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UNIFORMLY CYCLIC VECTORS

BY

JOSEPH ROSENBLATT (Urbana, IL)

Abstract. A group acting on a measure space (X, β, λ) may or may not admit a
cyclic vector in L∞(X). This can occur when the acting group is as big as the group of
all measure-preserving transformations. But it does not occur, even though there is no
cardinality obstruction to it, for the regular action of a group on itself. The connection of
cyclic vectors to the uniqueness of invariant means is also discussed.

1. Introduction. Cyclic vectors are important in the representation
theory of locally compact groups. The traditional context is where the vector
is in a Hilbert space on which the group G acts by unitary transformations.
This has led to some interest in the existence of cyclic vectors for natural
actions of the group on other Banach spaces. Here we discuss one particular
situation that does not seem to have been discussed before, the case where
the Banach space is L∞ of a measure space.

2. Uniformly cyclic vectors. Throughout this note, a (locally) com-
pact group G will be a Hausdorff (locally) compact group with a fixed left
invariant Haar measure λG. Assume G acts as a group of linear operators
on a Banach space X over the real or complex scalar field. A vector x ∈ X
will be called a cyclic vector if the linear span of {gx : g ∈ G} is norm-dense
in X. We are interested here in the existence of cyclic vectors for actions
on L∞ spaces. For example, suppose (X, β, λ) is a positive measure space
and the group G acts as measure-preserving invertible measurable transfor-
mations of (X, β, λ). With the action of G on L∞(X) being the associated
regular action, we ask: under what conditions does a cyclic vector exist?

It is clear that there is a fundamental issue of cardinality that impinges on
the existence of cyclic vectors in the case of L∞(X). For example, consider
the case of a countably infinite discrete group G acting on itself by left
translations, i.e. X = G in the counting measure and the action is left
multiplication in the group. Then the smallest cardinality for a dense set
in L∞(X) is the cardinality c of the continuum, which is the cardinality of
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the power set of G in this case. But continuity of scalar multiplication, and
countability of the group G itself, guarantee that the L∞-norm closure of the
span of any orbit would have a countable dense subset. So there certainly is
no cyclic vector in this case.

However, in the case of G being the unit circle T, the cardinality of the
group is the same as the smallest cardinality for a dense subset of L∞(T),
both being the continuum. Moreover, translation in L∞(G) is highly dis-
continuous in both the norm and weak topologies, although it is continuous
in the weak∗ topology. For example, see Rosenblatt [4] and Rudin [5]. This
fact of extreme discontinuity of the translation makes it quite reasonable to
ask: can there be a cyclic vector in L∞(T)?

It turns out that the question of existence of cyclic vectors for L∞ is not
just one of cardinality. To see this, we first consider a situation where such
cyclic vectors do exist. Let IM be the group of invertible measure-preserving
transformations of T with respect to the usual Lebesgue measure λT on
Lebesgue measurable sets in T. The group IM becomes a topological group
in the weak topology. This topology is the one with a basis for the open sets
consisting of all sets

N(σ, E1, . . . , En, ε) = {τ ∈ IM : max
1≤i≤n

λT(τEi △ σEi) < ε}.

This topological group is actually a complete pseudo-metric group. One
can obtain a suitable pseudo-metric for the weak topology as follows. Let
(Di : i ≥ 1) be an enumeration of all finite unions of arcs whose endpoints
are rational multiples of π. Define a pseudo-metric ̺w on IM by

̺w(σ, τ) =

∞∑

i=1

λT(σDi △ τDi)

2i
.

It is left to the reader to see that the topology associated with ̺w is the weak
topology on IM and that IM is a complete pseudo-metric topological group
with respect to ̺w. Moreover, because of the separability of the underlying
σ-algebra of Lebesgue measurable sets, the topological group IM is second
countable and has a countable dense set. Therefore, IM has cardinality c,
after identifying any σ1, σ2 ∈ IM such that σ1x = σ2x for a.e. x.

Proposition 2.1. Let D be any measurable set with λT(D) = 1/2. Then

1D is L∞-norm cyclic for the natural action by IM on L∞(T).

Proof. We use the Hahn–Banach Theorem to prove this. Suppose µ is
an element of the dual L∗

∞(T), considered as a finitely additive scalar-valued
set function on the λT-measurable sets, such that µ(N) = 0 for any λT-null
set. Assume µ(σD) = 0 for all σ ∈ IM. We want to prove that µ = 0.

Now if F is another measurable set with λT(F ) = 1/2, then there exists
σ ∈ IM such that σD = F a.e. Therefore, for all measurable sets F with
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λT(F ) = 1/2, we have µ(F ) = 0. It follows by the finite additivity of µ that
also µ(T) = 0.

Let α ∈ [0, 1/4] and suppose F1, F2 are measurable sets with λT(F1) =
λT(F2) = α. Then let U be a measurable subset of T \ (F1 ∪ F2) such that
λT(U ∪F1) = λT(U ∪F2) = 1/2. Hence, both µ(U ∪F1) and µ(U ∪F2) are 0.
This means that µ(U) + µ(F1) = µ(U) + µ(F2). Hence, µ(F1) = µ(F2) for
any α ∈ [0, 1/4] and any two measurable sets with λT(F1) = λT(F2) = α. It
follows by finite additivity of µ that the same thing holds no matter what
the value of α ∈ [0, 1].

Now take a measurable set F with nλT(F ) ≤ 1. Let F1 = F , and take
pairwise disjoint measurable sets F2, . . . , Fn that are disjoint from F1, and
such that all the Fi have the same measure with respect to λT. Then by the
above, µ(Fi) = µ(F ) for all i = 1, . . . , n. By the finite additivity of µ, this
gives

µ(F1 ∪ · · · ∪ Fn) = nµ(F1).

Since |µ(F1 ∪ · · · ∪ Fn)| ≤ ‖µ‖∞, this shows that |µ(F )| ≤ ‖µ‖∞/n. Hence,
if (Es) is a sequence of measurable sets with lims→∞ λT(Es) = 0, then it is
also the case that lims→∞ µ(Es) = 0.

We claim now that µ(F ) = 0 for all measurable sets F . To see this, we
first claim that µ(F ) = 0 for all measurable sets with λT(F ) = i/2n for
some n and i, 0 ≤ i ≤ 2n. The case that i = 2n was remarked already. For
other values of i, it suffices to prove this with i = 1 by the additivity of µ.
But if λT(F ) = 1/2n, then there are pairwise disjoint measurable sets Fi,
i = 1, . . . , 2n, such that F1 = F and λT(Fi) = 1/2n for all i. Hence,

0 = µ(T) = µ(F1 ∪ · · · ∪ F2n) = 2nµ(F1),

and so µ(F ) = 0. Therefore µ(F ) = 0 whenever the measure λT(F ) is a
dyadic rational. But any measurable set F contains measurable sets Fs such
that λT(Fs) is a dyadic rational and such that lims→∞ λT(F \Fs) = 0. Thus,
also lims→∞ µ(F \ Fs) = 0. So by the finite additivity of µ,

µ(F ) = µ(Fs) + µ(F \ Fs) = µ(F \ Fs).

Therefore, µ(F ) = 0 for all measurable sets and so µ = 0.

Remark 2.2. We can give a constructive proof of this theorem. The
argument was suggested by Bill Johnson. For simplicity, identify T with the
interval [0, 1] and let λ be the usual Lebesgue measure on [0, 1]. We fix a
measurable set D ⊂ [0, 1] such that λ(D) = 1/2. Then let T be the linear
span of {1gD : g ∈ IM}. We claim that the L∞-norm closure of T is all
of L∞(0, 1).

First, it is clear that T contains differences 1E − 1F where λ(E) = λ(F )
≤ 1/2, and it contains constants. So if λ(E) = 1/2n, let

S = (2n − 1)1E − 1E1
− 1E2

− · · · − 1E2n
−1
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with E and the Ei pairwise disjoint and all Ei having measure 1/2n. The
support of this sum is the whole interval and 1 + S = 2n1E . Since this is
in T , when we divide by 2n, we then see that 1E is also in T . Also, by
adding characteristic functions of this type, we get 1E ∈ T if λ(E) is a
dyadic rational.

Then consider a general E and take sets F (s) with dyadic rational mea-
sure such that E ⊂ F (s) and such that A(s) = F (s) \ E has λ-measure
going to 0 as s → ∞. Choose as many images σkF (s) as possible under
the constraints that σkE = E and the images σkA(s) are disjoint from E
and pairwise disjoint from each other. Let L(s) denote the number of these
images. Since λ(A(s)) tends to 0 as s → ∞, the number L(s) tends to ∞ as
s → ∞. Now consider

S =

L(s)∑

k=1

1σkF (s).

This sum is in T and is equal to L(s)1E +
∑L(s)

k=1 1σkA(s). So, (1/L(s))S is in
T and ∥∥∥∥1E −

1

L(s)
S

∥∥∥∥
∞

=
1

L(s)
.

Thus, 1E is in the L∞-norm closure of T for any measurable set E. But
then by approximating a bounded measurable function by dissection of the
range, we see that the L∞-norm closure of T is all of L∞.

Proposition 2.1 shows that, if the cardinality of the acting group is not
an obstruction, then a cyclic vector in L∞ can exist. We will see below
situations in which the cardinality is not an obstruction, but nonetheless
there are no cyclic vectors in L∞. Hence, the existence of a cyclic vector
becomes a matter of the structural nature of the action.

Before moving on to results that give us a counterpoint to Proposi-
tion 2.1, there is another observation about cyclic vectors in this context that
is worth making. Consider IM more generally to be the invertible measure-
preserving transformations of a non-atomic probability space (X, β, λ). Then
IM acts in the regular fashion on L∞(X). Now restrict to the action by a
subgroup H of IM, and assume there is a function in L∞(X) that is cyclic
under H. It follows that there must be a unique H-invariant mean. Indeed,
suppose f is the cyclic vector. Let m be an H-invariant mean on L∞(X).
Choose a sequence of finite linear combinations

cs =
∑

h∈H

cs(h)f ◦ h

such that 1 = lims→∞ cs in L∞-norm. Then

1 = m(1) = lim
s→∞

∑

h∈H

cs(h)m(f).
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Since we could use the invariant mean given by the integral with respect
to λ, it follows that m(f) =

T
f dλ. But then m(F ) =

T
F dλ for all F in the

linear span of {f ◦h : h ∈ H}; and therefore since f is cyclic, m(F ) =
T
F dλ

for all F ∈ L∞(X).
This argument shows that there cannot be a uniformly cyclic vector in

L∞(T) under the regular action of T because there are many different in-
variant means on L∞(T). The same would hold for any compact group that
was amenable as a discrete group because there are many different invariant
means. The argument can also be used to show that if G is amenable as a
locally compact group and not compact, then there cannot be a uniformly
cyclic vector in L∞(G) under the regular action of G (because again there
are many different invariant means on L∞(G) in this case too). See Rosen-
blatt [3] for a discussion of the existence of invariant means and references
for the proofs of the statements above.

However, some compact groups have a unique invariant mean on L∞(G)
under the regular action of the group. See Paterson [2] for a survey of this
uniqueness question. So the argument above does not work for all compact
groups, and another method is needed. We will actually give two arguments
because they prove different things in different ways. Here is the first line of
reasoning.

Theorem 2.3. Let G be a non-discrete compact group and let E be a

measurable set. Let TE be the linear span of {1gE : g ∈ G}. Then the generic

characteristic function 1A is not in the L∞-norm closure of TE.

Corollary 2.4. Let G be a non-discrete compact group and let E be

a measurable set. The L∞-norm closed linear span of {1gE : g ∈ G} is a

proper subspace of L∞(G).

Proof of Theorem 2.3. We will use the notation Ee, where e = 1, c,
with E1 denoting E and Ec denoting the complement of E, i.e. Ec = G\E.
Fix n ≥ 1. Fix functions e : {1, . . . , n} → {1, c} and γ : {1, . . . , n} → G. Any
atom P = P (e, γ) in the finite σ-algebra generated by γ(1)E, . . . , γ(n)E is
of the form

P =
n⋂

k=1

γ(k)Ee(k).

The atom depends on the choice of e and γ. But with e fixed, the atom
depends continuously on the choice of γ(1), . . . , γ(n). That is, if γs(k) con-
verges to γ(k) as s → ∞, for all k = 1, . . . , n, then as s → ∞,

λG(P (e, γs) △ P (e, γ)) → 0.

Consider β in the symmetry pseudo-metric ̺, ̺(U, V ) = λG(U △ V ) for
U, V ∈ β. This is a complete pseudo-metric space. Fix n, m and a finite
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number of distinct functions ei : {1, . . . , n} → {1, c} with i = 1, . . . , m.
Let R(n, e1, . . . , em) consist of all sets S ∈ β such that for some γ, we
have S =

⋃m
i=1 P (ei, γ). Because of the continuity remarked above, and the

compactness of G, the set R(n, e1, . . . , em) is compact, and hence closed,
in (β, ̺).

In addition, R(n, e1, . . . , em) has no interior. This is a result of a proper
understanding of why (β, ̺) is not locally compact. Because G is non-
discrete, for any ε > 0, and any measurable set E with λG(E) ≥ ε, we
can construct a sequence (Aj : j ≥ 1) of subsets of E with λG(Aj) = ε/2
for all n such that the (Aj : j ≥ 1) are mutually independent. Indeed, if
G were a compact, metric group, then any such set E would be bimeasur-
ably isomorphic to [0, λG(E)] with Lebesgue measure. In [0, λG(E)], we can
take the contraction by ε of the sets {x ∈ [0, 1] : rj(x) = 1}, using the
Rademacher functions (rj), to get such mutually independent measurable
sets. Then take their isomorphic image in E to get the mutually indepen-
dent measurable sets (Aj : j ≥ 1) in E. For the general compact group,
one just takes a quotient G/N by a compact, normal subgroup N such that
G/N is a non-discrete, metric compact group and applies the construction
above to E/N . Then the inverse images of these sets in G/N under the
canonical projection from G to G/N will give us mutually independent sets
(Aj : j ≥ 1) in E as desired.

So now also suppose ε ≤ 1 and A0 ∈ β with λG(Ac
0) ≥ ε. As remarked

above, in E = Ac
0, we can construct mutually independent sets (Aj : j ≥ 1)

with λG(Aj) = ε/2. Then the sets Bj = A0∪Aj have ̺(A0, Bj) < ε for all j.
By the independence, λG(Ak ∩Aj) = λG(Ak)λG(Aj) for all k, j. So, for any
distinct k, j,

̺(Bk, Bj) = 2(ε/2 − (ε/2)2) = ε(1 − ε/2)

by the pairwise independence of the sets (Aj : j ≥ 1). Hence, for any dis-
tinct k, j, ̺(Bk, Bj) ≥ ε/2. Therefore, the sequence (Bj) has no convergent
subsequences. This shows that no closed neighborhood of N of any A ∈ β
can be compact. Indeed, the interior of N would contain a measurable set
A0 with λG(Ac

0) > 0. So we can proceed as above with a suitably small
value of ε and obtain sets (Bj) as above that are also all in the original
neighborhood N . Hence R(n, e1, . . . , em), being itself compact, cannot have
a non-empty interior.

Hence, by the Baire Category Theorem, the set R described by
⋂

{R(n, e1, . . . , em)c : n ≥ 1, ei : {1, . . . , n} → {1, c}, i = 1, . . . , m}

is a dense Gδ subset of β and we can choose a set A that is not in any of
the sets R(n, e1, . . . , em). But then 1A cannot be in the L∞-closed span of
{1gE : g ∈ G}. Indeed, suppose there exist scalars a1, . . . , an and elements
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γ(1), . . . , γ(n) ∈ G such that

∥∥∥1A −
n∑

k=1

ak1γ(k)E

∥∥∥
∞

<
1

3
.

We can rewrite
n∑

k=1

ak1γ(k)E =
∑

{cP 1P : P = P (e, γ), e : {1, . . . , n} → {1, c}}.

Then either |cP − 1| ≤ 1/3 or |cP | ≤ 1/3, and so each atom P is either a
subset of A or a subset of Ac a.e. Indeed, |cP −1| ≤ 1/3 if and only if P ⊂ A,
and |cP | ≤ 1/3 if and only if P ⊂ Ac a.e. But then A must be the union of
the atoms contained in it. Suppose these atoms P are given by P = P (ei, γ),
i = 1, . . . , m. Then A ∈ R(n, e1, . . . , em), contrary to the choice of A.

The method of proof above shows that this same argument will work
with a slight modification if the single characteristic function is replaced by
an L∞ function or a suitably small set of such functions. Here is the result
that can be proved using this line of reasoning.

Theorem 2.5. Let G be a non-discrete, compact group and let F be a

subset of L∞(G) that has a countable, dense subset in the L∞-norm topology.

Then the generic characteristic function 1A is not in the L∞-norm closed

span of {gf : g ∈ G, f ∈ F}.

Proof. Since F has a countable, dense subset, using approximation by
linear combinations of characteristic functions via dissection of the range, it
is clear that there is a sequence (Ei : i = 1, 2, . . . ) of measurable sets such
that the L∞-norm closed span of {gf : g ∈ G, f ∈ F} is contained in the
L∞-norm closed span of {g1Ei

: g ∈ G, i ≥ 1}.
We now consider any atom

P = P (e, ι, γ) =
n⋂

k=1

γ(k)E
e(k)
ι(k)

in the finite σ-algebra generated by γ(1)Eι(1), . . . , γ(n)Eι(n) using any
ι(k) ≥ 1 and any γ(k) ∈ G. Let R(I, n, e1, . . . , em) consist of all sets
S ∈ β such that S =

⋃m
s=1 P (es, ι, γ), where e1, . . . , em are fixed, ι(k) is

restricted so that 1 ≤ ι(k) ≤ I, but the elements γ(1), . . . , γ(n) ∈ G may
vary. The same argument as the one in Theorem 2.3 shows that the sets
R(I, n, e1, . . . , em) are closed and nowhere dense in (β, ̺). It follows in the
same way as in the proof of this Theorem 2.3 that the generic set A is not in
any of the sets R(I, n, e1, . . . , em) and, hence, that 1A is not in the L∞-norm
closed span of {g1Ei

: g ∈ G, i ≥ 1}.
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Remark 2.6. For example, suppose that F is the closure in the L∞-
norm of a set F0 that is σ-compact in the L∞-norm topology. The reader
should compare this hypothesis with the one in Theorem 2.8. If we write F0

as a union of L∞-norm compact sets F0(n), n ≥ 1, then for each n there is
a countable dense subset Dn in F0(n). So it follows that the union

⋃∞
n=1 Dn

will be a countable dense subset of F . Hence, F satisfies the hypotheses of
Theorem 2.5.

In addition, by localizing the proof, the same type of result holds for a
non-discrete, σ-compact, locally compact group acting on itself.

Theorem 2.7. Let G be a non-discrete, σ-compact , locally compact

group and let F be a subset of L∞(G) that has a countable dense subset

in the L∞-norm topology. Then the generic characteristic function 1A is

not in the L∞-norm closed span of {gf : g ∈ G, f ∈ F}.

Proof. Let K be any compact subset of G with positive measure. It is
not hard to see that a local measure of relative difference is continuous as
a function. That is, for any E ∈ β, the function T (g) = λG(K ∩ (E △ gE))
is continuous on G. Moreover, we can restrict the translations to a given
compact subset of G, taken from an increasing sequence of such sets whose
union is all of G. This means that we can localize the definition of R in the
proof of Theorem 2.5 and show that a generic, measurable function 1A with
A ⊂ K will not be in the L∞-norm closed span of {gf : g ∈ G, f ∈ F}.

Here is another approach to proving results like the previous ones. This
method does give a new way of proving at least the main conclusion of
Theorem 2.5, that the subspace in question is not the whole space. Thanks
are due to Bob Kaufman who provided this formulation of the theorem and
a variant of this proof.

Theorem 2.8. Let G be a non-discrete compact group. Suppose F is

a subset of L∞(G) whose closure in the L1-norm is a σ-compact set in

L1(G). Then the L∞-norm closed span of {f : f ∈ F} is a proper subspace

of L∞(G).

Remark 2.9. The hypotheses in Theorem 2.8 and Theorem 2.5 are dif-
ferent, neither being stronger than the other. Indeed, let G be the circle
T and let F = D consist of all simple functions constructed from rational
linear combinations of arcs with rational endpoints. This countable set is
L1-norm dense in all of L1(G), and hence its closure in the L1-norm does
not satisfy the hypothesis of Theorem 2.8 even though it does meet the con-
ditions needed to apply Theorem 2.5. On the other hand, if we take F to
consist of the characteristic functions of all arcs in T, then this set is com-
pact in the L1-norm topology and satisfies the conditions of Theorem 2.8.
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However, it cannot satisfy the conditions of Theorem 2.5 because for any
two distinct arcs A1 and A2, we have ‖1A1

− 1A2
‖∞ = 2.

Nonetheless, Theorem 2.8 can be used to give the basic conclusion in
Theorem 2.5. Indeed, suppose F satisfies the assumption in Theorem 2.5,
and let D = {f1, f2, . . . } be a countable set that is dense in F . Then
gn = fn/n(‖fn‖∞ + 1) defines a sequence (gn) that is converging to 0 in
the L1-norm, and hence whose closure in L1-norm is σ-compact. Also, the
linear span of {gn : n ≥ 1} is the linear span of {fn : n ≥ 1}. Hence, The-
orem 2.8 says that the L∞-norm closed span of F is a proper subspace of
L∞(G), the main part of the conclusion of Theorem 2.5. So, Theorem 2.8 is
the stronger result, at least with regard to whether the subspace in question
is all of L∞(G) or not. Inherently, Theorem 2.8 says that the generic func-
tion in L∞(G) is not in the L∞-norm closed span of F . But we do not know
if this translates into saying that the generic characteristic function is also
not in this closed span (although of course there will be some characteristic
function that is not in this closed span because it is not the whole space).
It should be possible to prove Theorem 2.8 along the lines of the proof
of Theorem 2.5, and so obtain the additional information about the generic
characteristic function, but we have not been able to see how to achieve this.

Proof of Theorem 2.8. We need to use a suitable operator sequence in
this proof. There is some latitude in what we choose, but in this case the
simplest one to use is an approximate identity. To make this possible, we first
reduce the theorem to the case where G is a compact, metric group. This
can be arranged without loss of generality since F has a σ-compact L1-norm
closure in L1(G), and hence there exists a compact, normal subgroup N of
G such that G/N is a compact, metric group and all the functions in F are
constant on the cosets of N in G.

We may also assume that F has a closure in the L1-norm that is compact
in L1(G), an assumption that will make the proof below a little easier.
Indeed, we can write F =

⋃∞
n=1 Fn where each Fn has a closure in the

L1-norm that is compact in L1(G). But then Nn = supf∈Fn
‖f‖1 < ∞.

So there exists (δn), δn > 0, such that limn→∞ δnNn = 0. It follows that

F̃ =
⋃∞

n=1 δnFn has a closure in the L1-norm that is compact in L1(G). But

also, F̃ and F have the same linear span in L∞(G).
So assume that G is a compact, metric group and that F has a closure

in the L1-norm in L1(G) that is compact. We proceed by picking pairwise
disjoint open sets (Ak) and an approximate identity Dk with suitable prop-
erties. First, fix any sequence of non-empty, pairwise disjoint open sets (Ak).
For each Ak, there exists a compact subset Ek ⊂ Ak such that

λG(Ak \ Ek) ≤
λG(Ak)

100
.
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Then there exists a decreasing sequence of symmetric, open neighborhoods
Wk of the identity in G such that WkEk ⊂ Ak for all k ≥ 1. We can
make the additional restriction on Wk that for any open neighborhood U
of the identity, eventually Wk ⊂ U . Now choose any sequence of continuous
functions (φk : k = 1, 2, . . . ) in L1(G) such that φk ≥ 0, ‖φk‖1 = 1 for all
k ≥ 1, and such that φk is supported in the neighborhood Wk. Let φk ⋆ f
denote the convolution given by φk ⋆ f(x) =

T
G

φk(y)f(y−1x) dλG(y). It
follows that

lim
k→∞

‖φk ⋆ f − f‖1 = 0

for all f ∈ L1(G), i.e. (φk) is an approximate identity in L1(G). Our choices
also tell us that if γ is a function supported in Ak, then we can compute
φk ⋆ γ(x) for all x ∈ Ek just in terms of the values of γ on Ak. Thus, for
all of Ak, except a subset of measure no more than λG(Ak)/100, we can
compute φk ⋆ γ(x) just in terms of the values of γ on Ak

Now, choose (Ak), (Ek), (Wk), and (φk) as described above. Define the
operators Dk by Dk(f) = φk⋆f for all f ∈ L1(G). Because F has a closure in
L1-norm that is compact in L1(G), there exists a sequence εn → 0 as n → ∞
such that ‖Dn(f) − f‖1 ≤ εn for all f ∈ F . Let (εnk

) be a subsequence of
(εn) such that εnk

≤ (1/k)λG(Ak).
We claim there is a function g ∈ L∞(G) such that for all k ≥ 1,\

Ak

|Dnk
(g) − g| dλG ≥

1

2
λG(Ak).

Suppose for now that such a function g exists. We claim that then g is not
in the L∞-norm closed span of F . Indeed, we claim that if ‖g − h‖∞ ≤ 1/8,
then h is not in the span of F . To see this, assume that ‖g − h‖∞ ≤ 1/8
and h is in this span. Then, for some constant C depending only on h, we
would have ‖Dnk

(h)−h‖1 ≤ Cεnk
≤ C(1/k)λG(Ak). But also ‖(Dnk

(h)−h)
− (Dnk

(g) − g)‖∞ ≤ 2‖h − g‖∞ ≤ 1/4. Hence, we would have

C
1

k
λG(Ak) ≥ ‖Dnk

(h) − h‖1 ≥
\

Ak

|Dnk
(h) − h| dλG

≥
\

Ak

(
|Dnk

(g) − g| −
1

4

)
dλG ≥

1

4
λG(Ak).

So C ≥ k/4 for all k, which is impossible.
So now we only need to construct g. First, we will choose a sequence

(gk) such that each gk is a bounded measurable function supported on Ak

such that gk = ±1 everywhere on Ak. We can arrange a sufficiently dense
oscillation in the choice of gk so that |Dnk

(gk)| is uniformly as small as we
like on Ek. For example, if we have |Dnk

(gk)| ≤ 1/8 uniformly on Ek, then
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we would have\
Ek

|Dnk
(gk) − gk| dλG ≥

7

8
λG(Ek) ≥

7

8

(
99

100
λG(Ak)

)
≥

3

4
λG(Ak).

We then let g =
∑∞

k=1 gk. Since the operators Dnk
are supported in Wk, the

sets Wk are decreasing, and the sets Ak are pairwise disjoint, Dnk
(gl) = 0

on Enk
if l < k. Hence, we have the following estimate:\

Ak

|Dnk
(g) − g| dλG ≥

\
Ek

|Dnk
(g) − g| dλG =

\
Ek

∣∣∣
∞∑

l=k

Dnk
(gl) − gk

∣∣∣ dλG

≥
\

Ek

(
|Dnk

(gk) − gk| −
∞∑

l=k+1

|Dnk
(gl)|

)
dλG

≥
3

4
λG(Ak) −

\
Ek

∞∑

l=k+1

|Dnk
(gl)| dλG

for all k ≥ 1. But as part of the construction of the sequence (gk), we can
arrange for the functions to oscillate between +1 and −1 so often that for
any k ≥ 1 and any l ≥ k, we have |Dnk

(gl)| ≤
1
4

(
1
2l

)
uniformly on El. This

certainly guarantees the estimate needed above: |Dnk
(gk)| ≤ 1/8 uniformly

on Ek.
The actual construction of (gk) can proceed inductively as follows. Take

g1 supported on A1 such that |Dn1
(g1)| ≤

1
4

(
1
2

)
. Then let k > 1 and assume

that g1, . . . , gk−1 have already been chosen appropriately. Then take gk,
supported on Ak, so that for all j, 1 ≤ j ≤ k, we have |Dnj

(gk)| ≤
1
4

(
1
2k

)

uniformly on Ek. It follows, by the estimate above, that we have\
Ak

|Dnk
(g) − g| dλG ≥

3

4
λG(Ak) −

\
Ek

∞∑

l=k+1

|Dnk
(gl)| dλG

≥
3

4
λG(Ak) −

∞∑

l=k+1

1

4

(
1

2l

)
λG(Ek)

≥
3

4
λG(Ak) −

1

4
λG(Ek) ≥

1

2
λG(Ak).

Remark 2.10. This result can also be generalized to the case of a non-
discrete, σ-compact, locally compact group in the same manner as we proved
Theorem 2.7.

There is another interesting context where the same issues of uniqueness
of invariant means and the existence of cyclic vectors arise. With the correct
axioms (e.g. CH), one can have amenable groups of permutations of the
integers Z which allow for only one invariant mean on l∞(Z); that is, there
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can be amenable actions with a unique invariant mean. This is not possible
with a commutative group of permutations, but it can be done using a
locally finite group, and hence an amenable group, for the acting group. See
both Yang [6] and Foreman [1] for the construction of such actions by locally
finite groups. Given the discussion above, it is natural to ask this question:

Question. Given CH, can one construct a locally finite group of per-
mutations of Z such that there is a cyclic vector for the regular action of G
on l∞(Z)?
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