COLLOQUIUM MATHEMATICUM

VOL. 104 2006 NO. 1

ON THE SPECTRAL MULTIPLICITY OF
A DIRECT SUM OF OPERATORS

BY

M. T. KARAEV (Isparta)

Abstract. We calculate the spectral multiplicity of the direct sum T'@ A of a weighted
shift operator T" on a Banach space Y which is continuously embedded in [ and a suitable
bounded linear operator A on a Banach space X.

1. Introduction. Let L(X) be the Banach algebra of all bounded linear
operators on a Banach space X. A subspace E C X is called a cyclic subspace
of an operator A € L(X) if span{A"FE : n > 0} = X, where span denotes
closed linear hull. A vector x € X is called cyclic (z € Cyc(A)) if span{ A"z :
n > 0} = X. The spectral multiplicity u(A) of A € L(X) is

w(A) :=inf{dim F : span{A"E :n > 0} = X},

a nonnegative integer or co. Clearly, A is cyclic if and only if u(A) = 1.

The spectral multiplicity is an important invariant of operators, and it
plays a key role in operator theory and its applications. Clearly, the notion
of cyclic subspace is important in connection with the general problem of
existence of a nontrivial invariant subspace, because an operator A € L(X)
has no nontrivial invariant subspace if and only if x € Cyc(A) for every z €
X\{0}. Cyclic vectors are important in weighted polynomial approximation
theory. (More details can be found in [6].)

In this article we calculate the spectral multiplicity of the direct sum
T @® A, where T is a weighted shift operator on a Banach space Y contin-
uously embedded in [P, and A a suitable bounded operator on a Banach
space X (Section 2). Note that the main result of Section 2, Theorem 1,
generalizes and strengthens some results of the author in [3, Theorem], [4,
Theorem 3] and [5, Theorem 3].

First we introduce some notations and definitions. If {e; };>0 is a sequence
of vectors in a Banach space X, we say that {e;}i>0 is uniformly minimal if
there exists a constant § > 0 such that

d:= lI>1£ dist{e;/| e;||, span{e; : j #i}} > 0.

2000 Mathematics Subject Classification: Primary 47B38.
Key words and phrases: cyclic vector, spectral multiplicity, Banach algebra.

[105]



106 M. T. KARAEV

It is clear that if {e;};>0 is a basis in X, then {e;};>0 is uniformly minimal,
and therefore for any z =3 " z(n)e, € X,

(1) lz(n)en]lx < cllz|x

for all n > 0 and some ¢ > 0 (actually, one can take ¢ = 1/d).

A weighted shift operator T' in a Banach space X with basis {ey, }n>0 is
defined by

Te, = )\nen+17 n >0,

where {\, }n,>0 is a bounded sequence of complex numbers. Obviously, u(T)
=1

2. The spectral multiplicity of T'® A. Let A ® B denote the direct
sum of bounded linear operators A and B acting in Banach spaces X and Y,
respectively,

(AeB)(zdy) =Az® By, zdyecXaY.
It is well known that
(2) max{u(A), u(B)} < (A ® B) < u(A) + u(B).

One might try to characterize the extremes, that is: When u(A & B) =
max{u(A), u(B)}? When p(A @ B) = p(A) + u(B)? It is well known that
u(A @ B) = max{u(A), u(B)} if the spectra o(A) and o(B) are well sepa-
rated, i.e., their polynomially convex hulls are disjoint (see, e.g., [7]).

In this section we shall be interested in the equality pu(A @ B) = u(A) +
p(B). In this connection we shall prove the following theorem which gen-
eralizes and strengthens some results in [3-5]. (More general results related
to the equality u(A & B) = u(A) + p(B) can be found, for instance, in [2,
7-10]).

THEOREM 1. Let Y be a Banach space with a basis {en}n>0 of unit
vectors, which is continuously embedded in [P for some p, 1 < p < oo. Let
{An}n>0 denote a bounded sequence of nonzero complex numbers A, € C, and
let T be the corresponding weighted shift operator acting inY, Te, = Apeént1,
n > 0. Let X be a separable Banach space and A € L(X). Suppose that:

(1) D s [Wngm/wpwp| =: 2n < oo for some N > 0, where wy, ==
MM - Ane1, wo = 1.

(i) D0 g(JA™ || x /I T™eolly)? =: Cy < 00 for all x € X, where 1/p+
1/g=1.

(iii) |lentmlly < cllenllylleml|ly for all nym >0 and for some ¢ > 0.

Then u(T & A) = p(T) + p(A) =1+ p(A).
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The proof of the theorem uses the following product:

3) [Eg= Y I jn)g(m)entm,

n,m>0 nem

where f =3 f(n)en, g=> 1" gg(n)e, €Y.

LemMA 2. (Y, ®) is a Banach algebra with the unit f = eq and M(Y, ®)
= {0}, i.e., its mazimal ideal space M(Y,®) consists of one homomorphism

[ f(0).
Proof. First we prove that

(4) I ® gl < ClLflllgl

for all f,g € Y and for some number C > 0, not depending on f,g.
Note that if N = 0, then (4) is immediate from (3), and so assume that
N > 1. By setting R, (f) := >}, f(k)ex, and using (i) and the inequalities

HTkH < Sup{|)\n)\n+1 T An-i—k—l’}?zo:l =: A,

we have

n,m>0

= 5O 3 gtmen+ LD S gy 2281

+90) Y fmen+ DL Y gy 2L,
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@Tg—i—@TQg—l—...—i—if(N_l) TN 14
w1 w2 WN -1

= f(0)g +

1 2
Q(N - 1) N—1 . Wn+m
+ =2 RnN(T + — f(n)g(m)eam.
on N ( f) n§:N mE:N o f(n)g(m)en

From this, by using (iii), the equality |f(i)| = ||f(i)e;||y and inequality (1)
we obtain

1£ & gll < 17O gll + LDy +

|
i M 17291l + [g(O)] || R (£)

N —
o= (i)

B> | e (e

w.
nNmNnm

T TN—l T TN—l
e (1 I I (T I

|w | lwn 1] |w | lwn 1]

Yy | A1

n=N m=N

+ o BN @A+ -+

<c{ z‘ Z‘wN} I£1llgll = CI A1l

By standard arguments (i.e., by passing to the equivalent norm in Y) we
deduce from the last inequality that (Y,®) is a Banach algebra. Clearly,
f®eg=fforeach feVY.

To prove that M(Y,®) = {0}, it suffices to show that an element f € Y’
is ®-invertible if and only if £(0) # 0. In fact, let f(0) # 0. Let us prove that
then Dy, where Dy g := f ® g, is an invertible operator in Y (boundedness
of Dy is a consequence of (4)). Rewrite Dy in the form Dy = f(0)I+Dy_ ¢
and set

h:= f— — ~...~_
f=f0) and Fi=he -oh
N+1

It is easy to verify that F'(0) = F((1) = --- = F(N) = 0. Therefore for every
g €Y and M > N we obtain



SPECTRAL MULTIPLICITY OF DIRECT SUM 109

'D}]Lv‘i‘lg:Fég

= g(0)Rn+1(f) + %11) Ry 41(TF) + @ Ry41(TF)

N w
ot ( )R (TVF)+ Z —2 F(n)g(m)enm
n>N-+1 m>N+1

Wn+m
Rn1(T'F) Z Z ™ F(n)g(m)entm

Wy W.
n>N+1 m>N+1 nwm

(i)

Wy

(2)

)

= 11>

I
[e)

_.l_
%Mi g

Wn+m
Ry (T'F) + Z Z —E F(n)g(m)entm

Wy W
n=N+1 m=N+1 n=m

00

w
Z L F(n)g(m)entm
=N+ wnwm

+ Z Z b F(n)g(m)enym.

WnW.
n=M+1 m=N+1 "™

It is clear that the operator s defined by

g Wn+
Karg —Z—R N+1(T'F) + Z Z v Fmgm)ensm,
n=N+1 m=N+1

is a ﬁmte—rank (hence compact) operator. By considering (iii) and estimate
(4) we obtain

N+1 N+1
1Dy, Dy,

— Kulloyy = sup | g—Kumgll

||g|| 1

Z Z ZZ'I—ZZ g(m) En+m

n=N+1 m=M+1

DD S

n=M+1 m=N+1

= sup
llgll<1

<cirl| DS

n=N+1 m=M+1

as M — oo. Hence Ky = D,]l\”rl as M — oo, which means that D,]l\”rl is
compact.
On the other hand, if g € Y and D;g = 0, then it follows from (3) that

DS
WnWm

n=M+1 m=N+1

Wnim H 0

Wn,
(D K)—" 0, n=0,1,2,...
19)( Zf oL n
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Since f(0) # 0, simple calculations show that 0 = ¢g(0) = ¢g(1) = -- -, that
is, g = 0, which implies that ker(f(0)I+Dp,) = ker Dy = {0}. Then by a well
known theorem of S. M. Nikol’skii (see [1]) we deduce that Dy is invertible
in Y, that is, f is ®-invertible in Y.

Conversely, if f is ®-invertible then it follows from (3) that f(0) # 0,
i.e., f(0) # 0. The lemma is proved.

LEMMA 3. f € Cyc(T) if and only if f(0) # 0.
Proof. 1t follows from (3) that

w1z ®g=wz® Z g(n)e, = Z g(n)wi(er ® ey,)

n=0 n=0
00 w 00 w
= Z g(n)wy LaE Ent1 = Zg(n) ntl ent1
W1Wn Wy,
n=0 n=0
o0 00 00
= Z g(n)Anen—H = Z g(n)Ten = T(Z g(n)en> =Tg
n=0 n=0 n=0
for all g € Y, and in general,
(5) T"g = wpen, ® g

for any g € Y and n > 0. Hence
(6) E;:=span{T"f:n >0} = span{wye, ® f : n > 0}
= span{Dy(wpey) : n > 0} = closD;Y.

Therefore, if f € Cyc(T) then clos DY =Y, which implies the existence of a
sequence { fp}n>0 € Y such that f ® fn — €0 in Y as n — oo. Consequently,
(f ® £2)(0) — 1 as n — oo, or £(0)f,(0) — 1 as n — oo, and therefore,
£(0) # 0.

Conversely, if f(0) # 0, then according to the equality (6) and Lemma 2,
we have Ey =Y, that is, f € Cyc(T). =

Proof of Theorem 1. If u(A) = oo, then by inequalities (2) the assertion
of the theorem is obvious, and therefore we will assume that p(A) =n < oco.

Suppose that u(T @& A) = u(A) = n. Let {f; ® z;}; be a cyclic set
for T'® A. Then {f;}, is a cyclic set for T'. Suppose that f;(0) # 0 for
E=1,...,0 and fx(0) =0 for k =1+ 1,...,n. We set g, = fk, Yy = Tk
fork=1,...,l,and g = fr — f1, yp =2 — 21 for k=101+1,...,n. Then
{9: ® v}, is a cyclic set, and since g;(0) # 0 for k = 1,...,n, by Lemmas
2 and 3 there exist F, € Y such that Fj, ® g, = eg, k= 1,...,n. Set

~ Fpy(m) .,
Th= km) Y-

m>0 m
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Then

k(M _
9 © Ui —Zg ) (T & Ay (co ® 7).
m>0
Therefore
9k D yx € span{(T' @& A)"(eg ® z;) :m > 0,i=1,...,n}

for k = 1,...,n and the set {ep ® 7;} is cyclic for T'® A. We now set
Tl = X1, Tp = T1 — Tk, k = 2,...,n; this yields a new cyclic set {ey ® 71,
0dZs,...,00T,} for T A. Therefore, for any x € X, there exists a family
{Pn,:1<i<mn, m>1} of polynomials such that

lim P, 1(T)ep=0 inY,

m—0o0

n
lim_ Y PniA)Ti=z inX.

i=1

By using (5) we deduce that limy, oo ¢m,1 = 0in Y, where
Gm,1 =Y WP (k)er.
k>0

Then by using condition (ii) of the theorem, the equality || T%eo|| = |wy| and
the Holder inequality we deduce that

| Pt (A :mH:HZPml A:v1H<Z|Pm1 )] |44z

Aa:l
= gl [P (k)] ] I

k>0 ‘ ’

Lp | ARz |\ 7\
< p
1/q<Z|q o) " = CHgmalle < CY1C gy

k>0

so that limy, oo Pm1(A)Z1 = 0. Hence limy, o0 Y ;o Pm,i(A)T; = . Since
the vector x is arbitrary, the last relation means that {z;}}' , is a cyclic
set for A, and hence p(A) < n — 1. But this contradicts the assumption
wA)=n. =

I am grateful to the referee for his numerous suggestions.
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