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EXT-ALGEBRAS AND DERIVED EQUIVALENCES

BY

DAG MADSEN (Trondheim)

Abstract. Using derived categories, we develop an alternative approach to defining
Koszulness for positively graded algebras where the degree zero part is not necessarily
semisimple.

The starting point for the work in this paper was to use derived categories
to explain some of the results in [GRS]. In that paper the authors defined
a notion of Koszulness for positively graded algebras where the degree zero
part is not semisimple like it is in the classical Koszul case.

When generalising a theory it is always a question which features one
would like to preserve. Some basic properties of classical Koszul algebras one
as a minimum would like to keep are that each Koszul algebra has a dual
Koszul algebra, that the Koszul dual of the Koszul dual is isomorphic to the
algebra itself, and that there is a duality between certain module categories,
the objects of which are called Koszul modules. The authors of [GRS] looked
at the categories of Koszul modules in the classical Koszul case, and found
some additional properties they wanted to keep in the generalised setting.
They used the name “T -Koszul algebras” for their generalised version of
classical Koszul algebras.

The T -Koszul algebras can also be viewed as a generalisation of tilting
theory to the graded setting, because if one specialises to the case where
the algebra is concentrated in degree zero (so basically we have an ungraded
algebra), what you get is a finite-dimensional algebra together with a (Waka-
matsu) cotilting module. In fact, the main purpose of [GRS] was to find a
unified approach to both Koszul duality and the dualities arising from tilting
theory.

While the approach in [GRS] is purely module (category) theoretic, in
the present paper we look at the situation from the point of view of derived
categories. In the classical Koszul case the duality on the level of Koszul
modules can be explained as coming from an equivalence on the level of
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derived categories. We look at the specifics of this situation and make a
generalised definition of Koszulness based on this. We feel that our definition
is more natural and simpler than the one in [GRS]. We show that the T -
Koszul algebras of [GRS] are also Koszul in our sense. With the help of
our new definition we improve on some of the results and explain some of
the phenomena observed in [GRS]. Our definition also specialises nicely to
classical Koszul algebras and to Wakamatsu tilting theory.

In the present paper we heavily use ideas from [K] and also ideas gained
in conversation with B. Keller.

We now describe the contents of the different sections.
In Section 1 we give some preliminary results about graded algebras and

modules. In Sections 2 and 3 we recall some of the theory of Koszul algebras,
both classical and T -Koszul. In Section 4 we explain how we look at graded
algebras as (DG) categories, and what the concepts from the theory of DG
categories mean for this special case.

In Section 5 we examine under what conditions two graded algebras have
equivalent (unbounded) derived categories. The answer is used in Section 6,
where we look at the special case that one of the algebras is the Ext-algebra
of a module over the other algebra. We shall see that in the classical case
of Koszul algebras, we get a derived equivalence on the whole derived cate-
gories only under very restrictive hypotheses. Therefore we look for ways to
weaken the conditions and get equivalences on subcategories of the derived
categories. We arrive at the notion of a graded self-orthogonal module.

Section 7 is the most important part of the paper. We give a general
definition of Koszul algebras which we feel to be natural. We also show that
in our setting we get generalised versions of the basic theorems for classical
Koszul algebras. In Section 8 we prove that T -Koszul algebras are Koszul
algebras in our sense. Like for the T -Koszul algebras, we show that our
definitions specialise nicely to classical Koszul algebras and to Wakamatsu
tilting theory.

1. Preliminaries. In this paper k always denotes a field and Λ =⊕
n≥0 Λn denotes a positively graded k-algebra. The category of (left) (Z)-

graded modules with degree 0 maps is denoted by GrΛ. The graded shift
〈1〉 acts as an autoequivalence on GrΛ. The full subcategory of finitely gen-
erated graded modules is denoted by grΛ. By fgsyzΛ we denote the full
subcategory of grΛ consisting of all graded modules which have a projec-
tive resolution such that all syzygies are finitely generated. Both grΛ and
fgsyzΛ are closed under 〈1〉.

We record the following well known lemma, which can be found for in-
stance in [NV, Corollary 2.4.4]. We shall often use it without explicit men-
tion.
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Lemma 1.1. Let Λ =
⊕

n≥0 Λn be a graded algebra and M and N be

graded Λ-modules.

(a) If M is finitely generated , then

HomΛ(M,N) ≃
⊕

i∈Z

HomGr Λ(M,N〈i〉).

(b) If M ∈ fgsyzΛ, then

ExtnΛ(M,N) ≃
⊕

i∈Z

ExtnGr Λ(M,N〈i〉)

for all n ≥ 0.

Suppose for the rest of the section that dimk Λn < ∞ for all n ≥ 0. De-
note by l.f.Λ the full subcategory of GrΛ consisting of all graded Λ-modules
which are finite-dimensional in each degree. (Here l.f. stands for locally fi-

nite.) The category l.f.Λ is abelian and among its objects are the finitely
generated and finitely cogenerated graded modules. In particular l.f.Λ con-
tains the finitely generated projective modules and the finitely cogenerated
graded injective modules. The graded injective modules are not necessarily
injective as ungraded modules [NV, Remark 2.3.3]. We have the following
duality result, a reference for which is [M].

Lemma 1.2. Let Λ =
⊕

n≥0 Λn be a graded algebra (with dimk Λn < ∞

for all n ≥ 0). There is a duality D = Homk(−, k) : l.f.Λ → l.f.Λop, where

the graded parts of the dual of a module M are given by (DM)i = D(M−i).

The duality above restricts to a duality between finitely generated graded
Λ-modules and the finitely cogenerated graded Λop-modules. The duality
functor sends finitely generated (graded) projective modules to finitely co-
generated graded injective modules.

It also restricts to a duality between another interesting pair of subcat-
egories. We say that a graded Λ-module M is bounded below if there is an
integer n such that Mn′ = 0 for all n′ ≤ n. Dually we say that a graded
Λ-module M is bounded above if there is an integer n such that Mn′ = 0
for all n′ ≥ n. The duality D restricts to a duality between the locally fi-
nite modules bounded below and the locally finite modules bounded above.
A locally finite Λ-module M bounded below has a locally finite projective
cover which is also bounded below. Obviously all submodules of modules
bounded below are bounded below, therefore all syzygies of a locally fi-
nite Λ-module M bounded below are locally finite bounded below. (In fact
the locally finite Λ-modules bounded below form an abelian category in
which all objects have projective covers.) This gives the following useful
result.
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Proposition 1.3. Let Λ =
⊕

n≥0Λn be a graded algebra, M and N
graded locally finite Λ-modules and let D denote the above duality. If M is

bounded below or N is bounded above, then

ExtnGr Λ(M,N) ≃ Extn
Gr Λop(DN,DM)

for all n ≥ 0.

Combining the first two lemmas we get the following result concerning
situations where the graded duality works well together with ungraded Hom
and Ext spaces.

Proposition 1.4. Let Λ =
⊕

n≥0Λn be a graded algebra, M and N
graded Λ-modules and let D denote the above duality.

(a) If M is finitely generated and N is finitely cogenerated , then

HomΛ(M,N) ≃ HomΛop(DN,DM).

(b) If M ∈ fgsyzΛ and N has a graded injective resolution such that all

cosyzygies are finitely cogenerated , then

ExtnΛ(M,N) ≃ Extn
Λop(DN,DM)

for all n ≥ 0.

2. Classical Koszul algebras. In this section we recall some of the
results about classical Koszul algebras. A standard reference is [BGS].

Let Λ =
⊕

n≥0 Λn be a graded algebra over a field k. A linear projective

resolution of a graded Λ-module M is a projective resolution of M

· · · → Pn → · · · → P1 → P0 →M

such that Pi is a projective module generated in degree i for all i ≥ 0. We
say that a finitely generated graded Λ-module M is a Koszul module if M
has a linear projective resolution. The full subcategory of grΛ consisting of
Koszul modules is denoted by K(Λ). If Λ0 has a linear projective resolution,
we say that Λ is a Koszul algebra.

In [BGS, Proposition 2.1.3] we can find the following characterisation of
Koszul algebras.

Proposition 2.1. Let Λ =
⊕

n≥0Λn be a graded algebra with Λ0 semi-

simple. Then Λ is a Koszul algebra if and only if ExtnGr Λ(Λ0, Λ0〈i〉) 6= 0
implies i = n.

We will only consider Koszul algebras where dimk Λi <∞ for all i ≥ 0.
We now list the most important basic theorems about Koszul alge-

bras. If Λ is a Koszul algebra, we let E(Λ) denote the graded algebra
E(Λ) =

⊕
i≥0 Exti

Λ(Λ0, Λ0). Since Λ0 ∈ fgsyzΛ, it follows from Lemma 1.1

and Proposition 2.1 that E(Λ) ≃
⊕

i≥0 ExtiGr Λ(Λ0, Λ0〈i〉).



EXT-ALGEBRAS AND DERIVED EQUIVALENCES 117

Theorem 2.2. Let Λ be a Koszul algebra. Then

(a) E(Λ) is a Koszul algebra.

(b) E(E(Λ)) ≃ Λ as graded algebras.

(c) The functor E =
⊕

i≥0 ExtiΛ(−, Λ0) : GrΛ→ GrE(Λ) induces a du-

ality E : K(Λ) → K(E(Λ)).

There is also a duality (really an equivalence) on the level of derived
categories. For this we need a covariant functor and we therefore define

Γ = E(Λ)op =
⊕

i≥0

ExtiΛ(Λ0, Λ0)
op.

We call the algebra Γ the Koszul dual of Λ. We recall that an algebra is
Koszul if and only if the opposite algebra is Koszul.

In general we cannot expect an equivalence (of triangulated categories)
between the unbounded derived categories DGrΛ and DGrΓ . We discuss
this further in Section 6. The important duality result in [BGS, Theo-
rem 2.12.1] is that there is a triangle equivalence between certain (big)
subcategories of DGrΛ and DGrΓ . In that paper we can also find the
following result concerning bounded derived categories of finitely generated
(graded) modules.

Theorem 2.3 ([BGS, Theorem 2.12.6]). Let Λ be a Koszul algebra and

let Γ =
⊕

i≥0 ExtiΛ(Λ0, Λ0)
op. Suppose Λ is artinian and Γ is noetherian.

Then there is an equivalence of triangulated categories Db grΛ→ Db grΓ .

As usual, inside the derived category modules are identified with stalk
complexes. Restricting the equivalences on the level of derived categories
to Koszul modules we recover Theorem 2.2(c), except that the variance is
different. Instead of a duality we obtain an equivalence. What we get is that
the category of coKoszul modules (the definition is dual to that of Koszul
modules) over Λ is equivalent to the category of Koszul modules over Γ .

3. Generalised Koszul algebras. In this section we discuss a gener-
alisation of Koszul algebras introduced by Green, Reiten and Solberg (see
[GRS]). The main difference compared to the classical case is that we no
longer assume Λ0 is semisimple.

Let∆ be a finite-dimensional k-algebra. The category of (left)∆-modules
is denoted by Mod∆. The full subcategory of finitely generated∆-modules is
denoted by mod∆. If T is a finitely generated ∆-module we denote by addT
the smallest full subcategory of mod∆ containing T and closed under direct
summands and finite direct sums. Let M be a module in mod∆. A mor-
phism f : M →MT with MT in addT is called a left addT -approximation

if for any morphism g : M → U with U in addT , there is a morphism
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h : MT → U such that g = hf . The approximation is called minimal if for
any morphism j : MT → MT , if jf = f then j is an isomorphism. Right
addT -approximations and minimal right addT -approximations MT → M
are defined dually.

A module T in mod∆ is called self-orthogonal if Exti
∆(T, T ) = 0 for all

i > 0. A module T is called a tilting module if T is self-orthogonal, has finite
projective dimension and there is an exact sequence

0 → ∆→ T0
f0
−→T1

f1
−→T2 → · · · → Tn → 0

with Ti in addT for all 0 ≤ i ≤ n. Let T be a self-orthogonal ∆-module.
Define the left perpendicular category ⊥T to be the full subcategory of
mod∆ consisting of modules C with Exti∆(C, T ) = 0 for i > 0. We denote
by XT the full subcategory of ⊥T consisting of modules C which have a
coresolution

0 → C → T0
f0
−→T1

f1
−→T2 → · · ·

with Ti in addT and Ext1Λ(Ker fi, T ) = 0 for all i ≥ 0. A module T over a
finite-dimensional k-algebra ∆ is called a Wakamatsu cotilting module if it
is self-orthogonal and ∆ is in XT . If T is a tilting module, then T is also a
Wakamatsu cotilting module.

Let Λ =
⊕

n≥0Λn be a graded k-algebra generated in degrees 0 and 1
and with dimk Λn < ∞ for all n ≥ 0. We see that Λ0 is finite-dimensional,
so it is artinian. Let T be a Wakamatsu cotilting Λ0-module. We view T as
a Λ-module concentrated in degree 0. Let GT (Λ) denote the category of all
graded Λ-modules M , finitely generated with generators in degree 0, and
where

Ext1Λ(T, T ) ExtiΛ(M,T ) = Exti+1
Λ (M,T )

for all i ≥ 0.
If M is a graded module, let ⌈M0⌉ denote the graded submodule of M

generated by M0.
The reject of a graded module M with respect to T is defined by

rejT (M) =
⋂

{Ker f | f ∈ HomGr Λ(M,T )}.

In other words rejT (M) is the unique smallest submodule of M such that
the factor M/rejT (M) is cogenerated by T . If M is generated in degree 0,
then the module M/rejT (M) is concentrated in degree 0. In that case since
M/rejT (M) is cogenerated by T , the module M/rejT (M) has a minimal
left addT -approximation which is an inclusion. The cokernel of the addT -
approximation 0 → M/rejT (M) → MT is called the coreject of M with
respect to T and is denoted by corejT (M).

Let KT (Λ) be the largest full subcategory of GT (Λ) closed under the
operations rejT (−)〈−1〉, (−)/rejT (−), corejT (−), (ΩΛ(−)/⌈ΩΛ(−)0⌉)〈−1〉,
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Λ⊗Λ0
(−)0 and ⌈ΩΛ(−)0⌉. The objects in KT (Λ) are called Koszul modules.

We say that Λ is a (generalised) T -Koszul algebra if Λ and T are in KT (Λ).
It is quite easy to check that if Λ =

⊕
n≥0Λn is a classical Koszul algebra,

then it is also a T -Koszul algebra if we choose T = Λ0. The other main class
of examples is the algebras with Λ = Λ0 and where T is a Wakamatsu
cotilting module.

In [GRS, Lemma III.1.4] we find the following description of the reject
and coreject of Koszul modules over a T -Koszul algebra.

Proposition 3.1. Suppose Λ is a generalised T -Koszul algebra. Suppose

M ∈ KT (Λ). Then

(a) rejT (M) = M≥1.

(b) M/rejT (M) = M0.

(c) corejT (M) is the cokernel of the left addT -approximation M0 →MT

and is cogenerated by T .

The main result about T -Koszul algebras is that the basic theorems for
Koszul algebras still hold in this generalised setting. If Λ is a T -Koszul
algebra, we let E(Λ) denote the graded algebra E(Λ) =

⊕
i≥0 Exti

Λ(T, T ).

It follows from the definition of T -Koszul that T ∈ fgsyzΛ, so E(Λ) ≃⊕
i≥0 ExtiGr Λ(T, T 〈i〉).

Theorem 3.2 ([GRS, Theorems III.6.4 and III.6.5]). Let Λ be a T -

Koszul algebra. Then

(a) E(Λ) is a T -Koszul algebra with respect to E(Λ)T .

(b) E(E(Λ)) ≃ Λ as graded algebras.

(c) The functor E =
⊕

i≥0 ExtiΛ(−, T ) : GrΛ → GrE(Λ) induces a du-

ality E : KT (Λ) → KT (E(Λ)).

In [GRS], the authors did not consider derived categories. In the present
paper we explain their duality results as coming from an equivalence on the
level of derived categories, similar to what happens in the classical Koszul
case.

4. Graded algebras as DG categories. Our aim is to use the theory
of DG categories [K] to prove results about derived categories for graded
algebras. A DG category is a k-linear category where the morphism spaces
are differential graded k-vector spaces. In this section our task is to find a
way to view graded algebras as DG categories and see what the concepts
from DG category theory mean in this special case. In fact we put every
morphism in cohomological degree 0, so our categories can be viewed as
ordinary k-linear categories. Still it is the DG category concepts that are
important to us, since they will help us to deal with the derived categories.
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We will only consider positively graded algebras, that is, algebras graded
in the nonnegative integers. Other types of gradings can be codified in a
similar fashion.

In general, if A is a small (meaning that the objects form a set) k-linear
category, we define a (left) A-module to be a k-linear functor A → Mod k.
The functor category of all A-modules is denoted by ModA. For each object
A of A, we have a special module PA = HomA(A,−). From the Yoneda
Lemma we get

HomModA(PB, PA) ≃ HomA(A,B)

for all pair of objects A,B of A. In this way Aop is equivalent to the full
subcategory of ModA formed by the objects {PA | A ∈ A}.

If Λ =
⊕

n≥0 Λn is a graded k-algebra, we can codify the structure as
a k-linear category A in the following way: As the set of objects we take
the integers Z. We use brackets around the integers to make the notation
clearer. The space of morphisms between objects {m} and {n} is given by

HomA({m}, {n}) = Λn−m.

The category ModA is then equivalent to GrΛ, the category of graded
Λ-modules with degree 0 morphisms. Under this equivalence, the functor
P{m} = HomA({m},−) corresponds to the graded Λ-module Λ〈m〉 for each
object {m} of A.

Another way to codify Λ as a k-linear category is sometimes useful. We
assume that dimk Λi < ∞ for all i ≥ 0. This means that Λ0 itself is a
finite-dimensional k-algebra. So there is a decomposition 1 = e1 + · · ·+ er of
the identity into a sum of primitive orthogonal idempotents. Each primitive
idempotent ei corresponds to an indecomposable projective Λ-module Pi.
We can define a category A′ as follows:

obA′ = {1, . . . , r} × Z, HomA′(i{m}, j{n}) = ejΛn−mei

for all i, j ∈ {1, . . . , r}, m,n ∈ Z with the obvious composition. Also here we
see that the category ModA′ is equivalent to GrΛ. With this description,
the functor Pi{m} = HomA′(i{m},−) corresponds to the indecomposable
graded projective Λ-module Pi〈m〉 for each object i{m} of A′.

Now we look at what the concepts from the theory of DG categories [K]
mean for graded algebras.

First of all, every ordinary category can be considered as a DG category
concentrated in degree 0.

Let Λ =
⊕

n≥0 Λn be a graded algebra, and denote the corresponding

category by A. For the definitions in this section it does not matter which
of the two methods above is used to codify Λ. A (left) DG A-module is the
same as a complex of graded (left) Λ-modules.
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Let Λ =
⊕

n≥0 Λn and Γ =
⊕

n≥0 Γn be graded k-algebras coded as
DG categories A and B with morphisms concentrated in degree 0. An A-B-
bimodule is a Z×Z-graded space X where the left action by Λ uses the first
component of the grading, the right action by Γ uses the second component
and (ajx)bi = aj(xbi) ∈ Xm+j,n+i for all aj ∈ Λj , bi ∈ Γi and x ∈ Xmn.
A DG A-B-bimodule is a complex of such A-B-bimodules.

If X is a DG A-B-bimodule, the differential in X respects the grading,
so for each (i, j) ∈ Z × Z we have a complex

Xij : · · · → X−1
ij → X0

ij → X1
ij → X2

ij → · · · .

Similarly if M is a DG B-module (a complex of graded Γ -modules), the
differential respects the grading, so for each l ∈ Z we get a complex

Ml : · · · →M−1
l →M0

l →M1
l →M2

l → · · · .

Now the tensor product ofX andM is the DG A-module (complex of graded
Λ-modules) defined by

(X ⊗B M)i =
⊕

j+l=0

(Xij ⊗k Ml)/S

where S is the subspace generated by the elements of the form xa⊗m−x⊗am
with x ∈ Xi,−t, a ∈ Γt−s and m ∈ Ms. The condition j + l = 0 is the usual
one for graded tensor products.

Let X be as above and let L and N be two DG A-modules (complexes of
graded Λ-modules). Then Hom•

Gr Λ(L,N) is the complex with components

Homi
Λ(L,N) =

∏

n∈Z

HomGr Λ(Ln, Nn+i)

and differential df = dN ◦ f − (−1)pf ◦ dL for f ∈ Homp
Λ(L,N). We denote

by Hom(X,N) the DG B-module with graded parts

(Hom(X,N))j = Hom•
Gr Λ(X∗j, N).

If A is a DG category we can define the ordinary category of DG A-
modules CA (morphisms are given by HomCA(L,N) = Z0 Hom•

A(L,N)),
the homotopy category HA and the derived category DA. In our case this
is the usual abelian category C(GrΛ) of (unbounded) complexes of graded
Λ-modules with degree 0 morphisms, the homotopy category K(GrΛ) and
the derived category DGrΛ.

If X is a complex of projective Λ-Γ -bimodules, we get a pair of adjoint
functors on the homotopy categories:

K(GrΛ)
Hom(X,−)

//
K(GrΓ ).

X⊗−
oo
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We also get a pair of adjoint derived functors:

DGrΛ
R HomGr Λ(X,−)

//
DGrΓ.

X⊗L

Gr Γ
−

oo

5. Derived equivalence of graded algebras. In this section we dis-
cuss under what conditions two positively graded algebras are derived equiv-
alent.

Let Λ =
⊕

n≥0 Λn and Γ =
⊕

n≥0 Γn be two graded k-algebras. We call Λ
and Γ derived equivalent if DGrΛ and DGrΓ are equivalent as triangulated
categories.

Let T be a triangulated category with infinite direct sums and let X
be a set of objects in T . Then X is called a set of generators (of T ) if
T is the smallest full triangulated subcategory containing X and closed
under arbitrary direct sums. The smallest full triangulated subcategory of T
containing X and closed under finite direct sums is denoted by triaX . If s
is an autoequivalence of T , we define

tria(X , s) = tria{siU | i ∈ Z, U ∈ X}.

In other words tria(X , s) is the smallest full triangulated subcategory of T
containing X , closed under finite direct sums and closed under s. We also
define

triasX = tria{X ′ | X ′ is a direct summand of some X ∈ X}.

An object U in T is called compact if the functor HomT (U,−) commutes
with infinite direct sums.

The following theorem is adapted from [K, Theorem 9.2]. Some small
changes have been made because we consider derived categories of left mod-
ules instead of right modules.

Theorem 5.1. Let A and B be two small k-linear categories. The fol-

lowing are equivalent :

(a) There is a DG A-B-bimodule X such that X ⊗L
B − : DB → DA is

an equivalence of triangulated categories.

(b) There is an equivalence of triangulated categories DB → DA.

(c) Bop is equivalent to a full subcategory U of DA whose objects form

a set of compact generators and satisfy HomDA(U, V [n]) = 0 for all

U, V ∈ U and n 6= 0.

If DB → DA is a triangle equivalence, then the subcategory U of DA
is the image of the full subcategory {PB | B ∈ B} of DB. (Recall that
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{PB | B ∈ B} ≃ Bop.)

{PB | B ∈ B}
∼ //

� _

��

U
� _

��
DB

∼ // DA

We will not here explain the general construction of the bimodule X
from a given subcategory U (with the right properties) of DA, but again we
refer to [K, 7.3]. In the case of rings (when A and B have only one object
each), such a bimodule X is usually called a twosided tilting complex.

In this paper we will several times encounter subcategories U of DA
with the property that HomDA(U, V [n]) = 0 for all U, V ∈ U and n 6= 0,
but where the objects may not form a set of compact generators. In this
situation we have a weaker result, as the following proposition shows.

Proposition 5.2. Let A and B be two small k-linear categories. Sup-

pose Bop is equivalent to a full subcategory U of DA with the property that

HomA(U, V [n]) = 0 for all U, V ∈ U and n 6= 0. Then there is a DG A-B-

bimodule X such that the functor X⊗L
B− : DB → DA induces an equivalence

of triangulated categories tria{PB | B ∈ B} → triaU .

tria{PB | B ∈ B} ∼ //
� _

��

triaU
� _

��
DB

X⊗L

B
−

// DA

Again the details of the proof can be found in [K, 7.3]. The construction
of the bimodule X is the same as in the previous theorem.

Now let us return to the case of graded algebras. Let Λ =
⊕

n≥0 Λn

and Γ =
⊕

n≥0 Γn be two graded k-algebras. We view them as categories

where the objects are indexed by the integers. Suppose there is a triangle
equivalence F : DGrΓ → DGrΛ. Then we have the following diagram:

{Γ 〈n〉 | n ∈ Z} ∼ //
� _

��

U
� _

��
DGrΓ

∼

F
// DGrΛ

There are two special autoequivalences on DGrΓ : the shift of com-
plexes [1], which gives the triangulated structure of the category, and the
graded shift 〈1〉. The graded shift 〈1〉 also restricts to an autoequivalence on
{Γ 〈n〉 | n ∈ Z}. By the definition of a triangle equivalence, the functor F has
to respect the shift of complexes [1] in the sense that F [1] ≃ [1]F . In con-
trast there is no such rule for the graded shift 〈1〉. But if G is a quasi-inverse
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of F , then s = F 〈1〉G must be an autoequivalence on DGrΛ satisfying
sF ≃ F 〈1〉. Since the objects of {Γ 〈n〉 | n ∈ Z} are given by repeated shifts
and inverse shifts of the object Γ of DGrΓ , up to isomorphism in DGrΛ
the objects of U are {siT | i ∈ Z} for some object T of DGrΛ.

Suppose T ∈ DGrΛ is a complex and s : DGrΛ → DGrΛ is an equiv-
alence. If the pair (T, s) satisfies HomDGr Λ(siT, T [n]) = 0 for i < 0 or
n 6= 0, then motivated by the discussion above we define the graded algebra
EΛ(T, s) as follows:

EΛ(T, s)i = HomDGr Λ(siT, T ), f · g = g ◦ sj(f)

for all f ∈ EΛ(T, s)i and g ∈ EΛ(T, s)j . In the situation above we have
Γ ≃ EΛ(T, s) as graded algebras.

We have a special description of the compact objects in DGrΛ. A com-
plex of Λ-modules is called perfect if it is a bounded complex of finitely
generated projective Λ-modules. Similarly to the case of ungraded rings, a
complex T is a compact object in DGrΛ if and only if it is quasi-isomorphic
to a perfect complex [K, 5.3].

The following proposition explains which pairs (T, s) give rise to a derived
equivalence.

Proposition 5.3. Let Λ =
⊕

n≥0 Λn and Γ =
⊕

n≥0 Γn be two graded

k-algebras. There is an equivalence of triangulated categories DGrΓ →
DGrΛ if and only if there exists a complex T ∈ DGrΛ and an auto-

equivalence s : DGrΛ→ DGrΛ such that :

(a) T is quasi-isomorphic to a bounded complex of finitely generated pro-

jective graded Λ-modules.

(b) {siT | i ∈ Z} generates DGrΛ.

(c) We have isomorphisms

HomDGr Λ(siT, T [n]) ≃

{
Γi, n = 0,

0, n 6= 0,

for all i ∈ Z, and via the isomorphisms HomDGr Λ(siT, T ) ≃ Γi we

have

Γ ≃ EΛ(T, s)

as graded algebras.

Proof. Theorem 5.1 interpreted in this situation gives that DGrΓ ≃
DGrΛ if and only if {Γ 〈n〉 | n ∈ Z} ≃ U , where the objects of U form a set
of compact generators which satisfy HomDA(U, V [n]) = 0 for all U, V ∈ U
and n 6= 0. By previous comments we may assume U = {siT | i ∈ Z} for
some object T of DGrΛ and some autoequivalence s : DGrΛ → DGrΛ.
Since s is an autoequivalence, we see that T is compact if and only if siT is
compact for all i ∈ Z.
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Remark 5.4. Condition (b) can be replaced by the following:

(b′) Λ〈j〉 ∈ trias{siT | i ∈ Z} for all j ∈ Z.

Proof. In DGrΓ , every object that is compact must be in trias{Γ 〈i〉 |
i ∈ Z}. So if we have an equivalence DGrΓ → DGrΛ, then every compact
object in DGrΛ must be in trias{siT | i ∈ Z}. Therefore Λ〈j〉 ∈ trias{siT |
i ∈ Z} for all j ∈ Z.

If Λ〈j〉 ∈ trias{siT | i ∈ Z} for all j ∈ Z, then obviously {siT | i ∈ Z}
generates DGrΛ.

From Theorem 5.1 we also see that if we have an equivalence DGrΓ →
DGrΛ, then this equivalence is given by a functor X ⊗L

Gr Λ − : DGrΓ →
DGrΛ, where X is a complex of Λ-Γ -bimodules.

A pair (T, s) satisfying conditions (a)–(c) in Proposition 5.3 is called
a tilting pair. If Λ =

⊕
n≥0 Λn is a graded algebra and (T, s) is a tilting pair

for Λ, then EΛ(T, s) is derived equivalent to Λ.
We have used autoequivalences of the derived category DGrΛ as part of

the description of derived equivalences. For this to be useful, we need some
knowledge of the autoequivalences of DGrΛ. It seems worthwhile to give a
version of the proposition involving only the family {Ui | i ∈ Z} of objects
where Ui = siT without specifying the autoequivalence s.

We say that the elements in a set X of objects in DGrΛ are pairwise

orthogonal if HomDGr Λ(U, V [n]) = 0 for all U, V ∈ X and n 6= 0.

Proposition 5.5. Let Λ =
⊕

n≥0 Λn and Γ =
⊕

n≥0 Γn be two graded

k-algebras. There is an equivalence of triangulated categories DGrΓ →
DGrΛ if and only if there exists a family {Ui | i ∈ Z} of pairwise or-

thogonal perfect complexes generating DGrΛ and isomorphisms

ξi,j : HomDGr B(Ui, Uj) ≃ Γi−j

for all i, j ∈ Z such that

γ · γ′ = ξt+n,t−m[ξ−1
t+n,t(γ

′) ◦ ξ−1
t,t−m(γ)] ∈ Γm+n

for all γ ∈ Γm, γ′ ∈ Γn and t ∈ Z.

We call such a family {Ui | i ∈ Z} a tilting family. From a tilting family
{Ui | i ∈ Z} we can construct a tilting pair (T, s) where T = U0 and we
define s(Ui) = Ui+1 and for a morphism f ∈ HomDGr B(Ui, Uj) we set

s(f) = ξ−1
i+1,j+1[ξi,j(f)] ∈ HomDGr B(Ui+1, Uj+1).

Since {Ui | i ∈ Z} is a set of generators, we can extend s to an autoequiva-
lence on DGrΛ.

We end this section by giving simple examples of derived equivalences
between graded algebras.
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Example 5.6. Let Λ =
⊕

n≥0 Λn be a graded algebra, and let Γ be the
graded algebra given by

Γ2i = Λi, Γ2i+1 = 0,

for all i ≥ 0. Then Γ is derived equivalent to the algebra Λ×Λ. A tilting pair
for Λ × Λ is ((Λ, 0), s), where s is the autoequivalence given by s(M,N) =
(N〈1〉,M). In fact, in this example the categories of graded modules GrΓ
and Gr(Λ× Λ) are already equivalent.

Example 5.7 (APR tilting). This is an example where the grading plays
no special role, so effectively this example is covered by classical tilting
theory for ungraded algebras. Let Λ be the path algebra given by the quiver

1 β

%%LLLLLL

α

��
3

δ //
γ

yyrrrrrr 4

2

where deg(α) = 1 and deg(β) = deg(γ) = deg(δ) = 0. Let ∆4 be the module
with representation

0
0

%%LLLLLL

0

��
k

0 //
1

yyrrrrrr
0

k

Here we have ∆4 = TrD(S4), where S4 is the simple module corresponding
to vertex 4. For the definition of TrD, see [ARS].

Let (T, s) be the tilting pair where T = P1 ⊕ P2 ⊕ P3 ⊕∆4 and s = 〈1〉.
(Here Pi denotes the projective module corresponding to vertex i.) As ex-
pected EΛ(T, s) is the path algebra given by the quiver

1∗ β∗

&&NNNNNN

α∗

��
3∗γ∗

xxpppppp
4∗

δ∗oo

2∗

where deg(α∗) = 1 and deg(β∗) = deg(γ∗) = deg(δ∗) = 0.

6. Ext-algebras. In this section we first make use of the results in the
previous section and describe derived equivalences involving Ext-algebras.
Then we take a closer look at the classical Koszul algebras and see how
they fit into this picture. In general there is not an equivalence on the level
of unbounded derived categories between a Koszul algebra and its Koszul
dual, but there is an equivalence between certain subcategories. We try to
identify what is essential and special about the Koszul situation and try to
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find the right analogy in the case of graded algebras where the degree zero
part is not semisimple.

Consider the situation where Λ is a graded algebra and Γ is the Ext-
algebra, with the natural grading, of a Λ-module T . The next result describes
under what conditions Λ and Γ are derived equivalent, with an equivalence
sending Γ to T .

Proposition 6.1. Let Λ =
⊕

n≥0Λn be a graded algebra and let T be a

graded Λ-module. Let Γ =
⊕

n≥0 ExtnΛ(T, T )op. Then there is an equivalence

of triangulated categories DGrΓ → DGrΛ sending Γ to T if and only if

there exists an autoequivalence s : DGrΓ → DGrΓ such that :

(a) T ∈ fgsyzΛ.

(b) pdΛ T <∞.

(c) Λ〈j〉 ∈ trias{siT | i ∈ Z} ⊆ DGrΛ for all j ∈ Z.

(d) We have isomorphisms

HomDGr Λ(siT, T [n]) ≃

{
ExtiΛ(T, T ), n = 0,

0, n 6= 0,

for all i ∈ Z, and via these isomorphisms, Γ ≃ EΛ(T, s) as graded

algebras.

Proof. If we have an equivalence DGrΓ → DGrΛ and Γ is sent to T ,
then T must be compact. Since T is compact, it is isomorphic in the derived
category to a bounded complex of finitely generated projective modules.
This means that pdT < ∞ and T ∈ fgsyzΛ. The rest follows from Propo-
sition 5.3.

How does this apply to Koszul algebras? Obviously in this case we
should choose T = Λ0. We have Λ0 ∈ fgsyzΛ, so condition (a) in Proposi-
tion 6.1 is satisfied. The right way to choose s in Koszul-like situations is
to let s = 〈−1〉[−1]. Obviously for any set X of objects in DGrΛ we have
tria(X , 〈−1〉[−1]) = tria(X , 〈1〉). Since

ExtnGr Λ(Λ0, Λ0〈i〉) = HomDGr Λ(Λ0, Λ0〈i〉[n]) = 0

when n 6= i, we have HomDGr Λ(Λ0〈−i〉[−i], Λ0[n−i]) = 0 whenever n−i 6= 0.
So by choosing s = 〈−1〉[−1], condition (d) is satisfied.

But in general conditions (b) and (c) are not satisfied. For each i ∈ Z,
we have dimk(

⊕
n∈Z

Hn(siΛ0)) = dimk(H
i(siΛ0)) = dimk Λ0 < ∞ for all

i ∈ Z. But this means that if dimk Λ = ∞ we cannot have Λ ∈ trias{si(Λ0) |
i ∈ Z} ⊆ DGrΛ, so condition (c) in Proposition 6.1 is not met. If dimk Λ
< ∞, then gldimΛ = pdΛ0, and condition (b) will not be satisfied when
gldimΛ = ∞.

So the pair (Λ0, 〈−1〉[−1]) will give rise to a derived equivalence (mean-
ing that the unbounded derived categories are equivalent) between Λ and
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its Koszul dual algebra Γ ≃
⊕

n≥0 ExtnΛ(Λ0, Λ0)
op if and only if Λ is a

finite-dimensional algebra of finite global dimension. If Λ is an arbitrary
Koszul algebra we can still use Proposition 5.2 and get equivalences on cer-
tain subcategories of the derived categories. Here it is better to use the
second method to codify Λ and Γ as categories. For simplicity we assume
that Λ (and therefore Γ ) is basic. Let 1Γ = e1 + · · · + er be a decom-
position of the identity of Γ into a sum of primitive orthogonal idempo-
tents. Let Γ = Q1 ⊕ · · · ⊕ Qr be the corresponding decomposition of Γ
into a direct sum of indecomposable graded projective Γ -modules. We also
have a corresponding decomposition Λ0 = S1 ⊕ · · · ⊕ Sr of Λ0 into a di-
rect sum of simple Λ-modules. We codify Γ as a category B having the set
{1, . . . , r} × Z as objects. Then Bop is equivalent to the full subcategory
{Si〈−j〉[−j] | 1 ≤ i ≤ r, j ∈ Z} of DGrΛ. If M is an object in the derived
category of a graded algebra, we define triagrM to be the smallest full trian-
gulated subcategory of the derived category containing all the summands of
M and closed under graded shift. From Proposition 5.2 we get the following
diagram:

triagrΓ ∼ //
� _

��

triagrΛ0
� _

��
DGrΓ

X⊗L

Gr Γ
−

// DGrΛ

It is possible to extend this equivalence to larger subcategories; we discuss
this in the next section.

When Λ is artinian and Γ is noetherian, then triagrΛ0 ≃ Db grΛ and
triagrΓ ≃ Db grΓ . In this way we get Theorem 2.3.

Motivated by the (classical) Koszul case, we make the following definition
in the case of Λ =

⊕
n≥0 Λn a graded k-algebra with dimk Λn < ∞ for all

n ≥ 0, but with Λ0 not necessarily semisimple. Let T be a finitely generated
Λ-module concentrated in degree 0. We say that T is a graded self-orthogonal

module if ExtiGr Λ(T, T 〈j〉) = 0 when j 6= i. If T is in fgsyzΛ, then this is
equivalent to saying that T satisfies condition (d) in Proposition 6.1 with
s = 〈−1〉[−1]. In this case (when T is graded self-orthogonal and in fgsyzΛ)
we have ⊕

n≥0

ExtnΛ(T, T )op ≃
⊕

n≥0

ExtnGr Λ(T, T 〈n〉)op.

We do not assume that T is in fgsyzΛ, so we are not certain that the above
isomorphism holds. In the following we let always Γ denote the algebra
defined by graded Ext. So if T is a graded self-orthogonal Λ-module, we let

(6.1) Γ =
⊕

n≥0

ExtnGr Λ(T, T 〈n〉)op.
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Our motivating example of a graded self-orthogonal module is the mod-
ule Λ0 in the case Λ is a (classical) Koszul algebra. In this case we saw that
triagrΓ ≃ triagrΛ0. The same holds for all graded self-orthogonal modules.
Let Λ =

⊕
n≥0 Λn be a graded k-algebra, and let T = T0⊕· · ·⊕Tr be a graded

self-orthogonal Λ-module. Let Γ be given by (6.1). Then triagrΓ ≃ triagrT .
The equivalence is given by a functor X ⊗L

Gr Γ −, where X is a complex of

Λ-Γ -bimodules. The functor X⊗L
Gr Γ − may induce an equivalence on larger

subcategories of the derived categories. In the next section we will be in-
terested in the case when X ⊗L

Gr Γ − induces an equivalence whose image
contains DΛ.

Since T can be viewed as a right Γ -module, we can use T (really the
tilting family {T 〈−i〉[−i] | i ∈ Z}) to define X. First define the complex of

Λ-Γ -bimodules X̃ by

X̃ i
jk =

{
T when i = −j = k,

0 else.

We let X be a projective Λ-Γ -bimodule resolution of X̃. From now on we
denote the functor X ⊗L

Gr Γ − : DGrΓ → DGrΛ by F . We denote its right
adjoint functor RHomGr Λ(X,−) : DGrΛ→ DGrΓ by G.

7. CoKoszul modules and algebras. In this section, which is the
most important of the paper, we define what we feel is the natural generali-
sation of the classical Koszul algebras. We find it more convenient to develop
a coKoszul version of the theory. We compare our new definition with the
T -Koszul algebras from Section 3 and see that our definition contains this
class. We prove that the basic theorems for classical Koszul algebras also
hold in our setting.

Let Λ =
⊕

n≥0Λn be a graded algebra, and let T be a graded self-

orthogonal module. We suppose that dimk Λi < ∞ for all i ≥ 0. Let Γ
be given by (6.1). We have seen that there is a functor F = X ⊗L

Gr Γ − :
DGrΓ → DGrΛ, where X is a complex of Λ-Γ -bimodules, which restricts
to an equivalence X ⊗L

Gr Γ − : triagrΓ ≃ triagrT . The inverse of this equiv-
alence is given by G = RHomGr Λ(X,−) : triagrT → triagrΓ . We have the
diagram

triagrT ∼ //
� _

��

triagrΓ
� _

��
DGrΛ

G // DGrΓ

As we have seen, the complex X of bimodules can be constructed in such
a way that for each i ∈ Z, X∗,i is quasi-isomorphic to T 〈−i〉[−i] as a com-
plex of Λ-modules. This means that the functors RHom(X∗,i,−) : DGrΛ→
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D(Mod k) and RHom(T 〈−i〉[−i],−) : DGrΛ→ D(Mod k) are naturally iso-
morphic. From this we see that for all graded Λ-modules M we have

(HjG(M))i ≃ HjRHomDGr Λ(T 〈−i〉[−i],M) ≃ Exti+j
Gr Λ(T,M〈i〉).

We are interested in knowing which of the modules in DGrΛ (viewed
as stalk complexes concentrated in degree 0) are sent by G to modules in
DGrΓ . From the above we see that the answer is exactly the modules M

with the property that Exti+j
Gr Λ(T,M〈i〉) = 0 for all i ∈ Z when j 6= 0.

We now return to the problem of finding from our point of view the right
generalisation of Koszul algebras. In the previous section we saw that in the
more general case a graded self-orthogonal module T could be a natural
substitute for the module Λ0 from the classical Koszul case. But we need
to put further conditions on Λ and T to get theorems of the same strength
as in the classical Koszul case. One of the things we would like to have is
that Γ contains enough information to reconstruct Λ. Then in some sense
T cannot be too small. One way to ensure the reconstruction property is to
demand that DΛ should be in triagrT . This is asking a bit too much though,
because this is not always true even in the classical Koszul case. What we
need is that DΛ is in some subcategory of DGrΛ which is equivalent under
G to some subcategory of DGrΓ . This is the main idea; the details follow
below.

Definition 7.1. Let Λ=
⊕

i≥0 Λi be a graded algebra with dimk Λi <∞
for all i ≥ 0 and let T be a graded self-orthogonal Λ-module. We say that a
graded Λ-module M is a coKoszul module (with respect to T ) if:

(1) M is finitely cogenerated in degree 0.
(2) GM is a module, or equivalently Exti

Gr Λ(T,M〈j〉) = 0 when i 6= j.
(3) GM is generated in degree 0.
(4) The counit map φM : FGM →M is an isomorphism.

Condition (3) means that

Exti+1
Gr Λ(T,M〈i+ 1〉) = Exti

Gr Λ(T,M〈i〉) · Ext1Gr Λ(T, T 〈1〉)

for all i ≥ 0. If M is a module such that conditions (1)–(3) hold, then GM
is the graded Γ -module with graded parts

(GM)i = HomGr Λ(T,M) · Exti
Gr Λ(T, T 〈i〉).

In that case condition (4) holds if and only if

TorGr Γ
i (T 〈−j〉, GM) = 0 when i 6= j

and the natural maps (φM )i : TorGr Γ
i (T 〈−i〉, GM) →M−i are isomorphisms

for all i ≥ 0.
We denote by CT (Λ) the full subcategory of GrΛ consisting of the

coKoszul Λ-modules.
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Proposition 7.2. The category CT (Λ) is closed under extensions and

direct summands.

Proof. Each of the four conditions can easily be checked to be closed
under extensions and direct summands.

The graded self-orthogonal module T is itself a coKoszul module. It is
obvious that the module DΛ satisfies the three first conditions. In keeping
with the classical situation we make the following definition.

Definition 7.3. We say that an algebra Λ is a coKoszul algebra (with
respect to T ) if DΛ is a coKoszul module. If Λ is a coKoszul algebra, we say
that Λop is a Koszul algebra.

In other words, a graded algebra is coKoszul if and only if T is a graded
self-orthogonal module and the map φDΛ : FG(DΛ) → DΛ is an isomor-
phism.

The next theorem shows that our definitions are good, since the basic
theorems for classical Koszul algebras also hold in this new setting.

Theorem 7.4. Let Λ, T and Γ be as above. Suppose Λ is a coKoszul

algebra. Then

(a) Γ op is a coKoszul algebra with respect to Γ opT .

(b) Λ ≃
⊕

i≥0 Exti
Gr Γ op(T, T 〈i〉) as rings.

(c) There is a duality CT (Λ) → CT (Γ op).

Proof. (b) For each graded part with i ≥ 0 we have

Λi ≃ HomDGr Λ(DΛ,DΛ〈−i〉) ≃ HomDGr Γ (DT,DT 〈i〉[i])

≃ Exti
Gr Γ (DT 〈−i〉, DT ) ≃ Exti

Gr Γ op(T, T 〈i〉).

The isomorphisms respect the multiplication. (In the derived categories mul-
tiplication is done by taking the necessary shifts and then composing the
maps in the opposite order.)

(a) and (c). We have

ExtiGr Γ op(T, T 〈j〉) ≃ ExtiGr Γ (DT 〈−j〉, DT ) ≃ HomDGr Γ (DT,DT 〈j〉[i])

≃ HomDGr Λ(DΛ,DΛ〈−j〉[i− j]) = 0 when i 6= j,

so T is self-orthogonal as a Γ op-module.

Denote by Ĝ the functor RHomGr Γ op(X̂,−) : DGrΓ op → DGrΛop in-

duced by T , where X̂ is a complex of bigraded Γ op-Λop-bimodules quasi-
isomorphic to T as a complex of left Γ op-modules. Denote the right adjoint

functor X̂ ⊗L
Gr Λop − : DGrΛop → DGrΓ op by F̂ .

If M is in CT (Λ), then functorially in M we have

TorGr Λop

i (T 〈−i〉, DM) ≃ DExtiGr Λ(T 〈−i〉,M)



132 D. MADSEN

for all i ≥ 0. (More generally, this formula holds for all locally finite mod-

ules M bounded above.) This induces a functorial isomorphism F̂D(M)≃

DG(M) for modulesM in CT (Λ). So F̂D restricts to a duality F̂D : CT (Λ) →

DG(CT (Λ)). Therefore F̂ : D(CT (Λ)) → DG(CT (Λ)) is an equivalence with

the adjoint functor Ĝ : DG(CT (Λ)) → D(CT (Λ)) as an inverse. Since Ĝ is

fully faithful on DG(CT (Λ)), the counit map ψM : F̂ ĜM →M is an isomor-
phism for all M in DG(CT (Λ)). This shows that the modules in DG(CT (Λ))
satisfy condition (4) for being a coKoszul Γ op-module. The other three con-
ditions are easily checked to be true, so DG(CT (Λ)) ⊆ CT (Γ op).

Since DΓ op ≃ DG(T ) is in DG(CT (Λ)), we deduce that DΓ op is a
coKoszul Γ op-module. So Γ op is a coKoszul algebra with respect to Γ opT .

Changing the roles of Λ and Γ op we get

CT (Γ op) = DGDĜ(CT (Γ op)) ⊆ DG(CT (Λ)) ⊆ CT (Γ op)

so DG(CT (Λ)) = CT (Γ op). Since DG is a duality onto its image, there is a
duality DG : CT (Λ) → CT (Γ op).

In the next example the self-orthogonal module T does not give an equiv-
alence between DGrΛ and DGrΓ , but still we get an equivalence on the
bounded derived categories.

Example 7.5. Let Λ be the path algebra given by the quiver

1α
%% β // 2

where deg(α) = 1 and deg(β) = 0 and with relations βα = 0 = α2. This is
a finite-dimensional k-algebra, so it is artinian. Let T = S1 ⊕ I2. (Here I2
denotes the injective module corresponding to vertex 2.) Then T is a graded
self-orthogonal module. Since T is finitely generated and Λ is artinian, T is
in fgsyzΛ. Let

Γ =
⊕

n≥0

Extn
Λ(T, T )op ≃

⊕

n≥0

ExtnGr Λ(T, T 〈n〉)op.

Then Γ is the path algebra given by the quiver

1∗α∗
$$ β∗

// 2∗

where deg(α∗) = 1 and deg(β∗) = 0 and with the relation β∗α∗ = 0. This is
a noetherian k-algebra with finite global dimension.

Since pdΛ T = ∞, the module T will not give rise to an unbounded de-
rived equivalence between Λ and Γ . But still Proposition 5.2 gives triagrT ≃
triagrΓ . In this example we have triagrT ≃ Db grΛ and triagrΓ ≃ Db grΓ .
So there is an equivalence Db grΛ ≃ Db grΓ . Since DΛ is in triagrT , the
algebra Λ is a coKoszul algebra according to our definition.
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8. Comparison with T -Koszul algebras. Our aim in this section is
to show that the T -Koszul algebras of Green, Reiten and Solberg are Koszul
algebras (meaning that the opposite algebras are coKoszul) according to our
definitions. We also show that our definitions specialise nicely to classical
Koszul algebras and to Wakamatsu tilting theory.

We use the fact that the category CT (Λ) is closed under certain homotopy
colimits. Homotopy colimits are defined as follows. Let

X0
g1
−→X1

g2
−→X2

g3
−→· · ·

be a sequence of objects and morphisms in a triangulated category D having
arbitrary coproducts. Then the homotopy colimit of the sequence, denoted
hocolimXi, is by definition given, up to noncanonical isomorphism, by the
triangle

∞∐

i=0

Xi
Φ
→

∞∐

i=0

Xi → hocolimXi →

∞∐

i=0

Xi[1]

where the map Φ is given by the infinite matrix



1X0
0 0 0 . . .

−g1 1X1
0 0 . . .

0 −g2 1X2
0 . . .

0 0 −g3 1X3
. . .

...
...

...
...




.

Suppose the triangulated category D is the derived category of an abelian
category A satisfying the axiom (AB5). We recall that the axiom (AB5)
states that A has arbitrary coproducts, and that filtered colimits of exact
sequences are exact. As commented in [BN], in such a situation we have
H i(hocolimXj) ≃ colimH i(Xj) for all i ∈ Z. The category GrΛ satis-
fies (AB5).

Proposition 8.1. Let Λop be a DT -Koszul algebra as defined in Sec-

tion 3. Then Λ is a coKoszul algebra with respect to T .

Proof. First of all T is graded self-orthogonal by [GRS, V.5.12].
Let KDT (Λop) be the category of Koszul modules in the T -Koszul algebra

sense. Let LT (Λ) = D(KDT (Λop)) be the corresponding dual category of
graded Λ-modules. Since Λop is in KDT (Λop), we see that DΛ is in LT (Λ).
We want to show that LT (Λ) is a subcategory of CT (Λ) and therefore Λ is
a coKoszul algebra.

By definition the modules in LT (Λ) satisfy the first three conditions for
being in CT (Λ). We only have to show that they satisfy the fourth condition.



134 D. MADSEN

If M is an object of CT (Λ) we know from dual facts about KDT (Λop)
that M0 has a minimal right addT -approximation MT → M0. We define
cotrT (M) to be the kernel of this map. We know that LT (Λ) is closed under
the operations (−)0, (−)/(−)0〈1〉 and cotrT (−).

Let T⊥ denote the full subcategory of modΛ0 (finitely generated Λ-
modules concentrated in degree 0) whose objects are the modules M with
ExtiΛ0

(T,M) = 0 for i > 0. Let YT denote the full subcategory of T⊥ whose
objects are the modules M for which there exists a resolution in addT , that
is, an exact sequence

· · · → T 2 f1
−→T 1 f0

−→T 0 →M → 0

with T i in addT and Ext1Λ0
(T, coker fi) = 0 for all i > 0.

Before we continue we explain the strategy for the (rather technical)
rest of the proof. We know that T satisfies condition (4). Therefore by the
Five-Lemma all objects of triaT satisfy condition (4), even if they do not
satisfy the other conditions for being in CT (Λ). Our first step is to show
that the objects of LT (Λ) ∩ YT satisfy condition (4). These objects are not
necessarily in triaT , but they are certain homotopy colimits of such objects,
and the given homotopy colimits preserve condition (4). Continuing we find
that the objects of T = triagr(LT (Λ) ∩ YT ) satisfy condition (4), but again
they do not have to be in CT (Λ). The last step is to show that the objects of
LT (Λ) are homotopy colimits of objects of T , and that the given homotopy
colimits preserve condition (4).

First we prove that the category LT (Λ) ∩ YT is a subcategory of CT (Λ).
Let M ∈ LT (Λ) ∩ YT . Let

E0 : 0 → 0 → 0 → T 0 → 0,

E1 : 0 → 0 → T 1 → T 0 → 0,

E2 : 0 → T 2 → T 1 → T 0 → 0,
...

Ej : 0 → T j → · · · → T 0 → 0,
...

Then each Ej ∈ triagrT and hocolimEj ≃M .
The object G(M) has homology concentrated in degree 0 by assumption.

For each i ≥ 0 we have cotr(coker fi) ≃ coker fi+1. Since M = coker f0

and CT (Λ) is closed under the operation cotr, we get coker fi ∈ CT (Λ) for
all i ≥ 0. Therefore G(coker fi) has homology concentrated in degree 0 for
all i ≥ 0.

Consider the triangle

coker fi+1[i] → Ei →M → coker fi+1[i+ 1]
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where i > 0. Applying G we get a triangle

G(coker fi+1[i]) → G(Ei) → G(M) → G(coker fi+1[i+ 1]).

We know that G(M) has homology concentrated in degree 0 and that
G(coker fi+1[i]) has nonzero homology only in degree −i. Using H0 on this
triangle we get an exact sequence

0 → H0G(Ei) → H0G(M) → 0.

Using H−i we get a sequence

0 → H−iG(coker fi+1[i]) → H−iG(Ei) → 0.

We also see that G(Ei) cannot have nonzero homology in any other degree.
For each i 6= 0 there exists a number ni such that H iG(Ej) = 0 for

all j ≥ ni. So H i(hocolimG(Ej)) ≃ colimH iG(Ej) = 0 for all i ∈ Z.
We see that hocolimG(Ej) only has nonzero homology in degree 0. Since
H0G(Ej) ≃ H0G(M) for all j > 0, the system colimH0G(Ej) is constant.
Applying H0G to the triangle

T j+1[j] → Ej → Ej+1 → T j+1[j + 1]

we get an exact sequence

0 → H0G(Ej) → H0G(Ej+1) → 0.

So H0(hocolimG(Ej)) ≃ H0G(M). Since 0 is the only degree where those
objects have nonzero homology, we have

hocolimG(Ej) ≃ G(hocolimEj) ≃ GM.

The functor F commutes with direct sums, so FG(M) ≃ FGhocolimEj

≃ hocolimFG(Ej). Since each Ej is in triagrT , we have hocolimFG(Ej) ≃
hocolimEj ≃ M . So for all M ∈ LT (Λ) ∩ YT we have FG(M) ≃ M . This
is just an abstract isomorphism which we have not proven to be functorial.
We want to show that the natural map φM : FG(M) →M coming from the
counit FG 7→ id is an isomorphism.

Consider again the triangle

coker fi+1[i] → Ei →M → coker fi+1[i+ 1]

in DGrΛ with i > 0. Abstractly we have isomorphisms FG(M) ≃ M and
FG(coker fi+1) ≃ coker fi+1, since these objects are in LT (Λ) ∩ YT . The
transformation FG 7→ id gives the following diagram:

FG(coker fi+1[i]) //

��

FG(Ei) //

≀

��

FG(M) //

φM

��

FG(coker fi+1[i+ 1])

��
coker fi+1[i] // Ei

// M // coker fi+1[i+ 1]
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The outer terms do not have any nonzero homology in degree 0, so using H0

we get a commutative square

H0FG(Ei)
∼ //

≀

��

H0FG(M)

H0φM

��
H0Ei

∼ // H0M

We see that H0φM : H0FG(M) →H0M is an isomorphism. Since FG(M)
≃ M only has nonzero homology in degree 0, we find that φM : FG(M)
→M is an isomorphism in DGrΛ.

We deduce that the modules in LT (Λ) ∩ YT satisfy condition (4) and
therefore LT (Λ) ∩ YT is a subcategory of CT (Λ).

Let T denote the smallest triangulated full subcategory of DGrΛ con-
taining LT (Λ) ∩ YT and closed under graded shifts. (In other words, T =
triagr(LT (Λ) ∩ YT ).)

Now let N =
⊕

i≤0Ni be an arbitrary graded Λ-module in LT (Λ). Since

LT (Λ) is closed under (−)/(−)0〈1〉, we find that N/N≥−j〈j+1〉 is in LT (Λ)
for all j ≥ 0. Since (N/N≥−j〈j + 1〉)0 ≃ N−j−1, we have Ni ∈ LT (Λ) ∩ YT

for all i ≤ 0. Consider the triangle

N0 → N≥−1 → N−1 → N0[1].

Since N0 ∈ T and N−1 ∈ T , we must have N≥−1 ∈ T . If N≥−j ∈ T , then
the triangle

N≥−j → N≥−j−1 → N−j−1 → N≥−j [1]

shows that N≥−j−1 ∈ T . By induction, N≥−n ∈ T for all n ≥ 0.
The module N has a filtration

N0 ⊂ N≥−1 ⊂ · · · ⊂ N≥−j ⊂ · · · ⊂ N.

Therefore hocolimN≥−j = N .
Consider the triangle

(N/N≥−j)[−1] → N≥−j → N → N/N≥−j.

We use G and get a triangle

G(N/N≥−j)[−1] → G(N≥−j) → G(N) → G(N/N≥−j).

Since N,N/N≥−j〈j + 1〉 ∈ LT (Λ), it follows that G(N) has nonzero homol-
ogy only in degree 0 while G(N/N≥−j)[−1] has nonzero homology only in
degree −j. We get isomorphisms

H0(G(N≥−j)) ≃ H0G(N), H−j(G(N/N≥−j)[−1]) ≃ H−j(G(N≥−j)).
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We also see that G(N≥−j) cannot have nonzero homology in any other de-
gree. So G(N≥−j) has nonzero homology only in degrees 0 and −j.

We want to find the homotopy colimit of the sequence

G(N0) → G(N≥−1) → · · · → G(N≥−j) → · · · .

It is clear that colimH iG(N≥−j) = 0 for all i 6= 0. To find out what
happens in degree 0, we consider the triangle

N−j−1〈−j − 1〉[−1] → N≥−j → N≥−j−1 → N−j−1〈−j − 1〉.

Applying H0G we get an exact sequence

0 → H0G(N≥−j) → H0G(N≥−j−1) → 0.

So colimH0G(N≥−j) is a constant system, and we have seen that its
value isH0G(N). Therefore hocolimG(N≥−j) ≃ G(hocolim(N≥−j) ≃ G(N).
We know that F commutes with sums so FG(N) ≃ N . As before we can
show that the natural map φN : FG(N) → N is an isomorphism. This is
true for all N ∈ LT (Λ) and this finishes the proof.

We do not assume that our algebras are generated in degrees 0 and 1.
Apart from that, we do not know if our definitions of (co)Koszul algebras
are essentially different from those of Green, Reiten and Solberg. But on the
level of modules they are different, as the following example illustrates.

Example 8.2. The following example was discussed in [GRS, Ex-
ample I.4.1]. Let Λ be the path algebra given by the quiver

1 2x
oo 3y

oo

4

z

^^>
>
>
>
>
>
>

5

a

OO

w
oo

and the relation zw = xya. The arrows x, y, z, w have degree 1, while a has
degree 0. Let T = DΛ0. Then T is a graded self-orthogonal Λ-module. In
fact, T together with 〈−1〉[−1] satisfies the conditions of Proposition 6.1
and therefore Λ and Γ =

⊕
n≥0 ExtnΛ(T, T )op are derived equivalent.

Let M be the module cogenerated in degree 0 with representation

k k
1

oo 0
0

oo

0

0

^^>
>
>
>
>
>
>
>

0

0

OO

0
oo

The module Ω−1M is cogenerated in degrees −1 and −2 and therefore M
is not a coKoszul module with the definitions in [GRS]. But since G(M)
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is generated in degree 0 and M also satisfies the other conditions, it is a
coKoszul module according to our definition.

A good thing about the T -Koszul algebras defined in [GRS] is that
they specialise nicely to classical Koszul algebras and also to Wakamatsu
tilting theory. Our definition also shares this good property, as we show
next.

If Λ0 is semisimple, then Λ0 is a graded self-orthogonal Λ-module if and
only if Λ is a (classical) Koszul algebra. In this case DΛ is in triagrΛ0 if and
only if dimk Λ <∞, butDΛ is always a coKoszul module. So an algebra with
Λ0 semisimple is coKoszul (with respect to Λ0) if and only if it is a classical
Koszul algebra. (Recall that classical Koszul is self-dual.) If a Λ-module M
is a coKoszul module in our sense, then condition (3) says that

ExtiGr Λ(Λ0,M〈j〉)) = 0 when i 6= j.

This is equivalent to saying that M has a co-linear injective resolution (the
definition is dual to that of linear projective resolution). If M has a co-linear
injective resolution and Λ is a classical Koszul algebra, then the other condi-
tions are also satisfied. Therefore our definitions coincide with the classical
ones.

We next look at what happens in the case Λ = Λ0. Then graded self-
orthogonal just means self-orthogonal. If T is a self-orthogonal Λ-module,

we let G̃ denote the functor G̃ = HomΛ(T,−) : ModΛ → ModΓ , and let

F̃ denote the functor F̃ = T ⊗Γ − : ModΓ → ModΛ. If M is a finitely
generated Λ-module, then an addT -presentation of M is an exact sequence

T1 → T0
f
→M → 0

with T0 and T1 in addT and f a minimal right addT -approximation.

Proposition 8.3. Let Λ be a finite-dimensional algebra and let T be a

finitely generated self-orthogonal module. Let M be a module in T⊥. Then

(a) φ̃M : F̃ G̃(M) → M is an isomorphism if and only if M has an

addT -presentation T1 → T0 →M → 0.
(b) φM : FG(M) →M is an isomorphism if and only if M ∈ YT .

Proof. (a) We have

F̃ G̃(M) = T ⊗Γ HomΛ(T,M) ≃ DHomΓ (HomΛop(DM,DT ), DT ),

so DF̃G̃(M) ≃ HomΓ (HomΛop(DM,DT ), DT ). From results in [AS] it fol-

lows that D(φ̃M ) : DM → DF̃G̃(M) is an isomorphism if and only if there
is an exact sequence

0 → DM
h
→DT0 → DT1
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with DT0 and DT1 in addDT and h a minimal left addDT -approximation.
The statement follows by duality.

(b) If φM : FG(M) →M is an isomorphism, then in particular F̃ G̃(M)
≃M . From part (a) it follows that M has an addT -presentation

T1 → T0
f
→M → 0.

The fact that f is a minimal right addT -approximation implies that Ker f is
in T⊥. Using the Five-Lemma we can prove that φKer f : FG(Ker f) → Ker f
is an isomorphism, so Ker f also has an addT -presentation. Continuing this
way we deduce that M ∈ YT .

If M is YT , then by [GRS, III.3], DM is a DT -Koszul Λop-module. From
the proof of Proposition 8.1 we conclude that M is a coKoszul module with
our definitions and therefore φM : FG(M) →M is an isomorphism.

If Λ = Λ0 and T is a self-orthogonal Λ-module, what are the coKoszul
modules? If M is a Λ-module, then conditions (1)–(3) are equivalent to
saying that M is in T⊥. From the proposition above it follows that M is
coKoszul if and only if M is in YT . The algebra Λ is coKoszul (with respect
to T ) if and only if DΛ is in YT . Since Wakamatsu cotilting is a self-dual
concept, this is true if and only if T is a Wakamatsu cotilting module. If
T is a Wakamatsu cotilting module, then the duality we get from Theo-
rem 7.4 is already well known. Also here DΛ can be a coKoszul module
without being in triagrT . This happens for instance when pdT < ∞ and
pdDΛ = ∞.

In the situation above let ZT denote the full subcategory of T⊥ consisting

of objects M with the property that φ̃M : F̃ G̃(M) →M is an isomorphism.
We have YT ⊆ ZT ⊆ T⊥. These subcategories are related to the following
conjecture.

Conjecture 1 (Wakamatsu Tilting Conjecture). Let T be a Waka-
matsu cotilting module with finite projective dimension. Then T is a tilting
module.

This conjecture is quite strong and implies for instance the Generalised
Nakayama Conjecture [AR]. It is possible to reformulate the Wakamatsu
Tilting Conjecture in the following way.

Conjecture 2 (Wakamatsu Tilting Conjecture, alternative version).
Let T be a Wakamatsu cotilting module with finite projective dimension.
Then YT = T⊥.

Also in the case when pdT = ∞, so T cannot be a tilting module, we
do not know any examples where YT 6= T⊥. For more information on the
Wakamatsu Tilting Conjecture, see [BR, IV.3].
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