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HEREDITARILY INDECOMPOSABLE CONTINUA WITH
EXACTLY n AUTOHOMEOMORPHISMS

BY

ELŻBIETA POL (Warszawa)

Abstract. The main goal of this paper is to construct, for every n,m ∈ N, a heredi-
tarily indecomposable continuum Xnm of dimension m which has exactly n autohomeo-
morphisms.

1. Introduction. All spaces considered are assumed to be metrizable
separable. Our terminology follows [6] and [10]. A continuum X is hered-
itarily indecomposable, abbreviated HI, if for any two intersecting subcon-
tinua K, L of X, either K ⊂ L or L ⊂ K. For a continuum X, let G(X)
denotes the group of all homeomorphisms of X onto X. A continuum X
is rigid if the identity 1X is the only homeomorphism of X onto X, i.e.,
G(X) = {1X}. In [5] H. Cook gave an example of a rigid, 1-dimensional,
HI continuum. Recently M. Reńska [18] constructed, for every m ∈ N, an
HI rigid m-dimensional Cantor manifold. The main goal of this paper is to
prove the following theorem.

1.1. Theorem. For every n ∈ N and m ∈ N ∪ {∞} there exists an HI
continuum Xnm such that dimXnm = m and the group G(Xnm) of homeo-
morphisms of Xnm onto Xnm is a cyclic group of order n.

A homeomorphism h : X → X is stable if there exist homeomorphisms
h0, h1, . . . , hn such that h = hnhn−1 . . . h1h0 and for every i ≤ n there ex-
ists a nonempty open set Ui such that hi|Ui is the identity. The continua
Xnm constructed in Theorem 1.1 have the property that the set of stable
homeomorphisms of Xnm onto Xnm is degenerate and is not dense in the
space G(Xnm) for n > 1. The next theorem shows that there exist HI con-
tinua with 2ℵ0 homeomorphisms, each of which is stable (moreover, it is the
identity on some open nonempty subset).
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1.2. Theorem. For every m ∈ N ∪ {∞} there exists an HI continuum
Ym with dimYm = m such that the group G(Ym) of homeomorphisms of Ym
onto Ym has cardinality 2ℵ0 and there exists a nonempty open subset Um of
Ym such that for every h ∈ G(Ym), h|Um = 1Um .

A space X is strongly infinite-dimensional (abbreviated SID) if there
exists an infinite sequence (A1, B1), (A2, B2), . . . of pairs of disjoint closed
subsets of X such that if Li is a partition between Ai and Bi in X for
i = 1, 2, . . . then

⋂∞
i=1 Li 6= ∅. An SID space X is hereditarily SID if ev-

ery subset of X of positive dimension is SID. An infinite-dimensional con-
tinuum X is a Cantor manifold if all closed sets which disconnect X are
infinite-dimensional. The first hereditarily SID compactum was constructed
by Rubin [19] (cf. [6, Problem 6.1.G]); while the first example of an SID
compactum all of whose nontrivial subcontinua are infinite-dimensional was
given earlier by Henderson [7]. In [18] M. Reńska constructed a rigid HI
hereditarily SID Cantor manifold. We will prove the following theorem.

1.3. Theorem. For every n ∈ N there exists an HI continuum Zn, all
of whose nontrivial subcontinua are strongly infinite-dimensional , such that
the group G(Zn) of homeomorphisms of Zn onto Zn is a cyclic group of
order n.

In our constructions we apply some ideas of [3], [18] and [16].
It is an interesting question whether the spaces Xnm and Ym satisfying

the conditions of Theorems 1.1 and 1.2 can be m-dimensional Cantor man-
ifolds (for m > 1) and whether the spaces Zn from Theorem 1.3 can be
infinite-dimensional Cantor manifolds.

2. Preliminaries. The first HI continuum, now called the pseudo-arc,
was constructed by B. Knaster [9] in 1922. The pseudo-arc, which will be
denoted by P , is an HI one-dimensional chainable continuum (unique, up to
homeomorphism); and it is the only (up to homeomorphism) nondegenerate,
homogeneous, chainable continuum. The pseudo-arc P is also hereditarily
equivalent, i.e., every nontrivial subcontinuum of P is homeomorphic to P
(cf. [10, §48, X], or [13]).

The first examples of HI continua of arbitrary dimension n, where n ∈
{2, 3, . . . ,∞}, were constructed by R. H. Bing [2].

The composant of a point x in a continuum X is the union of all proper
subcontinua of X containing x. If X is a nontrivial HI continuum, then (see
[10, §48, VI])

(a) every composant of X is a connected Fσ-subset of X, both dense and
boundary in X,

(b) different composants of X are disjoint, and
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(c) (Mazurkiewicz’s theorem) X has continuum many different com-
posants.

A subcontinuum K of a continuum X is terminal if every subcontinuum
of X which intersects both K and its complement must contain K. A con-
tinuous mapping from a continuum X onto Y is called atomic if every fiber
of f is a terminal subcontinuum of X.

In our constructions we will apply the method of condensation of sin-
gularities, which goes back to Anderson and Choquet [1]. Namely, we will
need the following construction, based on the technique of Maćkowiak [14],
[15] and described in detail in [17] (cf. also [4]).

2.1. Theorem. Let X be a continuum, {Zi : i ∈ N} a sequence of
compacta, {Ai : i ∈ N} a sequence of 0-dimensional compact disjoint subsets
of X, and suppose each Zi admits a continuous map onto Ai with connected
fibers. Then there exist a continuum L(X,Zi, Ai) and an atomic mapping
p : L(X,Zi, Ai)→ X such that

(i) p|p−1(X \⋃∞i=1Ai) : p−1(X \⋃∞i=1Ai) → X \⋃∞i=1Ai is a homeo-
morphism,

(ii) p−1(X \⋃∞i=1Ai) is dense in L(X,Zi, Ai),
(iii) p−1(Ai) is homeomorphic to Zi for every i ∈ N (hence p−1(a) is

homeomorphic to a component of Zi if a ∈ Ai),
(iv) if n and m are natural numbers such that dimX ≤ n and dimZi

≤ m for every i ∈ N then dimL(X,Zi, Ai) ≤ max(n,m),
(v) if C(x) is the composant of x in L(X,Zi, Ai) then C(x) =

p−1(C(p(x))), where C(p(x)) is the composant of p(x) in X.

The existence of the space L(X,Zi, Ai) which admits an atomic mapping
p : L(X,Zi, Ai)→ X with properties (i)–(iv) follows from [17, Theorem 3.2]
and property (v) follows from the atomicity of p (see [17, Lemma 2.8]).

We will also need the following auxiliary facts.

2.2. Lemma. For every m ∈ N there exists an infinite family of pairwise
nonhomeomorphic HI m-dimensional Cantor manifolds.

For m = 1 such a family of cardinality 2ℵ0 was constructed by R. H. Bing
[3]. Form = 2, 3, . . . , the existence of such a family follows, for example, from
the following lemma proved by M. Reńska in [18]: for every m-dimensional
HI continuum K there exists an HI m-dimensional Cantor manifold M
such that K is not embeddable into M . Indeed, let K and M be two m-
dimensional Cantor manifolds such that K does not embed in M and let
a1, a2, . . . be points of M such that ak and al belong to different composants
of M if k 6= l. Then Kj = L(M,Zi, Ai), where Zi = K and Ai = {ai} for
i = 1, . . . , j and Zi = ∅ = Ai for i > j, is an m-dimensional Cantor mani-
fold exactly j of whose composants do not embed in M (see Theorem 2.1).
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Thus Kj is not homeomorphic to Kl for j 6= l. Let us add that, as proved in
[18], there also exists a family of cardinality 2ℵ0 consisting of topologically
different HI rigid m-dimensional Cantor manifolds.

2.3. Lemma (H. Cook [5]). There exists a one-dimensional HI contin-
uum no two of whose nondegenerate subcontinua are homeomorphic.

2.4. Lemma. There exists an infinite family of topologically different HI
hereditarily SID Cantor manifolds.

The existence of such a family follows from Corollary 4.3 of [16] stating
that for every hereditarily SID compactum K there exists an HI hereditarily
SID Cantor manifold which does not embed in K. Moreover, as proved in
[16], there exists such a family of cardinality 2ℵ0 .

2.5. Lemma (W. Lewis [12]). For every n ∈ N there exists a homeomor-
phism r of the pseudo-arc of period n. Moreover , for each n ∈ N there exists
an embedding of the pseudo-arc in the plane such that r is the restriction of
a period n rotation of the plane.

2.6. Lemma. Let U be an open subset of the pseudo-arc P such that
P \U 6= ∅. Then there exists a family {ht : t ∈ T} of homeomorphisms of P
onto P , where |T | = 2ℵ0 , such that ht′ 6= ht if t′ 6= t and ht|U = 1U for
every t.

This lemma follows immediately from Theorem 8 in [11], stating that if
p and q are distinct points of P \ U , where U is open in P , such that the
subcontinuum M irreducible between p and q does not intersect cl(U), then
there is a homeomorphism h : P → P with h(p) = q and h|U = 1U (cf. also
[8, Theorem]).

2.7. Lemma. Let p : X → Y and p̃ : X̃ → Y be mappings between
continua such that p is atomic and for every y ∈ Y with p̃−1(y) nondegen-
erate there exists an open neighborhood U of y in Y , a homeomorphism h
of p̃−1(U) onto a subset of X and a homeomorphism g of ph(p̃−1(U)) onto
U such that p̃(x) = gph(x) for every x ∈ X̃. Then p̃ is atomic.

Proof. Take y ∈ Y such that p̃−1(y) is nondegenerate and let U , h and
g be as above. Let L be any continuum in X̃ such that L ∩ p̃−1(y) 6= ∅ 6=
L \ p̃−1(y). We will show that L ⊃ p̃−1(y).

(a) First consider the case when L ⊂ p̃−1(U). Then h(L) is a continuum
in h(p̃−1(U)) such that h(L) ∩ (g ◦ p)−1(y) 6= ∅ 6= h(L) \ (g ◦ p)−1(y). Since
g ◦ p is atomic as the composition of an atomic map and a homeomorphism,
we have h(L) ⊃ (g ◦ p)−1(y). Thus L ⊃ h−1p−1g−1(y) = p̃−1(y).

(b) Suppose now that L 6⊂ p̃−1(U). Then L ∩ p̃−1(U) intersects the
boundary of p̃−1(U) in Ỹ . Let y0 ∈ L ∩ p̃−1(y). Then the component K of
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L ∩ p̃−1(U) containing y0 intersects the boundary of L ∩ p̃−1(U) in L (by
Janiszewski’s theorem, see [10, §47, III]). Thus K \ p̃−1(y) 6= ∅ 6= K ∩ p̃−1(y)
and K ⊂ p̃−1(U), hence, by case (a), K ⊃ p̃−1(y). Since L ⊃ K, this finishes
the proof.

3. The proofs
Proof of Theorem 1.1. Fix n,m ∈ N. By Lemma 2.5, there exist a

pseudo-arc P ⊂ R2 and a homeomorphism r : P → P of period n, which
is the restriction of a period n rotation of the plane around (0, 0) (so the
point (0, 0) ∈ P is a fixed point of r). Let V0 = {(x1, x2) ∈ R2 : x1 = λ cosα
and x2 = λ sinα for some 0 < λ < ∞ and 0 < α < 2π/n}, P0 = P ∩ V0
and Pk = rk(P0) for k = 0, 1, . . . , n − 1. Then every Pk is open in P and
P \⋃n−1

k=0 Pk is a 0-dimensional boundary subset of P .
Let A0 = {a1, a2, . . .} be a countable dense subset of P0 such that ai and

aj are in the same composant of P if and only if i = j. Put Ak = rk(A0)
for k = 0, 1, . . . , n− 1 and let A =

⋃n−1
k=0 Ak. The set A is dense in P . Since

a homeomorphic image of a composant of P is a composant of P , every
composant of P contains at most n points of A.

Consider now three cases. If 2 ≤ m < ∞ then let K1,K2, . . . be a se-
quence of topologically different HI m-dimensional Cantor manifolds (see
Lemma 2.2). If m = 1 then, by Cook’s Lemma 2.3, one can find a sequence
K1,K2, . . . of HI one-dimensional continua such that: if L and L′ are two dif-
ferent nondegenerate subcontinua of Ki and Kj respectively, where i, j ∈ N,
then L and L′ are not homeomorphic; in particular, no subcontinuum of
any Ki is homeomorphic to the pseudo-arc. If m = ∞ then let Ki be any
i-dimensional HI Cantor manifold, for i = 1, 2, . . .

Let Mnm = L(P,Ki, {ai}) be an HI continuum and p : Mnm → P
be an atomic mapping satisfying the conditions of Theorem 2.1. We can
assume additionally that Mnm ⊂ P × I∞, where I = [0, 1], and that p is the
restriction of the projection of P × I∞ onto P . Moreover, we can assume
that p−1(y) = (y, (0, 0, . . .)) for every y ∈ P \ P0.

Indeed, assume that Mnm ⊂ I∞ and p : Mnm → P is as in Theorem
2.1, and for x, y ∈ R2 let %(x, y) = min(%e(x, y), 1), where %e the Euclidean
metric in the plane. Put f(x) = (p(x), %(p(x),R2 \ V0) · x) for x ∈ Mnm.
Then f is continuous and one-to-one, hence it is a homeomorphism of Mnm

onto f(Mnm) ⊂ P × I∞. Thus we can replace Mnm by f(Mnm) and p by
the restriction of the projection of P × I∞ onto P .

Let r(y, t) = (r(y), t) for (y, t) ∈ P × I∞. For k = 0, 1, . . . , n − 1, let
P̃k = rk(p−1(P 0)) and Xnm =

⋃n−1
k=0 P̃k.

Let p̃ : Xnm → P be the restriction of the projection of P × I∞ onto P .
The mapping r̃ = r|Xnm is a period n homeomorphism of Xnm onto Xnm,
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which is the restriction of the product of r and the identity. Thus,

p̃ ◦ r̃k = rk ◦ p̃ for every k = 1, . . . , n− 1,(1)

and
p(x) = p̃(x) for x ∈ P̃0.(2)

The map p̃ is atomic by Lemma 2.7. Indeed, we apply Lemma 2.7 to
X̃ = Xnm, X = Mnm, Y = P and let p̃ : X̃nm → P and p : Mnm → P be
as above. For every y ∈ P such that p̃−1(y) is nondegenerate there exists
k ∈ {0, 1, . . . , n − 1} such that y ∈ rk(P0). If we put U = p̃−1(rk(P0)),
h(x) = (r̃k)−1(x) for x ∈ U and g = rk then gph(y) = rk(p(r̃k)−1(y)) = p̃(y)
by (1) and (2). Thus the assumptions of Lemma 2.7 are satisfied. It follows
that p̃ is atomic.

The space Xnm is an HI continuum, being the preimage of an HI con-
tinuum under the atomic mapping p̃ with HI fibers (see [15]). By Theorem
2.1(iv), dimMnm = m, so dimXnm = m by the sum theorem.

Note that p̃|p̃−1(P \A) : p̃−1(P \A)→ P \A is one-to-one, so p̃−1(P \A)
is a one-dimensional set homeomorphic to P \A.

On the other hand, if t ∈ A, then t = rk(ai) for some i ∈ N and k ∈
{0, 1, . . . , n−1}; hence p̃−1(t) is homeomorphic to Ki. Note that by Theorem
2.1(v) every composant of Xnm is the preimage under p̃ of a composant of
P , hence it is the union of a one-dimensional subset homeomorphic to P
with finitely many points removed and of at most n disjoint m-dimensional
Cantor manifolds homeomorphic to some Ki. In particular, if t ∈ A then
p̃−1(t) is a maximalm-dimensional Cantor manifold which is a proper subset
of Xnm and homeomorphic to some Ki (that is, there is no m-dimensional
Cantor manifold contained in a certain composant, homeomorphic to p̃−1(t)
and containing p̃−1(t)). For m > 1 this follows from the fact that p̃−1(t)
is obviously a maximal m-dimensional Cantor manifold which is a proper
subset of Xnm. For m = 1, p̃−1(t) is a maximal proper subcontinuum of Xnm

homeomorphic to p̃−1(t), since no subcontinuum of p̃−1(t) embeds in P .
We will show that 1Xnm = r̃0, r̃, r̃2, . . . , r̃n−1 are the only homeomor-

phisms of Xnm onto Xnm, so G(Xnm) is a cyclic group of order n.
Let h be an arbitrary homeomorphism of Xnm onto Xnm. The image

under h of a composant C of Xnm is a composant of Xnm. Since h must map
maximal m-dimensional Cantor manifolds lying in C and homeomorphic to
Ki onto maximal m-dimensional Cantor manifolds in h(C) homeomorphic
to Ki, and since no two different Ki’s are homeomorphic, we have

(3) for every t ∈ A, h(p̃−1(t)) = r̃k(p̃−1(t)) for some k ∈ {0, 1, . . . , n−1}.
Thus the mapping h : P → P , where h(t) = p̃(h(p̃−1(t))), is well defined.
From the upper semicontinuity of p̃−1 it follows that h is continuous (in fact,
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it is a homeomorphism). By (3) we have

for every t ∈ A, h(t) = rk(t) for some k ∈ {0, 1, . . . , n− 1}.(4)

For every k ∈ {0, 1, . . . , n − 1} let Dk = {t ∈ P : h(t) = rk(t)}. It is easy
to see that every Dk is closed and Dk ∩ Dl = {(0, 0)} for every k 6= l. By
(4) the set

⋃n−1
k=0 Dk is dense in P , hence we have P =

⋃n−1
k=0 Dk. Since P

is connected, every Dk is connected. From indecomposability of P we have
P = Dk0 for some k0, so h = rk0 . Since p̃|p̃−1(P \A) is one-to-one, h coincides
with r̃k0 on p̃−1(P \ A). Since the latter set is dense in Xnm, h coincides
with r̃k0 on the whole space. This ends the proof.

Proof of Theorem 1.2. From the proof of Theorem 1.1 it follows that if
n > 1 then the continuum Mnm and the mapping p : Mnm → P obtained
during the construction of Xnm have the following properties:

(a) Mnm is HI and dimMnm = m,
(b) if Um = p−1(P0), then Um is an open subset of Mnm such that every

homeomorphism of Mnm onto Mnm is the identity on Um,
(c) if Vm = p−1(P \ P 0), then Vm is an open nonempty subset of Mnm

such that V n ∪Un = Mnm and p : Vn → P \P 0 is a homeomorphism (recall
that p−1(y) = (y, (0, 0, . . .)) for all y ∈ P \ P0).

Set Ym = Mnm, where n is any fixed natural number > 1. Then Ym
satisfies the conditions of Theorem 1.2. Indeed, by (a) and (b) it suffices
to show that Ym has continuum many different autohomeomorphisms. Ap-
plying Lemma 2.6 for U = P0 we obtain a family {ht : t ∈ T} of different
homeomorphisms of P onto P , where |T | = 2ℵ0 , such that ht|P0 = 1P0 . De-
fine h̃t : Ym → Ym in the following way: if x ∈ V m, then h̃t(x) = p−1htp(x)
and if x ∈ Um then h̃t(x) = x. It is easy to see that p−1htp(x) = x for
x ∈ V m ∩ Um. It follows that h̃t is a homeomorphism of Ym onto Ym. Since
p|p−1(K) is one-to-one and ht′ 6= ht for t′ 6= t, we have h̃t′ 6= h̃t for t′ 6= t.
This ends the proof.

Proof of Theorem 1.3. We use the idea and notation of the proof of
Theorem 1.1. First we divide P0 into two dense 0-dimensional subsets P ′0 and
P ′1 such that P ′0 is the union of countably many disjoint sets F1, F2, . . . closed
in P . Then we choose a countable dense subset A0 = {a1, a2, . . .} of P ′1. Now,
let B1, B2, . . . be a sequence of closed disjoint 0-dimensional subsets of P
defined by B2i−1 = Fi and B2i = {ai} for i = 1, 2, . . . Let K1,K2, . . . be
a sequence of topologically different HI hereditarily SID Cantor manifolds
(see Lemma 2.4).

Let M = L(P,Ki × Bi, Bi) be an HI continuum and p : M → P be an
atomic mapping satisfying the conditions of Theorem 2.1. As in the proof
of Theorem 1.1, we can assume additionally that M ⊂ P × I∞, p is the
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restriction of the projection of P × I∞ onto P and p−1(y) = (y, (0, 0, . . .))
for every y ∈ P \ P0.

Let r be the product of r and the identity. For k = 0, 1, . . . , n − 1, put
P̃k = rk(p−1(P 0)) and Zn =

⋃n−1
k=0 P̃k.

Let p̃ : Zn → P be the restriction of the projection of P × I∞ onto P .
The map p̃ is atomic by Lemma 2.7. The mapping r̃ = r|Zm is a period n
homeomorphism of Zn onto Zn, which is the restriction of the product of r
and the identity. Since p̃ is an atomic mapping with HI fibers onto an HI
continuum, Zn is HI.

To prove that all nontrivial subcontinua of Zn are SID, take any non-
trivial continuum L contained in Zn. Note that B =

⋃n−1
k=1 r

k(
⋃∞
i=1Bi) is a

0-dimensional subset of P such that P \B is 0-dimensional and p̃|p̃−1(P \B)
is one-to-one. Thus p̃−1(P \B) is a 0-dimensional set homeomorphic to P \B.
It follows that L must intersect one of the sets p̃−1(b) for b ∈ B. If L ⊂ p̃−1(b)
for some b ∈ B, then L is SID, since p̃−1(b) is homeomorphic to an HI hered-
itarily SID Cantor manifold. If, for some b ∈ B, L intersects both p̃−1(b)
and its complement, then L ⊃ p̃−1(b), by the atomicity of p̃. It follows that
L is SID.

To prove that 1, r̃, r̃ 2, . . . , r̃ n−1 are the only homeomorphisms of Zn onto
Zn, we modify the reasoning in the proof of Theorem 1.1. First we note that
a subcontinuum Z of Zn is a maximal infinite-dimensional Cantor manifold
in Zn if and only if it is equal to p̃−1(b) for some b ∈ B. Indeed, if b ∈ B, then
p̃−1(b) is homeomorphic to some Ki. Moreover, if Z ⊂ Zn is a continuum
such that p̃(Z) contains two different points x and y, then one can find a
partition L between x and y in P disjoint from B (see [6, Theorem 1.5.13]).
Then p̃−1(L)∩Z is a partition of Z homeomorphic to a subset of L, hence it
is one-dimensional. This implies that Z is not an infinite-dimensional Cantor
manifold.

Let h be a homeomorphism of Zn onto Zn. Then, for every b ∈ B, h maps
p̃−1(b) onto a maximal infinite-dimensional Cantor manifold in Zn, so there
exists b′ ∈ B such that h(p̃−1(b)) = p̃−1(b′). Moreover, since every p̃−1(ai)
is homeomorphic to K2i and no two different Ki’s are homeomorphic, for
every i ∈ N and l ∈ {0, 1, . . . , n− 1} we have

h(r̃ l(p̃−1(ai))) = r̃ s(p̃−1(ai)) for some s ∈ {0, 1, . . . , n− 1}.(5)

It follows that the induced continuous mapping h : P → P , where h =
p̃(h(p̃−1(t))), has the property:

(6) for every t ∈
n−1⋃

k=0

rk(A0), h(t) = rk(t) for some k ∈ {0, 1, . . . , n− 1}.

Next, as in the proof of Theorem 1.1, we put Dk = {t ∈ P : h(t) = rk(t)}
for k ∈ {0, 1, . . . , n− 1} and show that P = Dk0 for some k0, which implies
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that h = rk0 . Since p̃|p̃−1(P \ B) is one-to-one, h coincides with r̃k0 on
p̃−1(P \ B). Since the latter set is dense in Zn, h coincides with r̃k0 on the
whole Zn.

3.1. Remark. Note that there exist continuum many topologically dif-
ferent spaces Xnm (respectively, Ym, Zn) satisfying the conditions of The-
orem 1.1 (resp., 1.2, 1.3). Indeed, if we replace in the proof of Theorem
1.1 (resp., 1.2, 1.3) K1 by a continuum K ′1 nonhomeomorphic to any of
K1,K2, . . . , then we obtain a topologically different continuum. Since we
can choose K ′1 from an appropriate family of cardinality 2∞ satisfying the
conditions of Lemma 2.2, 2.3 or 2.4 (see Sec. 2), we can obtain in this way
continuum many nonhomeomorphic continua.

Acknowledgements. The author thanks the referee for remarks im-
proving the exposition of the paper.
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