
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 94 2002 NO. 2

SOME COMMENTS ON INFINITE BOOLEAN FUNCTIONS

BY

UDAYAN B. DARJI (Louisville, KY), CHRIS FREILING (San Bernardino, CA)
and R. DANIEL MAULDIN (Denton, TX)

Abstract. We introduce infinite Boolean functions and investigate some of their
properties.

1. Introduction. We use the ordinal notation and let 2 denote the set
{0, 1}. We let 2Z be the set of all functions from Z to 2. We use 2<∞ to denote
the set of all functions into 2 whose domain is a finite interval in Z. We will
use lower case Greek letters η, τ, ν etc. (except σ) to denote elements of 2Z

as well as elements of 2<∞. If τ ∈ 2<∞, then [τ ] is the set of all elements of
2Z which extend τ .

We endow 2 with the discrete topology and 2Z with the product topology
generated by the discrete topology on 2. The product space 2Z is sometimes
referred to as the cylinder space as every basic open set in 2Z has the form
[τ ] for some τ ∈ 2<∞. The space 2Z is also called the Cantor space as 2Z is
homeomorphic to the middle 1/3 Cantor set. The left shift on 2Z, denoted
by σ, is defined by σ(τ)(k) = τ(k + 1) for all τ ∈ 2Z. Of course, σ−1 is the
right shift by one and σ0 is the identity map. For an integer n, σn is defined
in the obvious fashion.

If m ≤ n are integers, then [m,n] is the interval in Z containing m,n and
all integers between. A (finite) Boolean building block is simply a function
f : 2[m,n] → 2. This f induces a finite Boolean function F : 2Z → 2Z as
follows: F (τ)(i) = f(σi(τ)|[m,n]). We note that F is a continuous function
from 2Z into 2Z. There are alternate ways to look at the Boolean building
block f and the corresponding map F . Let K ⊆ 2Z and gK : 2Z → 2Z be
defined as gK(τ)(i) = 1 iff σi(τ) ∈ K. Then we have the following.

Lemma 1. If F is a (finite) Boolean function, then there is a clopen set
K such that gK = F , and conversely , if K is clopen, then gK is a finite
Boolean function.
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Proof. Suppose F is a finite Boolean function and f : 2[m,n] → 2 gives
rise to F . Then K =

⋃{[τ ] : τ ∈ 2[m,n] and f(τ) = 1} is a clopen set and
gK = F .

To prove the converse, let K be some clopen set. Then there are integers
m,n such that K =

⋃
τ∈A[τ ] for some set A ⊆ 2[m,n]. Let f : 2[m,n] → 2 be

such that f−1(1) = A. Then the resulting Boolean function F is such that
gK = F .

Hence, finite Boolean functions are naturally associated with clopen sub-
sets of 2Z. A natural generalization of finite Boolean functions is to consider
sets other than clopen. We focus on closed sets K and the corresponding
functions gK .

First, let us note the following:

Lemma 2. Let F : 2Z → 2Z. Then F commutes with σ if and only if
F = gK for some K ⊂ 2Z.

Proof. First, note that σ ◦ gK(τ)(n) = 1 ⇔ gK(τ)(n + 1) = 1 ⇔
σn+1(τ) ∈ K. Also, (gK ◦ σ(τ))(n) = 1 ⇔ gK(στ)(n) = 1 ⇔ σn(στ) =
σn+1(τ) ∈ K. So, σ ◦ gK(τ)(n) = 1⇔ gK ◦ σ(τ)(n) = 1. Thus, σgK = gKσ.

Now, suppose Fσ = σF . Let K = F−1(π−1
0 (1)), where π0 is the pro-

jection of 2Z onto the 0th entry. Then F (ω)(n) = 1 ⇔ σnF (ω)(0) = 1 ⇔
Fσn(ω)(0) = 1 ⇔ (gK(σn(ω))(0) = 1 ⇔ (σngK(ω))(0)= 1 ⇔ gK(ω)(n) = 1.
Thus, F = gK .

Thus, as is well known, we may also characterize the finite Boolean func-
tions as follows:

Lemma 3. Let F : 2Z → 2Z. Then F commutes with σ and is continuous
if and only if F is a finite Boolean function.

An important notion in the study of Boolean functions is that of shift
invariance. We say A ⊆ 2Z is shift invariant if σ(A) = A.

We begin by studying the range of gK . The possible range of a finite
Boolean function has been completely characterized by Boyle [1].

Let us fix some notation. We use 0, 1 to denote the zero sequence and
the one sequence, respectively. For a subset K ⊆ 2Z, we let R(K) = gK(2Z)
denote the range of gK . Note that φ(R(K)) = R(2Z \ K), where φ is the
homeomorphism which flips each entry of an element of 2Z. The following
theorem characterizes the range of general Boolean functions K.

Theorem 1. Suppose A ⊆ 2Z. Then A = R(K) for some set K ⊆ 2Z iff
A is shift invariant and either 0 or 1 belongs to A.

Proof. It is clear that if A = R(K) for some K, then A is shift invariant.
Also, note that gK(0) must be either 0 or 1. For the converse, let A be shift
invariant and suppose 0 ∈ A; let K = A∩{τ : τ(0) = 1} = A∩π−1

0 (1). Then
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gK(τ) = 0 whenever τ 6∈ A, and gK(τ) = τ otherwise. If A is shift invariant
and 1 ∈ A, then A′ = φ(A) is shift invariant and 0 ∈ A′. Let R(K ′) = A′;
then R(2Z \K ′) = A.

Now we like to investigate what can be said if K is closed or in general
a Borel set.

Theorem 2. If K is closed , then gK is of Borel class 1, i.e., for each
open set U ∈ 2Z, g−1

K (U) is Fσ.

Proof. Let (em, . . . , en) be a basic open set. Then

g−1
K ((em, . . . , en)) =

n⋂

i=m

g−1
K (π−1

i (ei)) =
n⋂

i=m

σ−i(Kei),

where K0 = 2Z \K and K1 = K. So if K is closed, then g−1
K ((em, . . . , en))

is the intersection of an open set and a closed set and g−1
K (U) is an Fσ set,

for any open set U .

More generally, if K is of Borel class α in the above theorem, then the
argument shows that gK is of Borel class α+ 1.

Corollary 1. If K ⊆ 2Z is a Borel set , then R(K) is analytic.

We would like next to see how complicated R(K) can be when K ranges
over arbitrary closed sets. From one of the results which we will prove later,
it will follow that there is a closed set K for which R(K) is not Borel.
However, we would first like to introduce an intermediate process inspired
by infinite Boolean functions. This process is interesting in its own right as
it is reminiscent of Suslin’s operation and it characterizes analytic sets in 2Z

modulo countable sets.
Let {Kn}n∈Z be a sequence of closed subsets of 2Z. Then g{Kn} : 2Z → 2Z

is defined by g{Kn}(τ)(i) = 1 iff τ ∈ Ki. The function g{Kn} was first defined
and studied by Szpilrajn-Marczewski in another context [4], [5]. Thus, our
function gK is g{Kn} where Kn = σ−n(K). We let R({Kn}) = g{Kn}(2

Z).

Theorem 3. Let A ⊆ 2Z be analytic. Then there is a sequence {Kn}n∈Z
of closed subsets of 2Z such that R({Kn}) = A∪C where C is some countable
set.

Proof. Let S ⊆ 2Z be a countable dense subset of 2Z. Then Q = 2Z \S is
homeomorphic to NN. As A is analytic, we may obtain a continuous mapping
f from Q onto A. Let Ln = {τ ∈ 2Z : τ(n) = 1}, K ′n = f−1(Ln) and Kn be
the closure of K ′n in 2Z. We note that Ln is a clopen subset of 2Z, K ′n is closed
relative to Q and Kn is a closed set which contains only countably many
points which do not belong to K ′n. We want to show that R({Kn}) = A∪C
where C is some countable set. To this end, let τ ∈ Q. Then, for all i, we
see that
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g{Kn}(τ)(i) = 1 ⇔ τ ∈ Ki ⇔ τ ∈ K ′i ⇔ f(τ) ∈ Li ⇔ f(τ)(i) = 1.

Hence, g{Kn}(τ) = f(τ) for all τ ∈ Q. Since S is countable, we have
R({Kn}) = g{Kn}(2

Z) = A ∪ C where C = g{Kn}(S).

Example 1. We note that the set C in Theorem 3 cannot be eliminated.
For example, let A = 2Z \ {1} and suppose g{Kn}(2

Z) ⊃ A. Then for every
integer p there is some point xp such that g{Kn}(xp) = 1p0, where 1p0 is the
sequence whose entries are 0 for indices greater than p and are 1 otherwise.
But this implies there is some point x such that x ∈ ⋂∞n=−∞Kn. Thus,
R({Kn}) = 2Z.

Now we define the notion of shiftwise disjointness, which will be used
frequently. We say that τ ∈ 2Z is periodic if there is some n 6= 0 such that
σn(τ) = τ . We say that a set K ⊆ 2Z is shiftwise disjoint if for all τ ∈ K,

(1) τ is not periodic, and
(2) orbit(τ) ∩K = {τ} where orbit(τ) = {σn(τ) : n ∈ Z}.
We remark here that if P is shiftwise disjoint, then σn(P ) ∩ σm(P ) = ∅

for all n 6= m.
Define η ∼ τ if they have the same orbit. Note that ∼ is an equivalence

relation, and in fact it is an Fσ equivalence relation as {(η, σn(η)) : η ∈ 2Z}
is a closed set for all n.

The following is a rather powerful result of Silver. We do not need the
full strength of it; however, it is convenient. The reader is referred to [3] for
details.

Theorem 4 (Silver). Suppose X is a complete, separable metric space
and R is a coanalytic equivalence relation on X. Then either R has count-
ably many equivalence classes or there is a perfect set P which meets each
equivalence class in no more than one element.

Using Silver’s theorem, we can obtain a perfect set which intersects each
orbit class in no more than one point. As the set of periodic points is count-
able, and each uncountable Borel set contains a perfect set, we can obtain
a perfect set P which is shiftwise disjoint.

In fact, given any uncountable Borel set B, we can get a perfect set
P ⊆ B which is shiftwise disjoint. To do this simply apply Silver’s theorem
to the Borel equivalence relation R defined by

R = {(η, τ) : η ∼ τ and orbit(η)∩B 6= ∅}∪
{

(η, τ) : η, τ ∈ 2Z \
⋃

n∈Z
σn(B)

}
.

Let P be the set given by Silver’s Theorem and let P ′ ⊆ P be a perfect
set which misses the periodic points. Then P ′ is a shiftwise disjoint perfect
set which is a subset of B.
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We remark that for this particular equivalence relation it is easy to obtain
such perfect sets directly without using Silver’s theorem.

Lemma 4. Let T = {τ : at most one coordinate of τ is nonzero}. There
is a shiftwise disjoint perfect set P such that

• P ∩ T = ∅ and hence σn(P ) ∩ T = ∅ for all n,
• ⋃n∈Z σ

n(P ) =
⋃
n∈Z σ

n(P ) ∪ T ,

Proof. Consider the uncountable Borel set B = {τ : τ(i) = 0 unless
i = k! for some k ≥ 0}. Apply the discussion before this lemma to this set
B \ T to obtain a shiftwise disjoint perfect set P ⊆ B \ T . This has the
desired properties.

Theorem 5. Suppose A ⊆ 2Z is shift invariant and 0 ∈ A.

(1) If A is analytic, then there is a closed set K such that R(K) = A∪C
where C is some countable set. If K is allowed to be a Gδ set , we can choose
a set K so that R(K) = A.

(2) If A is an Fσ, then we can choose a closed set K so that R(K) = A.

Proof. We first deal with the case when A is analytic and the set K to
be constructed is closed. We proceed as in the proof of Theorem 3. Let P
be the set of Lemma 4. Let Q ⊆ P be such that Q is homeomorphic to NN
and P \ Q is countable. Let Qn = σn(Q), and Pn = σn(P ). Let h0 be a
continuous mapping from Q0 onto A. For each n, define hn : Qn → A by
hn(τ) = σn(h0(σ−n(τ))), for each τ ∈ Qn. Note that each hn is a continuous
function mapping Qn onto A. Let L = {τ : τ(0) = 1}. Then L is closed and
K ′n = h−1

n (L) is closed relative to Qn for all n. Each set Kn = K ′n is closed
in 2Z and Kn \K ′n is countable. Let K =

⋃
nKn. Then K =

⋃
nK

′
n∪S∪T ′,

where S is a subset of the countable set
⋃
n(Pn \Qn) and T ′ ⊂ T , where T is

the countable set from Lemma 4. Let τ ∈ 2Z. If τ 6∈ ⋃n Pn, then gK(τ) = 0
as
⋃
n Pn is a shift invariant set. The set

⋃
n Pn \

⋃
nQn is countable so we

let C be its image under gK . Finally, consider τ ∈ ⋃nQn. There is a unique
m such that τ ∈ Qm and there is a unique γ ∈ Q such that τ = σm(γ). We
have

gK(τ)(i) = 1 ⇔ σi(τ) ∈ K ⇔ σi(τ) ∈
⋃

n

Kn ⇔ σi(τ) ∈
⋃

n

K ′n

⇔ σi(τ) ∈ K ′m+i for some m

⇔ hm+i(σi(τ)) ∈ L ⇔ hm+i(σi(τ))(0) = 1

⇔ hm+i(σm+i(γ))(0) = 1 ⇔ h0(γ)(m+ i) = 1.

Therefore, gK(τ) = σm(h0(γ)) ∈ A. Hence, R(K) = A ∪ C when A is
analytic, as required.
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We can always obtain a Gδ set K for which R(K) = A. We follow the
argument as above except we take K =

⋃
K ′n. To see the that K is Gδ,

we use properties of Lemma 4. It is clear that each K ′n is an absolute Gδ
set since it is a closed subset of NN. Note that K = (

⋂
n∈ZRn) \ T where

Rn = K ′n ∪
⋃
m∈Z,m6=n Pn ∪ T . That Rn is Gδ follows from the fact that

Rn =
⋃
n∈Z Pn ∩K ′n.

Now, we want to show that if A is an Fσ, then we can find a closed set
K so that R(K) = A. Note that if A is a closed set, then we can get a
continuous map h0 from P0 onto A and we proceed as in the analytic case
and obtain R(K) = A. For the general Fσ case, we need to do a little more
work. We obtain a sequence of pairwise disjoint sets P 1, P 2, . . . such that

• each Pn is a set of the type of Lemma 4,
• ⋃n P

n is shiftwise disjoint, and
• ⋃n P

n =
⋃
n P

n ∪ {0}.
Now, we may obtain a function h0 from

⋃
n P

n onto A which is continuous
everywhere except possibly at 0. Proceeding again as in the analytic case,
we get a closed set K such that R(K) = A.

Our next example shows that there is a shift invariant Gδ set A for which
there is no closed set K such that R(K) = A ∪ F , where F is some finite
set.

Example 2. Let A be the set which consists of all points which are nei-
ther periodic points nor end in a sequence of 1’s. Then A is a shift invariant
Gδ set for which there is no closed set K such that R(K) = A∪F for some
finite set F .

Proof. To obtain a contradiction, assume that there is some closed set
K such that R(K) = A ∪ F for some finite set F . According to Theorem 2,
gK is of Borel class 1 and therefore, for each closed set M,g−1

K (M) is a Gδ
set. Also, since periodic points map to periodic points under gK , we see
that g−1

K (F ) is a dense Gδ subset of 2Z. Let
⋃
Pn be its complement where

the sets Pn are closed. Since A is a dense Gδ subset of 2Z, by the Baire
category theorem, we can obtain an integer m such that gK(Pm) is dense
in some [ω], where ω ∈ 2[−l,l]. Since gK(Pm) is dense in [ω], we may obtain
a sequence {τn} in Pm such that gK(τn)(i) = 1 for l < |i| < l + n. As Pm
is compact, we may assume that {τn} is convergent and converges to some
τ ∈ Pm. Since K is closed, we find that if gK(τn)(i) = 1 for all n > n0, then
gK(τ)(i) = 1. Therefore, gK(τ)(i) = 1 for all |i| > l. However, this implies
that gK(Pm) ∩ F 6= ∅, a contradiction.

Example 3. There is a closed set K such that R(K) is analytic and
non-Borel.
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Proof. Let P be a perfect set which is shiftwise disjoint and let Q ⊆ P
be an analytic set which is non-Borel. Consider A = {0, 1} ∪ ⋃n∈Z σ

n(Q).
The set A is non-Borel as it is the countable union of non-Borel sets which
are separated by disjoint closed sets. By Theorem 5, we know that there is
a closed set K such that R(K) = A ∪ C.
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