits in Hom(V1, V2)⊕ S2V ∗2 .

The following proposition gives the interpretation of symplectic (resp.
orthogonal) representations of symmetric quivers as generalized quivers in-
troduced in Section 1 in the case when G is the symplectic (resp. orthogonal)
group.

Proposition 2.3. (a) To any generalized quiver (G,R, V ) with dimen-
sion vector , with G = On being the orthogonal group, we can associate a
symmetric quiver S with dimension vector in such a way that the generalized
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quiver representations (G,R, V,Rv) correspond bijectively to the orthogonal
representations of S of that dimension.

(b) To any generalized quiver (G,R, V ) with dimension vector , with G =
SPn being the symplectic group, we can associate a symmetric quiver S with
dimension vector in such a way that the generalized quiver representations
(G,R, V,Rv) correspond bijectively to the symplectic representations of S of
that dimension.

Proof. Let G = On. Suppose that R is the centralizer of an abelian
closed reductive subgroup H of G. Let W be the natural representation
of G (of dimension n) and let 〈·, ·〉 be the nondegenerate symmetric scalar
product on W . Let χ1, . . . , χk be the different characters of H appearing in
the representation W . Let Wχ be the isotypic component of χ. If χ, µ are
two characters of H, then by restricting the scalar product we get a pairing

〈·, ·〉 : Wχ ×Wµ → K.

If h ∈ H, then

〈v, w〉 = 〈hv, hw〉 = 〈χ(h)v, µ(h)w〉 = χ(h)µ(h)〈v, w〉,
so the pairing is 0 when the product χµ is not the trivial character, and

〈·, ·〉 : Wχ ×Wχ−1 → K

must be nondegenerate. So Wχ and Wχ−1 are dual to each other. In par-
ticular, if χ = χ−1 then the restriction of 〈·, ·〉 to Wχ is nondegenerate and
symmetric. Hence we have a decomposition of W into a direct sum

Wχ1 ⊕ . . .⊕Wχk ⊕Wχ−1
1
⊕ . . .⊕Wχ−1

k
⊕Wµ1 ⊕ . . .⊕Wµl

where χ1, . . . , χk, χ
−1
1 , . . . , χ−1

k , µ1, . . . , µl are all different, and µ2
i is trivial

for all i. If we put Vi := Wχi and Wi := Wµi then we get

W = V1 ⊕ . . .⊕ Vk ⊕ V ∗1 ⊕ . . .⊕ V ∗k ⊕W1 ⊕ . . .⊕Wl.

The group R is exactly the set of all orthogonal maps W → W which
stabilize all Vi’s, V ∗i ’s and Wi’s. This means that

R = GL(V1)× . . .×GL(Vk)×O(W1)× . . .×O(Wl).

This, for example, implies that the spaces Vi,Wj are the irreducible rep-
resentations of R. The adjoint representation of On can be identified with∧2(W ). Its irreducible summands are

∧2(Vi),
∧2(V ∗i ),

∧2(Wi), Hom(Vi, Vj), Hom(Vi, V ∗j ),

Hom(V ∗i , Vj), Hom(Vi,Wj), Hom(V ∗i ,Wj), Hom(Wi,Wj).

Note that for example Hom(Vi, V ∗j ) and Hom(Vj , V ∗i ) are the same. The
symmetric quiver S is defined as follows.
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Write V = Ks ⊕ ⊕t
i=1 Zi where Zi are nontrivial irreducible repre-

sentations of R. We first define the quiver S◦. Take open nodes p1, . . . , pk,
p∗1, . . . , p

∗
k corresponding to V1, . . . , Vk, V

∗
1 , . . . , V

∗
k respectively and take

closed nodes q1, . . . , ql corresponding to W1, . . . ,Wl respectively. For each
summand Zm we draw the corresponding arrows as follows.

If Zm = Hom(Vi, V ∗j ), draw arrows gm : pi → p∗j and g∗m : pj → p∗i .
If Zm = Hom(V ∗i , Vj), draw arrows gm : p∗i → pj and g∗m : p∗j → pi.
If Zm =

∧2(Vi), draw an arrow gm = g∗m : p∗i → pi.
If Zm =

∧2(V ∗i ), draw an arrow gm = g∗m : pi → p∗i .
If Zm = Hom(Vi,Wj), draw arrows gm : pi → qj and g∗m : qj → p∗i .
If Zm = Hom(V ∗i ,Wj), draw arrows gm : p∗i → qj and g∗m : qj → pi.
If Zm = Hom(Wi,Wj), draw arrows gm : qi → qj and g∗m : qj → qi (i < j).
If Zm =

∧2(Wi), draw an arrow gm = g∗m : qi → qi.
If Zm = End0(Vi), draw arrows gm : Vi → Vi and g∗m : V ∗i → V ∗i .

(End0(Vi) ⊂ End(Vi) is the subspace of all endomorphisms with zero trace.)
Define an involution of the quiver S◦ by σ(pi) = p∗i , σ(p∗i ) = pi, σ(qi) =

qi, σ(gi) = g∗i , σ(g∗i ) = gi for all i. Note that if g is an arrow from a to
b, then σ(g) is an arrow from σ(b) to σ(a). It is clear that the pair (S◦, σ)
defines a symmetric quiver S. The representations of S are in bijection with
the generalized quiver representations (On, R, V,Rv). This proves (a).

The situation for symplectic quivers is similar. Suppose (SPn, R, V,Rv) is
a generalized quiver representation. Let W be the standard symplectic rep-
resentation where 〈·, ·〉 is the nondegenerate skew-symmetric scalar product.
Again we can decompose W as follows:

W = V1 ⊕ . . .⊕ Vk ⊕ V ∗1 ⊕ . . .⊕ V ∗k ⊕W1 ⊕ . . .⊕Wl

where Vi and V ∗i are dual with respect to 〈·, ·〉 and the restriction of 〈·, ·〉 to
Wi is nondegenerate and skew-symmetric. The group R is isomorphic to

GL(V1)× . . .×GL(Vk)× SP(W1)× . . .× SP(Wl).

The adjoint representation of SPn can be identified with S2W . The irre-
ducible summands are

S2Vi, S
2V ∗i , S

2Wi, Hom(Vi, Vj), Hom(V ∗i , Vj),

Hom(Vi, V ∗j ), Hom(Vi,Wj), Hom(V ∗i ,Wj), Hom(Wi,Wj).

We can define the symplectic quiver associated to (SPn, R, V ) as in the
orthogonal case. The proposition is proven.

Remark 2.4. Note that an orthogonal quiver representation (On, R,
V,Rv) or a symplectic quiver representation (SPn, R, V,Rv) is decomposable
if and only if the stabilizer of v contains an abelian reductive subgroup of R
which is not contained in the center of R (see Lemma 2.3 in [K2]). This also
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allows one to define decomposable representations for quiver representations
for arbitrary reductive groups (see Section 2 of [K2]).

Our next goal is to relate the symplectic and orthogonal indecomposable
representations of the symmetric quiver S to the indecomposable represen-
tations of the quiver S◦.

The general categorical framework for this type of result was provided
in the paper by Rŏıter [R]. However the proof given there consists mostly of
a reference to a rather obscure book on linear algebra. Therefore we include
the proofs for the convenience of the reader.

Lemma 2.5. Let P (X) ∈ K[X] be a polynomial with P (0) 6= 0. Then
there exists a polynomial R(X) ∈ K[X] such that R(X)2X − 1 is divisible
by P (X).

Proof. First, we consider the case of P (X) = (X−λ)n by induction on n.
If n = 1, then we can take R(X) = 1/

√
λ. If R(X)2X ≡ 1 mod (X−λ)n, we

can write R(X)2X ≡ 1 + c(X − λ)n mod (X − λ)n+1 for some c ∈ K. Then
S(X)2X ≡ 1 mod (X − λ)n+1 with S(X) = R(X) − c(X − λ)n/(2λR(λ)).
In general, we can write

P (X) = α(X − λ1)n1 . . . (X − λr)nr .
For every i, there exists Qi(X) such that Qi(X)2X ≡ 1 mod (X − λi)ni .
By the Chinese remainder theorem, there exists a Q(X) ∈ K[X] such that
Q(X) ≡ Qi(X) mod (X − λi)ni for all i. Hence Q(X)2X ≡ 1 mod P (X).

Theorem 2.6. Let S be a symmetric quiver and suppose that (V, φ, 〈·, ·〉)
and (V ′, φ′, 〈·, ·〉′) are two symplectic or orthogonal representations of S.
Then (V, φ, 〈·, ·〉) and (V ′, φ′, 〈·, ·〉′) are isomorphic if and only if (V, φ) and
(V ′, φ′) are isomorphic as representations of the quiver S◦.

Proof. Let ψ : (V, φ)→ (V ′, φ′) be an isomorphism. Then ψ∗ : (V ′, φ′)→
(V, φ) is also an isomorphism and ψ∗ ◦ ψ is an automorphism of (V, φ). Put
τ = (ψ∗◦ψ)Σ = ψ∗Σ◦ψΣ , where ψ∗Σ is the dual of ψΣ with respect to 〈·, ·〉 and
〈·, ·〉′. We will modify ψΣ by multiplying it on the right by a polynomial R(τ)
such that w := ψΣR(τ) will be an isomorphism (V, φ, 〈·, ·〉)→ (V ′, φ′, 〈·, ·〉′).
Let P (X) ∈ K[X] be the characteristic polynomial of τ , and take R(X) as
in Lemma 2.5. Then

ω∗ω = R(τ)ψ∗ΣψΣR(τ) = R(τ)τR(τ) = id.

It follows that ω decomposes into a collection ωp : Vp → V ′p , p ∈ S0, which
is an isomorphism between (V, φ, 〈·, ·〉) and (V ′, φ′, 〈·, ·〉′).

Another more general result of this type, but in the context of reductive
groups, is described in [M-W-Z, Section 2.1].
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Proposition 2.7. If (V, φ, 〈·, ·〉) is an indecomposable orthogonal or
symplectic representation of the symmetric quiver S, then as a represen-
tation of the underlying quiver S◦, (V, φ) is indecomposable or isomorphic
to the direct sum of (W,ψ) and (W,ψ)∗, where (W,ψ) is an indecomposable
representation of S◦.

Proof. We prove the lemma for the symplectic object (V, φ) since the
proof in the orthogonal case is the same. We start with a useful lemma.

Lemma 2.8. Let (V, φ) be a symplectic object. Let (W,ψ) be a direct sum-
mand of (V, ψ) in Rep(S◦) such that the restriction of 〈·, ·〉 to (W,ψ) is
nondegenerate. Then we have the decomposition

(V, φ) = (W,ψ)⊕ (W,ψ)⊥

into the orthogonal direct sum of symplectic objects, where (W,ψ)⊥ denotes
the orthogonal complement with respect to the form 〈·, ·〉.

Proof. The only thing to check is that (W,ψ)⊥ is an object in Rep(S◦).
Let g ∈ (S◦)1. Take u ∈ W⊥i(g) ⊂ Vi(g). We want to show that φg(u) ∈
(W⊥)f(g). To check it we need to know that 〈φg(u), v〉 = 0 for v ∈Wσ(f(g)).
By definition of a symplectic representation we have 〈φg(u), v〉+〈u, φσ(g)(v)〉
= 0. But φσ(g)(v) ∈Wσ(i(g)) so 〈u, φσ(g)(v)〉 = 0. This proves our claim.

Let (W,ψ) be an indecomposable direct summand of (V, φ). Let i :
(W,ψ)→ (V, φ) and p : (V, φ)→ (W,ψ) be the the canonical embedding and
projection respectively. Let ω : (V, φ)→ (V, φ)∗ be the isomorphism induced
by the symplectic form. Consider the composition i∗ωi : (W,ψ)→ (W,ψ)∗.
We have two cases.

1) The composition i∗ωi is an isomorphism. This means that the re-
striction of the form 〈·, ·〉 to W is nondegenerate and we can write (V, φ) =
(W,ψ)⊕(W,ψ)⊥ by Lemma 2.8. Since (V, φ) is an indecomposable symplec-
tic object, we have (W,ψ)⊥ = 0 and we are done.

2) The composition i∗ωi is not an isomorphism. Consider the map j :
(W,ψ) ⊕ (W,ψ)∗ → (V, φ) given in matrix form by j = (i, ω−1p∗). Then
the composition j∗ωj : (W,ψ)⊕ (W,ψ)∗ → (W,ψ)∗⊕ (W,ψ) can be written
in matrix form

j∗ωj =
(

i∗ωi idW∗
− idW −pω−1p∗

)
.

We claim the map j∗ωj is an isomorphism. To see that, we multiply it on
the left with the matrix (

idW∗ i∗ωi
0 idW

)
.
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The resulting matrix is
(

0 idW∗ − i∗ωipω−1p∗

− idW −pω−1p∗

)
.

The map i∗ωipω−1p∗ is an endomorphism of (W,ψ) which is not an iso-
morphism, and therefore nilpotent (since (W,ψ) is indecomposable its ring
of endomorphisms is local, say by [B-D, Lemma 6.47]). This means that
idW∗ − i∗ωipω−1p∗ is invertible, which proves that j∗ωj is invertible.

It follows that j is an inclusion and that the restriction of the symplectic
form 〈·, ·〉 to (W,ψ) ⊕ (W,ψ)∗ (given by j∗ωj) is nondegenerate. Now we
can decompose (V, φ) as the orthogonal sum of (W,ψ) ⊕ (W,ψ)∗ and its
orthogonal complement by Lemma 2.8. Since (V, φ) is indecomposable as a
symplectic object, we must have (V, φ) = (W,ψ) ⊕ (W,ψ)∗. The proof of
Proposition 2.7 is complete.

We can summarize the above result by saying that if (V, φ, 〈·, ·〉) is
an indecomposable orthogonal or symplectic representation of a symmet-
ric quiver, then there are three possibilities for the S◦ representation (V, φ):

(a) (V, φ) is indecomposable;
(b) (V, φ) = (W,ψ) ⊕ (W,ψ) and (W,ψ) is indecomposable such that

(W,ψ) ∼= (W,ψ)∗ ((V, φ) ramifies);
(c) (V, φ) = (W,ψ)⊕ (W,ψ)∗ and (W,ψ) and (W,ψ)∗ are not isomorphic

((V, φ) splits).

Proposition 2.9. Suppose that S is a symmetric quiver , and (V, φ) is
an indecomposable representation of S◦. Then exactly one of the following
statements is true:

(a) (V, φ) is not isomorphic to (V, φ)∗.
(b) There exists a symmetric scalar product 〈·, ·〉 on VΣ such that (V, φ,

〈·, ·〉) is an orthogonal representation of S.
(c) There exists a skew-symmetric scalar product 〈·, ·〉 on VΣ such that

(V, φ, 〈·, ·〉) is a symplectic representation of S.

Proof. If (a) is true, then we have already seen that (b) and (c) are not
true. Suppose that ψ : (V, φ)→ (V, φ)∗ is an isomorphism of representations
of S◦. Then (ψ∗)−1 ◦ψ is an automorphism of (V, φ). Put τ := (ψ∗Σ)−1 ◦ψΣ ,
which is an automorphism of VΣ . Let V (λ)

Σ be the generalized eigenspace of
eigenvalue λ in VΣ. The decomposition

VΣ =
⊕

λ

V
(λ)
Σ

corresponds to a decomposition of the quiver representation (V, φ). Since
(V, φ) is indecomposable, we must have VΣ = V

(λ)
Σ for some λ ∈ K. So
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ψΣ − λψ∗Σ is not bijective, and therefore (ψΣ − λψ∗Σ)∗ = ψ∗Σ − λψΣ is not
bijective. Let v 6= 0 be in the kernel of ψ∗Σ − λψΣ . Then v is an eigenvector
of τ with an eigenvalue λ−1. It follows that λ = λ−1, so λ = 1 or λ = −1. So
either ψ + ψ∗ or ψ − ψ∗ is bijective. If ψ + ψ∗ is bijective, then we define a
scalar product on VΣ by 〈v, w〉 := 〈(ψ+ψ∗)v, w〉′ where 〈·, ·〉′ is the canonical
pairing V ∗Σ × VΣ → K. It is easy to check that (V, φ, 〈·, ·〉) is an orthogonal
representation of S. If ψ − ψ∗ is bijective, then we define a scalar product
on VΣ by 〈v, w〉 := 〈(ψ − ψ∗)v, w〉′. It is easy to check that (V, φ, 〈·, ·〉) is a
symplectic representation. Statements (b) and (c) cannot be both true. If
(V, φ) has an orthogonal structure, then there exists an isomorphism ψ1 :
(V, φ) → (V, φ)∗ such that ψ∗1 = ψ1. If (V, φ) has a symplectic structure,
then there exists an isomorphism φ2 : (V, φ)→ (V, φ)∗ such that φ∗2 = −φ2.
Let ψ = ψ1 + ψ2. Now ψ + ψ∗ = 2φ1 and ψ − ψ∗ = 2ψ2 are both invertible.
This is a contradiction.

Remark 2.10. Note that if (V, φ) is a representation of S◦, then (V, φ)⊕
(V, φ)∗ can be made into an orthogonal or symplectic representation of S.
Define 〈·, ·〉 on VΣ ⊕ V ∗Σ by

〈(v1, w1), (v2, w2)〉 = w2(v1) + w1(v2).

It is easy to see that (W,ψ, 〈·, ·〉) is an orthogonal representation of S, where
(W,ψ) = (V, φ)⊕ (V, φ)∗. If we define 〈·, ·〉 on VΣ ⊕ V ∗Σ by

〈(v1, w1), (v2, w2)〉 = w2(v1)− w1(v2),

then (W,ψ, 〈·, ·〉) is a symplectic representation of S.

Remark 2.11. Define an equivalence relation ∼ on the set of indecom-
posable representations of S◦ by (V, φ) ∼ (V ′, φ′) if and only if (V, φ) is iso-
morphic to (V ′, φ′) or its dual. Then there is a 1-1 correspondence between
∼-equivalence classes of indecomposable S◦-representations and indecom-
posable orthogonal S-representations. Namely, if (V, φ) and (V, φ)∗ are not
isomorphic, then (V, φ)⊕(V, φ)∗ carries a unique structure of an indecompos-
able orthogonal S-representation. If (V, φ) and (V, φ)∗ are isomorphic, then
either (V, φ) or (V, φ)⊕ (V, φ) carries a unique structure of indecomposable
orthogonal representation of S. Moreover, all indecomposable orthogonal
representations are constructed in this way. A similar statement is also true
for symplectic representations.

3. Finite type symmetric quivers. In this section we give a classifi-
cation of finite type symmetric quivers. The proofs are based on Theorem
2.6. The remaining proofs are standard so we skip them and just list all the
cases with the classification of indecomposable representations.
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Definition. A symmetric quiver is said to be of finite type if it has only
finitely many indecomposable orthogonal (resp. symplectic) representations
up to isomorphism.

Theorem 3.1. A symmetric quiver S is of finite type if and only if the
underlying quiver S◦ is of Dynkin type.

Definition. If S = (S0, S1, i, f, σ) and S′ = (S′0, S
′
1, i
′, f ′, σ′) are two

symmetric quivers, then we define the disjoint union S q S ′ as

(S0 q S′0, S1 q S′1, i′′, f ′′, σ′′)
where the restrictions of i′′ to S1 and S′1 are i, i′ respectively, the restric-
tions of f ′′ to S1 and S′1 are f, f ′ respectively, and the restrictions of σ′′ to
S0qS1 and S′0 qS′1 are σ and σ′ respectively. We call a symmetric quiver S
irreducible if S is not the disjoint union of two nontrivial symmetric quivers.

If S is an irreducible symmetric quiver, then there are two possibilities.
Either S◦ is connected, or S◦ has two connected components which are
interchanged by σ.

Proposition 3.2. Suppose that S is an irreducible symmetric quiver
such that S◦ has two connected components. Then S◦ is isomorphic to
the disjoint union of Γ and Γ ′ where Γ = (Γ0, Γ1, i, f) is a quiver , and
Γ ′ = (Γ0, Γ1, f, i) is its dual (reversing all arrows of Γ ). The automorphism
σ of S corresponds to interchanging the vertices and arrows of Γ with the
vertices and arrows of Γ ′. There is a correspondence between quiver repre-
sentations of Γ and orthogonal (resp. symplectic) representations of S.

Proposition 3.3. If S is a symmetric quiver of finite type with S◦ con-
nected , then S◦ must be a quiver of Dynkin type An.

Sketch of proof. One can easily see that for quivers of Dynkin type Dn,
E6,7,8 there is no orientation of arrows that admits an involution reversing
the orientation of arrows. Indeed, for Dn, n > 4, the involution would have
to fix the long arm, so it could not invert the orientations of the arrows
there. For D4 the involution would have to fix at least one of three edges
(so it cannot reverse the orientation of the corresponding arrow). For E7, E8

there is no nontrivial involution of the underlying graph. Finally, for E6 the
underlying Dynkin graph has one nontrivial involution but it fixes the short
arm, so it cannot invert the orientation of the corresponding arrow.

This means that there are two types of symmetric quivers of finite type:

Aodd
n : ◦ → ◦ → . . .→ ◦ → • → ◦ → ◦ → . . .→ ◦

with (Aodd
n )0 = A2n−1 (and arbitrary orientation of the arrows reversed by

the involution), and

Aeven
n : ◦ → ◦ → . . .→ ◦ → ◦
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with (Aeven
n )0 = A2n (and arbitrary orientation of the arrows reversed by

the involution).
In the next few statements we give the structure of indecomposable or-

thogonal and symplectic representations for symmetric quivers of finite type.
In some cases there is a natural bijection between symplectic (orthogonal)
representations of such a quiver and the positive roots in certain root sys-
tems. This extends the usual Gabriel correspondence for quivers.

We start with some general remarks. Denote by∇ the duality V 7→ V ∗ on
the category Rep(S◦). This is a contravariant exact endofunctor on Rep(S◦).
Its relation to the Coxeter functors (see [B-G-P], [A-P-R] for the definition
of C+ and C−) is expressed as follows.

Proposition 3.4. The functor ∇ commutes with the Coxeter functors,
i.e.

∇C+ = C−∇, ∇C− = C+∇.
Proof. The functor ∇ takes projective modules to injective ones and vice

versa. It is a contravariant exact functor, so we have

HomRep(S◦)(V,W ) = HomRep(S◦)(∇(W ),∇(V )),

Ext1
Rep(S◦)(V,W ) = Ext1

Rep(S◦)(∇(W ),∇(V )).

It follows that ∇ preserves almost split sequences (and inverts their homo-
morphisms). The assertion follows.

Assume that S◦ is of finite type. The functor∇ defines an arrow inverting
symmetry of the whole Auslander–Reiten quiver of S◦. The indecomposable
orthogonal (resp. symplectic) representations are therefore of three kinds.

(a) representations V ⊕∇(V ), where V is not selfdual,
(b) representations V where V = ∇(V ) and V is symplectic (resp. or-

thogonal),
(c) ramified representations V ⊕ V where V = ∇(V ), but V is not sym-

plectic (resp. orthogonal).

Example 3.5. Consider the symmetric quiver

Aodd
3 : ◦ → ◦ → • → ◦ → ◦

An orthogonal representation of Aodd
3 is a collection of two vector spaces

V1, V2 and an orthogonal space W together with linear maps V1 → V2 and
V2 →W . First, we examine the underlying quiver

A5 = (Aodd
3 )◦ : ◦ → ◦ → ◦ → ◦ → ◦

The indecomposable representations of A5 are the modules Mi,j (1 ≤ i ≤
j ≤ 5) where Mi,j is the representation

0 → . . . → 0 → K → . . . → K → 0 → . . . → 0
i j
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and all maps between the one-dimensional spaces are identities. For the inde-
composable module Mi,j with nonsymmetric dimension, the corresponding
symplectic or orthogonal indecomposable is the sum Mi,j ⊕ ∇(Mi,j). The
modules M1,5,M2,4,M3,3 with symmetric dimensions are easily seen to be
orthogonal.

Now we list all triples (dimV1,dimV2,dimW ) such that there is an in-
decomposable orthogonal representation V1 → V2 →W → V ∗2 → V ∗1 :

(1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 1, 0) (0, 1, 2) (1, 1, 2)
(0, 1, 1) (1, 2, 2) (1, 1, 1)

Note that these vectors correspond to the positive roots of the root system
of type B3, in the following way. The triple (c1, c2, c3) corresponds to c1α1 +
c2α2 + c3α3 which is a positive root in the root system C3 (where α1, α2, α3

are the simple roots, and α3 is a short root).
Consider the symplectic representations of Aodd

3 . Clearly, no indecom-
posable representation (V, φ) of A5 with symmetric dimension can have the
structure of a symplectic representation because W is forced to be a one-
dimensional symplectic space, which is impossible. So all indecomposable
symplectic representations of S are of the form V ⊕∇(V ) where V is an inde-
composable representation of A5. We list all triples (dimV1,dimV2,dimW )
where an indecomposable symplectic representation exists:

(1, 0, 0) (0, 1, 0) (0, 0, 2)
(1, 1, 0) (0, 1, 2) (1, 1, 2)
(0, 2, 2) (1, 2, 2) (2, 2, 2)

Note that these are all triples of the form (c1, c2, 2c3) such that c1α1+c2α2+
c3α3 is a positive root in the root system C3 (where α1, α2, α3 are the simple
roots, and α3 is a long root).

These considerations generalize easily to the symmetric quiver Aodd
n for

arbitrary n.

Proposition 3.6. Let S = Aodd
n .

(a) The dimension vectors of the indecomposable orthogonal representa-
tions of S correspond naturally to the positive roots of the root system of
type Bn. To the dimension vector (c1, . . . , cn) we associate the root c1α1 +
. . . + cnαn where α1, . . . , αn are the simple roots, with αn being the short
root. In every such dimension there is exactly one orthogonal indecompos-
able representation which is an open orbit with respect to GL(V1) × . . . ×
GL(Vn)×O(W ).

(b) The dimension vectors of the indecomposable symplectic represen-
tations of S correspond naturally to the positive roots of the root system
of type Cn. To the dimension vector (c1, . . . , cn−1, 2cn) we associate the
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root c1α1 + . . . + cnαn where α1, . . . , αn are the simple roots, with αn be-
ing the long root. In every such dimension there is exactly one symplec-
tic indecomposable representation which is an open orbit with respect to
GL(V1)× . . .×GL(Vn)× SP(W ).

Proof. All the statements except the existence of a unique open orbit
follow from the above discussion. To see this last fact we observe that for any
action of a connected algebraic group on an irreducible variety the closure of
an orbit is a union of this orbit and other orbits of smaller dimension. This
implies that for the action with finitely many orbits the union of orbits of
dimension ≤ s is Zariski closed for every s. Taking s equal to the dimension
of our representation we get the existence of a unique open orbit.

Example 3.7. Consider the symmetric quiver

S = Aeven
3 : ◦ → ◦ → ◦ → ◦ → ◦ → ◦

A symplectic representation of S is a set of vector spaces V1, V2, V3 together
with linear maps V1 → V2, V2 → V3 and a symmetric linear map V3 → V ∗3
(which is a symmetric bilinear form on V3).

Again, from the indecomposable representations Mi,j of S◦ we can con-
struct the indecomposable symplectic representations of S. The indecompos-
ables Mi,j with symmetric dimension vectors now admit a symplectic struc-
ture (the map in the middle has rank one, so it cannot be skew-symmetric;
that is why the dimension vector (2, 2, 2) is not on our list). The triples
(dimV1,dimV2,dimV3) where indecomposables exist are:

(1, 0, 0) (0, 1, 0) (0, 0, 1)
(1, 1, 0) (0, 1, 1) (1, 1, 1)
(0, 1, 2) (1, 1, 2) (1, 2, 2)

For (0, 0, 1), (0, 1, 1) and (1, 1, 1) there are two indecomposables, and for
the other dimension vectors there is a unique indecomposable. There are
12 indecomposables in total. In one of the two indecomposables for the
dimension vector (0, 0, 1), the symmetric map V3 → V ∗3 is an isomorphism,
and in the other one it is 0.

The indecomposable orthogonal representations of S have the dimension
vectors

(1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0)
(0, 1, 1) (0, 0, 2) (1, 1, 1) (0, 1, 2)
(1, 1, 2) (0, 2, 2) (1, 2, 2) (2, 2, 2)

with one indecomposable occurring in every dimension.
These considerations generalize easily to an arbitrary quiver Aeven

n .
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Proposition 3.8. Let S be a symmetric quiver of type Aeven
n .

(a) There are (n+ 1)n indecomposable orthogonal representations for S.
Each occurs in a different dimension. The list of dimensions consists of all
n-tuples that correspond to the dimensions of indecomposables for the system
An, and all nondecreasing n-tuples whose last term is 2.

(b) There are (n+ 1)n indecomposable symplectic representations for S.
The list of dimensions consists of all n-tuples that correspond to the dimen-
sions of indecomposables for the system An, and all nondecreasing n-tuples
whose last term is 2, and which contain at least one term equal to 1. The
dimensions (0, . . . , 0, 1, . . . , 1) contain two indecomposables, all the other di-
mensions contain one indecomposable.

4. Symmetric quivers of tame type

Definition. A symmetric quiver S is said to be tame if it is not of
finite type, but in every dimension the orthogonal (resp. symplectic) in-
decomposable modules occur in families of dimension ≤ 1. More precisely
one requires that for any dimension vector α there are finitely many mor-
phisms f1(α), . . . , fN(α)(α) from K1 to Rep(Q,α) such that the images of all
but finitely many points under fi(α) are indecomposable orthogonal (resp.
symplectic) representations of Q, and all but finitely many indecomposable
orthogonal (resp. symplectic) representations of dimension α are obtained
in this way.

The definition does not depend on whether we use orthogonal or sym-
plectic representations because from Theorem 2.6 and standard results on
classification of tame quivers we get

Theorem 4.1. A symmetric quiver S with S◦ connected is tame if and
only if the underlying quiver S◦ is the extended Dynkin diagram.

Now it is very easy to classify the irreducible symmetric tame quivers.
If S◦ has two connected components, then each component has to be iso-
morphic to an extended Dynkin quiver. For tame symmetric quivers with
S◦ connected we have the following possibilities.

Proposition 4.2. Let S be an irreducible symmetric quiver. Then one
of the two cases occurs:

1. S0 is the union of two connected components (dual to each other),
each of which is an extended Dynkin quiver.

2. S0 is connected , of one of the following six types: (In each of the cases
below except (d) the involution is the reflection in a central horizontal line.
In case (d) the involution is a central symmetry.)
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(a) S = Âodd
n , S◦ = Â2n, for n ≥ 1, with arbitrary orientation of the

arrows that is reversed under the involution (below we have n = 3):

•
↗ ↘

◦ ◦
↓ ↑
◦ ◦
↑ ↓
◦ → ◦

(b) S = Âeven
n,1 , S◦ = Â2n−1, for n ≥ 1, with arbitrary orientation of the

arrows that is reversed under the involution (below we have n = 4):

•
↗ ↘

◦ ◦
↓ ↑
◦ ◦
↑ ↓
◦ ◦
↘ ↗

•

(c) S = Âeven
n,2 , S◦ = Â2n+1, for n ≥ 1, with arbitrary orientation of the

arrows that is reversed under the involution (below we have n = 3):

◦ ← ◦
↓ ↑
◦ ◦
↓ ↑
◦ ◦
↑ ↓
◦ → ◦

(d) S = Âeven
n,3 , S◦ = Â2n+1, for n ≥ 1, with arbitrary orientation of the

arrows that is reversed under the involution (below we have n = 3):



170 H. DERKSEN AND J. WEYMAN

◦
↗ ↖

◦ ◦
↑ ↑
◦ · ◦
↑ ↑
◦ ◦
↖ ↗

◦

(e) S = D̂odd
n , S◦ = D̂2n, for n ≥ 2, with arbitrary orientation of the

arrows that is reversed under the involution (below we have n = 3):

◦ ◦
↘ ↗

◦ → • → ◦
↗ ↘

◦ ◦

(f) S = D̂even
n , S◦ = D̂2n+1, for n ≥ 2, with arbitrary orientation

of the arrows that is reversed under the involution (below we have
n = 2):

◦ ◦
↘ ↗

◦ → ◦
↗ ↘

◦ ◦
The cases above are classified according to the way the involution acts on

vertices. In each case there are several possible orientations (all orientations
which are reversed by the involution).

We end the section by giving the one-dimensional families of indecom-
posable symplectic and orthogonal representations of all types of tame sym-
metric quivers.

Let us recall that for the extended Dynkin quiver the one-dimensional
families of indecomposables occur only in dimensions ph where h is the
dimension vector corresponding to the basic imaginary root. For the quiver
of type Ân this dimension is given by h(v) = 1 for all vertices v ∈ S0. For
the quiver of type D̂n we have h(v) = 2 unless v is one of the four vertices
on the boundary, for which h(v) = 1. Therefore it is enough to see whether
the general representatives of these families are selfdual in the orthogonal
or symplectic sense. We denote by M(λ, ph) the module from the family of
indecomposables in dimension ph corresponding to the parameter λ. Their
canonical form is given in [D-R].
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In order to understand one-dimensional families of indecomposables,
it suffices by Proposition 2.7 to investigate the duality on the families
M(λ, ph).

This can be done case by case and the results are as follows.

Proposition 4.3. Let S be a symmetric tame quiver. The dual of the
module M(λ, ph) is as follows:

(a) S = Âodd
n , S◦ = Â2n, for n ≥ 1, ∇(M(λ, ph)) = M(−λ, ph),

(b) S = Âeven
n,1 , S◦ = Â2n−1, for n ≥ 1, ∇(M(λ, ph)) = M(λ, ph), and

all modules M(λ, ph) have an orthogonal structure,
(c) S = Âeven

n,2 , S◦ = Â2n+1, for n ≥ 1, ∇(M(λ, ph)) = M(λ, ph), and all
modules M(λ, ph) have a symplectic structure,

(d) S = Âeven
n,3 , S◦=Â2n+1, for n≥1, Then ∇(M(λ, ph))=M(λ−1, ph),

(e) S = D̂odd
n , S◦ = D̂2n, for n ≥ 2, ∇(M(λ, ph)) = M(λ, ph), and all

modules M(λ, ph) have an orthogonal structure,
(f) S = D̂even

n , S◦ = D̂2n+1, for n ≥ 2, ∇(M(λ, ph)) = M(λ, ph), and
all modules M(λ, ph) have a symplectic structure.

One concludes that the structure of one-dimensional families of indecom-
posable modules for tame symmetric quivers is as follows.

Theorem 4.4. Let S be a symmetric tame quiver. Then the infinite fam-
ilies of symplectic and orthogonal representations of S are as follows:

1) The families of symplectic representations occur in dimensions ph (p
arbitrary) for S of types Âeven

n,2 , D̂even
n . For the types Âodd

n , Âeven
n,1 , Âeven

n,3 , D̂odd
n

there are infinite families in dimensions ph (p even). In each indicated di-
mension there is one infinite family of indecomposables, parametrized by a
projective line with a finite number of points removed.

2) The families of orthogonal representations occur in dimensions ph

(p arbitrary) for S of types Âeven
n,1 , D̂odd

n . For the types Âodd
n , Âeven

n,2 , Âeven
n,3 ,

D̂even
n there are infinite families in dimensions ph (p even). In each indicated

dimension there is one infinite family of indecomposables, parametrized by
a projective line with a finite number of points removed.

5. Applications. In this section we discuss the relation of symmetric
quivers to other classification problems.

Quivers with contravariant involutions were considered by Sergĕıchuk
([S1]–[S3]) and by Kruglyak ([Kr]) in the eighties. Their investigations were
based on Rŏıter’s note [R] which contains a lemma similar to Theorem 2.6
but the main part of the proof refers to a rather obscure book by Mal’tsev.

Sergĕıchuk investigated quivers with free involutions, i.e. he assumed that
an involution cannot fix a vertex or an arrow of the underlying quiver. Under
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this assumption he classified in [S1] the finite type and tame quivers. That
classification gives exactly the types on our lists that do not include closed
nodes. The other cases on our list do not appear in [S1]. In that framework
they would appear as quivers with relations, but the classification of finite
type and tame quivers for quivers with relations is a very difficult problem.

Many natural linear algebra problems related to classical groups can be
stated naturally in terms of symmetric quivers.

Example 5.1. Consider a vector space F with a symmetric (or skew
symmetric) nondegenerate bilinear form 〈·, ·〉. Let G be the group of sym-
metries of the form 〈·, ·〉 (i.e. the orthogonal or symplectic group). The ho-
mogeneous spaces for G can be expressed in terms of the spaces of isotropic
flags in F . So the question of classifying the G-orbits on a multiple isotropic
flag variety is a natural and important one. From the point of view of sym-
metric quivers the isotropic flags in F correspond to the (orthogonal or
symplectic) representations of the symmetric quiver

◦a1→◦ → . . .→ ◦ak→• σak→◦ → ◦ → . . .
σa1→◦

with the relation (σak)ak = 0. Similarly one can treat multiple flag varieties,
using the quiver given by multiple paths through the middle closed node with
a zero relation along each path. The approach to this classification problem
presented in [M-W-Z] could be entirely rephrased in terms of symmetric
quivers.

From the point of view of [S1]–[S3] the same classification problem would
appear in a much more cumbersome way. In fact the latter approach hides
the connection with representations of symplectic and orthogonal groups.

Remark 5.2. Sergĕıchuk also considered a more general notion of “or-
schemes” which include bilinear forms on vector spaces. Kruglyak gave a
general classification of finite type and tame quivers with involution in the
case of unitary groups. This kind of matrix problems can be treated using
our approach starting with the unitary group.
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[B-G-P] I. N. Bernshtĕın, I. M. Gel’fand and V. A. Ponomarev, Coxeter functors and
Gabriel’s theorem, Uspekhi Mat. Nauk 28 (1973), no. 2, 19–33 (in Russian);
English transl.: Russian Math. Surveys 28 (1973), no. 2, 17–32.

[Bou] N. Bourbaki, Groupes et algèbres de Lie, Ch. 1–9, Hermann, Paris, 1971–1975.
[B-D] I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Func-

tors, Pure Appl. Math. 19, Wiley, London, 1968.



GENERALIZED QUIVERS 173

[D-R] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and alge-
bras, Mem. Amer. Math. Soc. 173 (1976).

[D-F] P. Donovan and M. R. Freislich, The Representation Theory of Finite Graphs
and Associated Algebras, Carleton Math. Lecture Notes 5, Carleton Univ.,
1973.

[G] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71–103.
[H] J. Humphreys, Linear Algebraic Groups, Springer, New York, 1975.
[K1] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190–213.
[K2] —, Infinite root systems, representations of graphs and invariant theory, In-

vent. Math. 56 (1980), 57–92.
[Kr] S. A. Kruglyak, Representations of free involutive quivers, in: Representations

and Quadratic Forms, Inst. Math., Acad. Sci. Ukrain. SSR, Kiev, 1979, 149–
151.
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