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ON THE DIFFERENCE PROPERTY OF FAMILIES
OF MEASURABLE FUNCTIONS

BY

RAFAŁ FILIPÓW (Sopot)

Abstract. We show that, generally, families of measurable functions do not have the
difference property under some assumption. We also show that there are natural classes
of functions which do not have the difference property in ZFC. This extends the result of
Erdős concerning the family of Lebesgue measurable functions.

1. Introduction. Erdős showed that the family of Lebesgue measurable
functions does not have the difference property if we assume the Continuum
Hypothesis (see e.g. [8]). His proof works for both the family of functions
with the Baire property and the family of Borel functions. In that proof
he used two key facts. The first one was the existence of a Lebesgue
nonmeasurable N -almost invariant set (under the Continuum Hypothesis).
Such a set was first constructed by Sierpiński [13]. Moreover, Erdős used the
fact that the family of Lebesgue measurable sets has the weak Ostrowski
property.

On the other hand, M. Laczkovich [8] proved that the family of Lebesgue
measurable functions has the weak difference property, and in [9] he showed,
using the previous result, that the family of Lebesgue measurable functions
has the difference property under some set-theoretic assumption. In [10] he
proved the weak difference property for any family of real-valued functions
defined on any compact metric Abelian group and measurable with respect
to the Haar measure.

In this paper we extend the result of Erdős to families of functions which
do not have the weak Ostrowski property.

2. Preliminaries. All functions considered in this paper are defined
on some group and are real-valued. We also assume that the groups are
Abelian.

Let G be a group. For a function f : G → R and an h ∈ G we define
the difference function ∆hf : G→ R by ∆hf(x) = f(x+ h)− f(x). A func-
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tion A: G→ R is called a homomorphism if it satisfies Cauchy’s functional
equation A(x+ y) = A(x) +A(y) for all x, y ∈ G.

The notion of the difference property dates back to the paper [1] of de
Bruijn. Recall that a class of functions F ⊂ RG has the difference property
if every function f : G→ R such that ∆hf ∈ F for each h ∈ G is of the form
f = g + A, where g ∈ F and A is a homomorphism.

A set A has the Baire property if it is the symmetric difference of an
open set and a meager set. We say that a function f : X → Y has the Baire
property if f−1(U) has the Baire property for every open set U . We denote
by B(X) the family of sets with the Baire property in X and by M(X)
the family of meager sets. We write simply B and M if it does not lead to
misunderstanding.

We say that a set A is (s)-measurable (Marczewski measurable) if every
perfect set P has a perfect subset Q which is a subset of A or misses A (we
assume that the empty set is not perfect). We denote by (s) the class of
(s)-measurable sets. We write A ∈ (s0) if every perfect set P has a perfect
subset Q which misses A. It is known that (s) is a σ-algebra and (s0) is a
σ-ideal. A function f : R→ R is (s)-measurable if the preimage of any open
subset is (s)-measurable. We will use the following characterization.

Theorem 2.1 (Marczewski [11]). A function f : R → R is (s)-meas-
urable if and only if every perfect set P ⊂ R has a perfect subset Q such that
f |Q is continuous.

By a measure on X we mean a countably additive, nonnegative, nonzero
extended real-valued function defined on a σ-algebra A of subsets of X. By
m we will denote the Lebesgue measure defined on R. Let L(µ) denote the
family of µ-measurable sets and N (µ) the family of µ-measure zero sets. We
write simply L and N if it does not lead to misunderstandings.

A measure µ on X is called:

• diffused (or continuous) if µ({x}) = 0 for every x ∈ X;
• finite if µ(X) <∞;
• σ-finite if X is a countable union of sets of finite measure.

Measures µ and ν on X are called equivalent if

1. (∀A ⊂ X)(A is µ-measurable if and only if A is ν-measurable),
2. (∀A ⊂ X)(µ(A) = 0 if and only if ν(A) = 0).

Proposition 2.2. Every σ-finite measure is equivalent to some finite
measure.

By a universal measure on X we mean a diffused and finite measure
defined on P (X).
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Let κ be a cardinal. A measure µ is called κ-additive if µ(
⋃F) =∑

F∈F µ(F ) for every disjoint family F such that |F| < κ.

We say that an uncountable cardinal κ is real-valued measurable if there
exists a κ-additive, universal measure on κ. And κ is measurable if there
exists a two-valued, κ-additive, universal measure on κ.

We will use the following well known theorems.

Theorem 2.3. If there is a universal measure on a set X then there is a
real-valued measurable cardinal ≤ |X|. And if there is a universal two-valued
measure on a set X then there is a measurable cardinal ≤ |X|.

Theorem 2.4. There is no measurable cardinal less than or equal to c.

We say that J ⊂ P (X) is an ideal on X if

1. ∅ ∈ J ,
2. (∀A,B ∈ J )(A ∪B ∈ J ),
3. (∀A ∈ J )(∀B ⊂ A)(B ∈ J ).

An ideal J on X is called:

• proper if X 6∈ J ;
• prime if for every A ⊂ X, either A ∈ J or X \ A ∈ J ;
• a σ-ideal (or countably complete) if J is closed under countable unions

of sets from J (i.e.
⋃∞
n=0An ∈ J whenever An ∈ J for every n);

• κ-complete if J is closed under unions of less than κ sets from J (i.e.⋃F ∈ J for every family F ⊂ J such that |F| < κ);
• κ-saturated if every disjoint family F ⊂ P (X) \ J has size < κ.

We say that an uncountable cardinal κ is quasi-measurable if there is a
proper ω1-saturated κ-complete ideal on κ containing all the singletons.

We can easily prove the following propositions.

Proposition 2.5. If there is a prime σ-ideal on X containing all the
singletons then there is a two-valued universal measure on X.

Proposition 2.6. If there is a proper ω1-saturated σ-ideal on X con-
taining all the singletons then there is a quasi-measurable cardinal ≤ |X|.

If J is an ideal on X we define the following cardinal coefficient:

non(J) = min{|A| : A ⊂ X ∧A 6∈ J }.
We shall need one more theorem concerning measurable cardinals (see

e.g. [4]).

Theorem 2.7. If there is a real-valued measurable cardinal then
non(N (m)) = ω1. In particular , there is no real-valued measurable cardi-
nal ≤ non(N (m)).
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If A is a σ-algebra of subsets of X and J ⊂ A is a σ-ideal on X then we
say that the pair (A,J ) satisfies the c.c.c. if every disjoint family F ⊂ A\J
is countable.

Let A be a family of subsets of a group G. Then we write −A = {−a :
a ∈ A}, A − g = {a − g : a ∈ A}, A − A = {a − b : a, b ∈ A} and
−A = {−A : A ∈ A} for g ∈ G, A ∈ A. Moreover, we say that a family A
is invariant under translations if A− g ∈ A for every A ∈ A and g ∈ G and
invariant under reflections if −A ∈ A for every A ∈ A.

Let A denote a σ-algebra of subsets of a group G (a topological group if
necessary) and let J ⊂ A denote a σ-ideal on G.

We say that a set A ⊂ G is J -almost invariant if (A + g)4 A ∈ J for
every g ∈ G. Moreover, we say that a pair (A,J ) has

• the Steinhaus property (SP) if for every set A ∈ A \ J the set A − A
contains an open neighbourhood of 0,
• the Ostrowski property (OP) if every homomorphism bounded on a set

from A \ J is continuous,
• the weak Ostrowski property (WOP) if every homomorphism bounded

on a set from A \ J is A-measurable.

We will use S(A,J ) to denote the following condition:

There exists a set A ⊂ G such that A is J -almost invariant and
A 6∈ A.

Moreover, S∗(A,J ) will denote the following condition:

There exists a set A ⊂ G such that A is J -almost invariant, A 6∈ A
and A = −A.

3. Pairs with(out) the SP, OP, WOP. First, we have the well known
theorems which explain the names of the Ostrowski property and Steinhaus
property. They concern Lebesgue measure on R.

Theorem 3.1 (Steinhaus [14]). The pair (L,N ) has the Steinhaus prop-
erty.

Theorem 3.2 (Ostrowski [12]). The pair (L,N ) has the Ostrowski prop-
erty.

Proposition 3.3. (i) If a pair (A,J ) has the Ostrowski property then it
has the weak Ostrowski property (provided all open sets are A-measurable).

(ii) If a pair (A,J ) has the Steinhaus property then it has the Ostrowski
property.

Proof. (i) is trivial. For (ii) suppose that f is a homomorphism bounded
on a set A ∈ A \ J . Then there is an open neighbourhood U ⊂ A − A on
which f is bounded as well. The additivity of f implies that f is continuous
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at 0 (see e.g. [10, p. 4]). Using the additivity of f once more we conclude
that f is continuous everywhere.

We have extensions of the above theorems which are also well known.
For the proofs of the theorems below see e.g. [2, pp. 173–174].

Theorem 3.4. Let G be a locally compact topological group and let µ
be a left invariant Haar measure on G. The pair (L,N ) has the Steinhaus
property.

Theorem 3.5. Let G be a topological group. The pair (B,M) has the
Steinhaus property.

But the SP, OP, WOP are not very common among σ-algebras.

Proposition 3.6. The pair ((s), (s0)) does not have the weak Ostrowski
property (thus it has neither the Ostrowski nor the Steinhaus properties).

Proof. We will prove the first statement. Then the second follows from
Proposition 3.3.

Let P ⊂R be a perfect set (i.e., nonempty, closed, with no isolated points)
which is linearly independent over rationals. Let B⊂P be a Bernstein subset
of P (i.e., B and P \B do not contain a nonempty perfect (in P ) set). Now
we define a function A1: P → R by A1(x) = 0 for x ∈ B and A1(x) = 1 for
x ∈ P \B. Since P is linearly independent over the rationals, we can extend
A1 to an additive function A: R → R such that A|P = A1. Clearly, A is
bounded on the set P ∈ (s) \ (s0). Suppose that A is (s)-measurable. Then,
by Theorem 2.1, there is a perfect set D ⊂ P such that A|D is continuous.
Take an x ∈ D∩B (this can be done because B is a Bernstein set in P ). Then
we can find a sequence (xn)n∈ω such that limn→∞ xn = x and xn ∈ D \ B
since P \ B is also a Bernstein set. But A(xn) = 1 for all n and A(x) = 0,
so A|D is not continuous, a contradiction. Thus A is not (s)-measurable.

Theorem 3.7. There exists an extension of the Lebesgue measure which
is invariant under translations and reflections and which does not have the
Steinhaus property.

Proof. See [6, p. 148, Proposition 2].

Theorem 3.8. There exists an extension of the Lebesgue measure which
is invariant under reflections and which does not have the weak Ostrowski
property.

Proof. This extension was constructed in [7, Example 2]. That exten-
sion is not complete and the completion of this measure may have the weak
Ostrowski property. But one can change a little the definition of that mea-
sure to get a complete measure which does not have the weak Ostrowski
property.
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But we do not know if there exists an extension of the Lebesgue measure
which is invariant under translations and which does not have the (weak)
Ostrowski property.

4. Generalization of Erdős’s result. Let A denote a σ-algebra of
subsets of a group G and J ⊂ A a σ-ideal on G.

4.1. A trivial generalization. In order to repeat Erdős’s proof (showing
that the family of Lebesgue measurable functions does not have the differ-
ence property) for the family of A-measurable functions we only need to
know that the pair (A,J ) has the weak Ostrowski property and the condi-
tion S(A,J ) holds. Thus we get a theorem, essentially due to Erdős.

Theorem 4.1. Suppose that a pair (A,J ) has the weak Ostrowski prop-
erty. If S(A,J ) holds then the family of A-measurable functions does not
have the difference property.

Proof. The proof is the same as Erdős’s but we sketch it for the sake
of completeness. By S(A,J ) we have a set S ⊂ G such that S is J -almost
invariant and S 6∈ A. Put f = χS. Now we show that f is a witness for the
lack of the difference property for the family of A-measurable functions.

Since {x∈G : ∆hf 6= 0}={x∈G : χS−h(x) 6= χS(x)}= (S−h)4 S∈J,
the function ∆hf is A-measurable for every h ∈ G. Now suppose that f =
g+A, where g is A-measurable and A is a homomorphism. Then there is n
such that the set B = g−1([−n, n]) is in A\J and thus the homomorphism
A is bounded on B since f and g are bounded on B. By the weak Ostrowski
property, the function A is A-measurable. Thus f = χS is A-measurable as
a sum of two A-measurable functions. But the set S is not A-measurable, a
contradiction.

Corollary 4.2. Let G be a locally compact topological group and let µ
be a left invariant Haar measure on G. If S(L,N ) holds then the family of
L-measurable functions does not have the difference property.

Proof. This follows from Theorems 3.4 and 4.1.

Corollary 4.3. Let G be a topological group. If S(B,M) holds then the
family of B-measurable functions does not have the difference property.

Proof. This follows from Theorems 3.5 and 4.1.

4.2. A less trivial generalization. Now we shall show that (in some cases)
we do not need the weak Ostrowski property for (A,J ) in order to prove that
the family of A-measurable functions does not have the difference property.

Theorem 4.4. Let A be a σ-algebra invariant under reflections on a
group G and J ⊂ A be a σ-ideal on G. If S∗(A,J ) holds then the family of
A-measurable functions does not have the difference property.
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Proof. Let A⊂G be a set such that A 6∈ A, A = −A and (A+g)4A ∈ J
for all g ∈ G. Such a set A exists by S∗(A,J ). Let f = χA. We will show that
f witnesses the lack of the difference property of the family of A-measurable
functions.

First, it is easy to see that ∆gf is A-measurable for every g ∈ G. Now
suppose that f = k+h, where k is A-measurable and h is a homomorphism.
Define F (x) = f(x)+f(−x). Then F (x) = (k(x)+h(x))+(k(−x)+h(−x)) =
k(x) + k(−x) so F is A-measurable (since A = −A).

But on the other hand F (x) = f(x) + f(−x) = χA(x) + χA(−x) =
χA(x) + χ−A(x) = 2χA(x), and since A 6∈ A, we deduce that F is not
A-measurable. This contradiction completes the proof.

5. On the conditions S∗(A,J ) and S(A,J ). We have seen that in
both generalizations (Sections 4.1 and 4.2), a weak point is the assumption
that S(A,J ) or S∗(A,J ) holds. Hence we now examine these conditions.

Let A be a σ-algebra on a group G and J be a σ-ideal on G. Let |G| = κ
and G = {gα : α < κ} be an enumeration of elements of G. We denote by
Gα the group generated by {gβ : β < α}. For any α < κ let Qα = Gα+1\Gα,
and for every T ⊂ κ let AT =

⋃
α∈T Qα.

Lemma 5.1. If non(J ) = |G| then the set AT is J -almost invariant and
AT = −AT for every T ⊂ κ.

Proof. It is easy to see that (AT + g) \AT ∈ J for all T ⊂ κ and g ∈ G.
Indeed,

(AT +g)\AT =
⋃

α∈T
(Qα+g)\

⋃

α∈T
Qα =

⋃

α∈T
[(Gα+1 +g)\ (Gα+g)]\

⋃

α∈T
Qα.

But there is β < κ such that g ∈ Gα for every α > β, so

(AT +g)\AT =
[ ⋃

T3α≤β
(Qα+g)∪

⋃

T3α>β
(Gα+1\Gα)

]
\
⋃

α∈T
Qα ⊂

⋃

α≤β
(Qα+g).

The last set is in J , by the assumption that non(J )= |G|, so (AT + g)\AT
∈J . Similarly we show that AT \(AT +g) is in J , hence (AT + g)4AT ∈J .

Now one can easily check that AT = −AT for every T ⊂ κ: this follows
from the fact that Qα = −Qα for every α < κ.

The construction of almost invariant sets appeared in papers devoted to
extensions of invariant measures, and the above construction appeared e.g.
in [5] and [15].

We see that to prove S∗(A,J ) we have to show that there is a set
T such that AT is not in A. This will be done for each case separately.
We had to assume that non(J ) = |G|. For some cases we will need to
assume something more. It is no wonder that we need some assumptions
since the Erdős theorem is proved under the Continuum Hypothesis (and
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our assumptions will be fulfilled under CH). Moreover, we prove that there
are some families for which those assumptions are fulfilled in ZFC.

5.1. Measure case

Theorem 5.2. Let µ be a σ-finite measure on a group G. If |G| is
less than the first real-valued measurable cardinal and non(N ) = |G| then
S∗(L,N ) holds.

Proof. By Lemma 5.1 we must find T ⊂ κ such that AT is not L-
measurable. Suppose that AT is L-measurable for every T ⊂ κ. By Propo-
sition 2.2 we have a finite measure ν equivalent to µ. We define a measure
τ : P (κ) → [0,+∞] by τ(T ) = ν(AT ). It is a diffused finite measure which
measures all subsets of κ, so by Theorem 2.3 there is a real-valued measur-
able cardinal ≤ κ = |G|, a contradiction.

Corollary 5.3. Under the assumptions of Theorem 5.2, if the measure
µ is invariant under reflections then the family of L-measurable functions
does not have the difference property.

Proof. Apply Theorems 4.4 and 5.2.

5.2. Category case

Theorem 5.4. Let G be a topological group. If |G| is less than the first
measurable cardinal and non(M) = |G| then S∗(B,M) holds.

Proof. Again we must find T ⊂ κ such that AT is not B-measurable.
First we show that there is T ⊂ κ such that AT 6∈ M and G \ AT 6∈ M.
Suppose that for every T ⊂ κ we have AT ∈ M or G \ AT ∈ M. Then
{T ⊂ κ : AT ∈ M} is a prime σ-ideal on κ containing all the singletons.
Thus by Proposition 2.5 and Theorem 2.3 there is a measurable cardinal
≤ κ = |G|, a contradiction. So there is T0 ⊂ κ such that AT0 6∈ M and
G\AT0 6∈ M. Then AT0 does not have the Baire property. Indeed, otherwise
there is g ∈ G such that (AT0 +g)∩(G\AT0) 6∈ M, hence (AT0 +g)\AT0 6∈ M,
a contradiction since AT0 is M-almost invariant by Lemma 5.1.

Corollary 5.5. Under the assumptions of Theorem 5.4, the family of
B-measurable functions does not have the difference property.

Proof. Apply Theorems 4.4 and 5.4.

5.3. c.c.c. case. Now we generalize the measure and category cases and
consider the case where on G there is given a σ-algebra A and a σ-ideal J
such that the pair (A,J ) satisfies the c.c.c.

Theorem 5.6. Let A be a σ-algebra on a group G and J be a proper
σ-ideal on G such that the pair (A,J ) satisfies the c.c.c. If |G| is less than
the first quasi-measurable cardinal and non(J ) = |G| then S∗(A,J ) holds.
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Proof. Once more we must find T ⊂ κ such that AT is notA-measurable.
Suppose that AT ∈ A for every T ⊂ κ. Let I = {T ⊂ κ : AT ∈ J }. Then it is
not difficult to check that I is a proper σ-ideal containing all the singletons.
Since (A,J ) satisfies the c.c.c., so does (P (κ), I). But this means that the
ideal I is ω1-saturated. So by Proposition 2.6 there is a quasi-measurable
cardinal ≤ |G|, a contradiction.

Corollary 5.7. Under the assumptions of Theorem 5.6, if A is invari-
ant under reflections then the family of A-measurable functions does not
have the difference property.

Proof. Apply Theorems 4.4 and 5.6.

Remark. Although the family of Lebesgue measurable sets and the
family of sets with the Baire property satisfy c.c.c., Theorem 5.6 does not
imply in general Theorems 5.2 and 5.4. Indeed, if there exists a model with
a measurable cardinal then there exists a model for Martin’s Axiom and
with a quasi-measurable cardinal < c (see e.g. [4]). In that model there is
no real-valued measurable cardinal ≤ c.

5.4. Results in ZFC. Now we show that there are σ-algebras and σ-ideals
for which the condition S∗(·, ·) holds in ZFC and, by Theorem 4.4, suitable
families of functions do not have the difference property (in ZFC).

5.4.1. (s)-measurable sets

Theorem 5.8. S∗((s), (s0)) holds in ZFC.

Proof. We have to construct an (s)-nonmeasurable set A such that A =
−A and (A+ x) \A ∈ (s0) for every x ∈ R. We slightly modify Sierpiński’s
construction [13]. Let R = {rα : α < c} and {Pα : α < c} be an enumeration
of the reals and perfect sets respectively. Let Lα be the linear space over the
rationals spanned by {rβ : β < α}. We construct two sequences {xα : α < c}
and {yα : α < c} with

xα ∈ Pα \ (Lα + ({±xβ : β < α} ∪ {±yβ : β < α})),
yα ∈ Pα \ (Lα + ({±xβ : β ≤ α} ∪ {±yβ : β < α})).

Now we put S =
⋃
α<c(Lα ± xα).

We see that S = −S. To show that S is not (s)-measurable we check
that S is a Bernstein set. One can see that S ∩ P 6= ∅ for every perfect set
P since xα ∈ S for every α < c. On the other hand, suppose that there is
β < c such that yβ 6∈ R\S. Thus there is α such that yβ ∈ Lα±xα. If β ≥ α
then we get a contradiction with the definition of the points yα. So α > β.
But in that case xα ∈ Lα ± yβ , a contradiction.

Now we show that S is (s0)-almost invariant. It suffices to show that
|(S + r) \ S| < c for every r ∈ R since all sets of cardinality less than c are
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in (s0). Take r ∈ R. Then there is β < c such that r = rβ. Since rβ ∈ Lα for
every α > β we can write

(S + rβ) \ S =
( ⋃

α<c

(Lα ± xα + rβ)
)
\ S

=
( ⋃

α≤β
(Lα ± xα + rβ) ∪

⋃

α>β

(Lα ± xα)
)
\ S

=
( ⋃

α≤β
(Lα ± xα + rβ) \ S

)
∪
( ⋃

α>β

(Lα ± xα) \ S
)

=
( ⋃

α≤β
(Lα ± xα + rβ) \ S

)
⊂
⋃

α≤β
(Lα ± xα + rβ)

and the last set is of cardinality less than c.

Corollary 5.9. The family of (s)-measurable functions does not have
the difference property.

Proof. Apply Theorems 4.4 and 5.8.

Remark. Corollary 5.9 was proved directly in [3]. Here we use a general
theorem (Theorem 4.4) which is useful in many other cases as well.

Remark. Since S∗((s), (s0)) holds, so does S((s), (s0)). But we cannot
use Theorem 4.1 instead of Theorem 4.4 to prove Corollary 5.9 since by
Proposition 3.6 the pair ((s), (s0)) does not have the weak Ostrowski prop-
erty.

5.4.2. A subgroup of the real line with measure. Let X be a subset of the
real line which is of positive outer Lebesgue measure. Define LX = {A∩X :
A is Lebesgue measurable} and mX : LX → [0,+∞] by mX(B) = mo(B)
where mo denotes the Lebesgue outer measure and B ∈ LX . Then it is
not difficult to check that LX is a σ-algebra and mX is a measure on LX .
Moreover, non(N (mX)) = non(N (m)).

Theorem 5.10. There is a subgroup G of R such that S∗(LG,N (mG))
holds (in ZFC ).

Proof. Let X ⊂ R be a Lebesgue nonmeasurable set of cardinality κ =
non(N (m)). Let G be the group generated by X. Then |G| = κ.

Since |G| = non(N (m)), Theorem 2.7 shows that |G| is less than the first
real-valued measurable cardinal. Moreover, non(N (mG)) = non(N (m)) =
|G|. Thus S∗(LG,N (mG)) holds by Theorem 5.2.

Corollary 5.11. The family of mG-measurable functions does not have
the difference property (in ZFC ).

Proof. Apply Theorems 4.4 and 5.10.
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Remark. One can see that every Lebesgue nonmeasurable group of
cardinality non(N (m)) witnesses the assertion of Theorem 5.10.

5.4.3. Subgroup of the real line with topology

Theorem 5.12. There is a subgroup G of the real line such that S∗(B,M)
holds (in ZFC ).

Proof. Let X ⊂ R be a set without the Baire property of cardinality
κ = non(M(R)). Let G be the group generated by X ∪Q. Then |G| = κ.

Since |G| ≤ c, Theorem 2.4 implies that |G| is less than the first measur-
able cardinal. Moreover, non(M(G)) = non(M(R)) = |G| since G is dense
in R. Thus S∗(B(G),M(G)) holds by Theorem 5.4.

Corollary 5.13. The family of functions with the Baire property on G
does not have the difference property (in ZFC ).

Proof. Apply Theorems 4.4 and 5.12.

Remark. One can see that every dense group without the Baire prop-
erty of cardinality non(M(R)) witnesses the assertion of Theorem 5.12.

The author would like to express his thanks to Ireneusz Rec law for fruit-
ful discussions.

REFERENCES

[1] N. G. de Bruijn, Functions whose differences belong to a given class, Nieuw Arch.
Wisk. 23 (1951), 194–218.
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