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INFINITELY MANY POSITIVE SOLUTIONS FOR
THE NEUMANN PROBLEM INVOLVING THE p-LAPLACIAN

BY

GIOVANNI ANELLO and GIUSEPPE CORDARO (Messina)

Abstract. We present two results on existence of infinitely many positive solutions
to the Neumann problem

{
−∆pu+ λ(x)|u|p−2u = µf(x, u) in Ω,

∂u/∂ν = 0 on ∂Ω,

where Ω ⊂ RN is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the
outer unit normal vector to ∂Ω, p > 1, µ > 0, λ ∈ L∞(Ω) with ess infx∈Ω λ(x) > 0 and
f : Ω×R→ R is a Carathéodory function. Our results ensure the existence of a sequence
of nonzero and nonnegative weak solutions to the above problem.

1. Introduction. In this paper, we consider the problem

(Pµ)
{−∆pu+ λ(x)|u|p−2u = µf(x, u) in Ω,

∂u/∂ν = 0 on ∂Ω,

where Ω ⊂ RN is a bounded open set with sufficiently smooth bound-
ary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, ∆p is the p-
Laplacian operator, that is, ∆pu = div(|∇u|p−2∇u), µ > 0, λ ∈ L∞(Ω)
with ess infx∈Ω λ(x) > 0 and f : Ω × R → R is a Carathéodory function.
We are interested in the existence of a sequence of nonzero and nonnegative
weak solutions of (Pµ) in W 1,p(Ω). The space W 1,p(Ω) is endowed with the
norm

‖u‖ =
( �

Ω

λ(x)|u|p dx+
�

Ω

|∇u|p dx
)1/p

equivalent to the usual one.
A weak solution of (Pµ) is any u ∈W 1,p(Ω) such that

�

Ω

λ(x)|u(x)|p−2u(x)v(x) dx+
�

Ω

|∇u(x)|p−2∇u(x)∇v(x) dx

− µ
�

Ω

f(x, u(x))v(x) dx = 0,

for each v ∈W 1,p(Ω).
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To obtain our multiplicity results, we employ the same methods that
allowed us to find infinitely many small positive solution for the analogous
Dirichlet problem [2]. We follow the general approach applied by Ricceri
in [10], that is, to look for solutions to problem (Pµ) as local minima of the
underlying energy functional.

While for the Dirichlet problem the existence of infinitely many solutions
has been widely studied (see for instance [2, 3, 4, 6–9, 12]), actually, the
only paper that deals with the existence of infinitely many solutions to the
Neumann problem is [11]. There Ricceri applies the variational principle
of [10].

For the reader’s convenience, we quote below his result about the exis-
tence of a sequence of small weak solutions.

Theorem. A ([11, Theorem 2]). Let f, g : R → R be two continuous
functions with supξ∈R � ξ0 g(t) dt ≤ 0, let α, β ∈ L1(Ω) with min{α(x), β(x)}
≥ 0 a.e. in Ω, let λ ∈ L∞(Ω) with ess infx∈Ω λ(x) > 0, and let p > N .
Moreover , assume that there are sequences {rn} in R+ with limn→∞ rn = 0
and {ξn} in R such that , for each n ∈ N,

� Ω λ(x) dx
p

|ξn|p −
�

Ω

β(x)
ξn�

0

g(t) dt dx < rn(1.1)

and
ξn�

0

f(t) dt = sup
|ξ|≤c(prn)1/p

ξ�

0

f(t) dt,(1.2)

where

c = sup
u∈W 1,p(Ω)\{0}

supx∈Ω |u(x)|
( � Ω |∇u(x)|p dx+ � Ω λ(x)|u(x)|p dx)1/p

.

Finally , assume that

lim sup
ξ→0

� Ω α(x) dx � ξ0 f(t) dt+ � Ω β(x) dx � ξ0 g(t) dt
|ξ|p >

� Ω λ(x) dx
p

.(1.3)

Then the problem

(P)
{−∆pu+ λ(x)|u|p−2u = α(x)f(u) + β(x)g(u) in Ω,

∂u/∂ν = 0 on ∂Ω,

admits a sequence of nonzero weak solutions which strongly converges to zero
in W 1,p(Ω).

From (1.1) it follows |ξn| < c(prn)1/p. In Remark 2 of [11], Ricceri asked
if the conclusion of Theorem A would hold when, instead of (1.1) and (1.2),
it is supposed that there is a sequence {bn} in R+, convergent to zero, such
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that for each n ∈ N,
ξn�

0

f(t) dt = sup
|ξ|≤bn

ξ�

0

f(t) dt

for some ξn with |ξn| < bn.
In Section 4, we show that the answer is positive when g(t) = 0 but

the sequence {ξn} is in R+ and (1.3) is replaced by the following stronger
condition:

lim sup
ξ→0+

� Ω α(x) dx � ξ0 f(t) dt
ξp

>
� Ω λ(x) dx

p
.

Under our assumptions, the weak solutions are almost everywhere non-
negative in Ω.

2. Unbounded sequence of solutions. In this section, we establish
the existence of µ∗ ≥ 0 such that for any µ > µ∗ problem (Pµ) admits an
unbounded sequence of nonzero and nonnegative weak solutions.

Throughout this section, we assume that when 1 < p ≤ N , there exist
a ∈ R+ and q > p− 1, with q < (p−1)N+p

N−p if p < N , such that

|f(x, t)| ≤ a(1 + |t|q)(2.1)

for a.e. x ∈ Ω and t ∈ R. In the case p > N , we assume that for every r > 0,

sup
|t|≤r
|f(·, t)| ∈ L1(Ω).(2.2)

Theorem 2.1. Suppose that the function f satisfies the following con-
ditions:

(i) f(x, 0) ≥ 0 for a.e. x ∈ Ω.
(ii) There exist two sequences {ξn}, {ξ′n} in R with limn→+∞ ξn = +∞

such that 0 ≤ ξn < ξ′n and

ξn�

0

f(x, s) ds = sup
t∈[ξn,ξ′n]

t�

0

f(x, s) ds

for each n ∈ N and a.e. x ∈ Ω.
(iii) One has

lim sup
t→+∞

� Ω � t0 f(x, s) ds dx
tp

> 0.

Set

µ∗ = � Ω λ(x) dx
p

lim inf
t→+∞

tp

� Ω � t0 f(x, s) ds dx
.
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Then, for every µ > µ∗, problem (Pµ) admits an unbounded sequence {un}
of nonnegative weak solutions.

Proof. Define

g(x, t) =
{
f(x, t) if t ≥ 0,

f(x, 0) if t < 0.

Consider the problem

(Pµ,g)
{−∆pu+ λ(x)|u|p−2u = µg(x, u) in Ω,

∂u/∂ν = 0 on ∂Ω.

The weak solutions of (Pµ,g) are the critical points of the functional

Φµ(u) =
1
pµ

( �

Ω

λ(x)|u|p dx+
�

Ω

|∇u|p dx
)
−

�

Ω

(u(x)�

0

g(x, t) dt
)
dx

in W 1,p(Ω). Owing to (2.1) and the compact embedding of W 1,p(Ω) into
Lq+1(Ω), Φµ is well defined, weakly sequentially lower semicontinuous and
Gateaux differentiable in W 1,p(Ω).

Fix n ∈ N. We set

En = {u ∈W 1,p(Ω) : 0 ≤ u(x) ≤ ξ′n a.e. in Ω}, αn = inf
En
Φµ.

Following the arguments used in [2], we can prove that there exists un ∈ En
such that

Φµ(un) = αn.

Moreover, un(x) ∈ [0, ξn] a.e. in Ω.
Define h : R→ R as follows:

h(t) =





ξn, t > ξn,

t, 0 ≤ t ≤ ξn,

0, t < 0,

and consider the continuous superposition operator T : W 1,p(Ω)→ En,

Tu(x) = h(u(x)) (x ∈ Ω).

We put v∗ = Tun and X = {x ∈ Ω : un(x) 6∈ [0, ξn]}. For a.e. x ∈ X, one
has ξn < un(x) ≤ ξ′n, hence

un(x)�

0

g(x, t) dt ≤
v∗(x)�

0

g(x, t) dt

and |∇v∗| = 0. We have
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‖v∗‖p − ‖un‖p =
�

Ω

λ(x)(|v∗|p − |un|p) dx+
�

Ω

(|∇v∗|p − |∇un|p) dx

=
�

X

λ(x)(ξpn − (un(x))p) dx−
�

X

|∇un|p dx

≤ −
�

X

λ(x)(un(x)− ξn)p dx−
�

X

|∇v∗ −∇un|p dx

= −
�

Ω

λ(x)|v∗ − un|p dx−
�

Ω

|∇v∗−∇un|p dx = −‖v∗ − un‖p.

Hence

Φµ(v∗)− Φµ(un) =
1
pµ

(‖v∗‖p − ‖un‖p)−
�

Ω

(v∗(x)�

un(x)

g(x, t) dt
)
dx

≤ − 1
pµ
‖v∗ − un‖p −

�

X

(v∗(x)�

un(x)

g(x, t) dt
)
dx

≤ − 1
pµ
‖v∗ − un‖p.

Since v∗ ∈ En, it follows that Φµ(v∗) − Φµ(un) ≥ 0. Then ‖v∗ − un‖p = 0,
which entails that un(x) = v∗(x) ∈ [0, ξn] a.e. in Ω.

Now we prove that un is a local minimum of Φµ. Let u ∈ W 1,p(Ω) and
put X = {x ∈ Ω : u(x) 6∈ [0, ξn]}. In case p > N , owing to the compact
embedding of W 1,p(Ω) into C0(Ω) and the fact that un(x) ∈ [0, ξn] for each
x ∈ Ω, it follows that u(x) ≤ ξ′n for all x ∈ Ω, provided that u is chosen in
a suitable neighbourhood of un.

By definition of the operator T , one has � u(x)
Tu(x) g(x, t) dt = 0 for x ∈ Ω\X.

Suppose x ∈ X. Then � u(x)
Tu(x) g(x, t) dt ≤ 0 whenever u(x) ≤ ξ′n. In case

p ≤ N and u(x) > ξ′n, we exploit (2.1), where without loss of generality we
can suppose that q > p− 1, and so

u(x)�

Tu(x)

g(x, t) dt =
u(x)�

ξn

g(x, t) dt ≤
u(x)�

ξn

a(1 + tq) dt

= a(u(x)− ξn) +
a

q + 1
((u(x))q+1 − ξq+1

n ).

Define

C = sup
ξ≥ξ′n

a(ξ − ξn) + a
q+1(ξq+1 − ξq+1

n )

(ξ − ξn)q+1 .

It follows that for a.e. x ∈ Ω,
u(x)�

Tu(x)

g(x, t) dt ≤ C|u(x)− Tu(x)|q+1
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and so
�

Ω

( u(x)�

Tu(x)

g(x, t) dt
)
dx ≤ Cγq+1‖u− Tu‖q+1,

where we have put

γ = sup
u∈W 1,p(Ω)\{0}

( � Ω |u|q+1 dx)1/(q+1)

‖u‖ ,

which is finite because of the embedding theorem.
Then, since

‖u‖p − ‖Tu‖p =
�

Ω

λ(x)(|u|p − |Tu|p) dx+
�

Ω

(|∇u|p − |∇(Tu)|p) dx

=
�

{x∈X :u(x)<0}
λ(x)|u|p dx

+
�

{x∈X :u(x)>0}
λ(x)((u(x))p − ξpn) dx+

�

X

|∇u|p dx

≥
�

{x∈X :u(x)<0}
λ(x)|u− Tu|p dx

+
�

{x∈X :u(x)>0}
λ(x)(u(x)− ξn)p dx+

�

X

|∇u−∇Tu|p dx

= ‖u− Tu‖p,
we have

Φµ(u)− Φµ(Tu) =
1
pµ

(‖u‖p − ‖Tu‖p)−
�

Ω

( u(x)�

Tu(x)

g(x, t) dt
)
dx

≥ 1
pµ
‖u− Tu‖p −

�

Ω

( u(x)�

Tu(x)

g(x, t) dt
)
dx

≥ 1
pµ
‖u− Tu‖p − Cγq+1‖u− Tu‖q+1.

From Tu ∈ En, it follows that Φµ(Tu) ≥ Φµ(un). Thus, we have

Φµ(u) ≥ Φµ(un) + ‖u− Tu‖p
(

1
pµ
− Cγq+1‖u− Tu‖q+1−p

)
.

Since T is continuous, un = Tun, q + 1− p > 0 and

‖u− Tu‖ ≤ ‖u− un‖+ ‖un − Tu‖ = ‖u− un‖+ ‖Tun − Tu‖,
there exists β > 0 such that for every u ∈W 1,p(Ω) with ‖u− un‖ < β, one
has ‖u−Tu‖q+1−p ≤ 1/(2µpCγq+1). Consequently, if ‖u−un‖ < β, it turns
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out that
Φµ(u) ≥ Φµ(un) +

1
2pµ
‖u− Tu‖p ≥ Φµ(un).

Fix µ > µ∗. Then
1
pµ

<
1

� Ω λ(x) dx
lim sup
t→+∞

� Ω � t0 f(x, s) ds dx
tp

.

Now, we prove that, for this µ, one has lim infn→+∞ αn = −∞.
Let L ∈ R be such that

1
pµ

< L <
1

� Ω λ(x) dx
lim sup
t→+∞

� Ω � t0 f(x, s) ds dx
tp

.

Then there exists a sequence {tk} of positive numbers, diverging to +∞,
which satisfies

� Ω � tk0 f(x, s) ds dx
tpk

> L
�

Ω

λ(x) dx

for every k ∈ N. We can choose a subsequence {ξ′nk} such that ξ′nk > tk.
Thus the constant function tk belongs to Enk . This implies that for every
k ∈ N,

αnk ≤ Φµ(tk) =
1
pµ

tpk

�

Ω

λ(x) dx−
�

Ω

tk�

0

f(x, s) ds dx

< tpk

�

Ω

λ(x) dx
(

1
pµ
− L

)
,

hence limk→+∞ αnk = −∞. At this point, we can prove that the sequence
of local minima unk must be unbounded. In fact, if it were bounded, there
would be a subsequence, denoted by {unk} again, weakly convergent to some
u ∈W 1,p(Ω). Then we have the contradiction

Φµ(u) ≤ lim inf
k→+∞

Φµ(unk) = −∞,

and the assertion is completely proved.

3. Many small solutions. In this section, we consider the existence of
infinitely many arbitrarily small positive solution to problem (Pµ). In this
case we only require that p > 1. Since the proof is based on arguments
similar to those used to prove Theorem 2.1, some details are omitted.

Theorem 3.1. Suppose that the function f satisfies the following con-
ditions:

(i′) f(x, 0) = 0 for a.e. x ∈ Ω.
(ii′) There exists t > 0 such that

sup
t∈[0,t ]

|f(·, t)| ∈ L∞(Ω).
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(iii′) There exist two sequences {ξn}, {ξ′n} in R, with limn→+∞ ξ′n = 0,
such that 0 ≤ ξn < ξ′n and

ξn�

0

f(x, s) ds = sup
t∈[ξn,ξ′n]

t�

0

f(x, s) ds

for every n ∈ N and a.e. x ∈ Ω.
(iv′) One has

lim sup
t→0+

� Ω � t0 f(x, s) ds dx
tp

> 0.

Set

µ∗ = � Ω λ(x) dx
p

lim inf
t→0+

tp

� Ω � t0 f(x, s) ds dx
.

Then, for every µ > µ∗, problem (Pµ) admits a sequence {un} of almost
everywhere positive weak solutions strongly convergent to zero such that
limn→+∞ supΩ un = 0.

Proof. We choose q ∈
]
p − 1, (p−1)N+p

N−p
[

if p < N . In the other cases it
is enough to choose q > p − 1. From (ii′), it follows that there exists a > 0
such that for every 0 ≤ t ≤ t and a.e. x ∈ Ω, one has

|f(x, t)| ≤ a.
Without loss of generality, we suppose that ξ′n ≤ t for every n ∈ N. Let
µ > µ∗. Then we define g : Ω × R→ R as follows:

g(x, t) =





f(x, t) if t > t,

f(x, t) if 0 ≤ t ≤ t,

0 if t < 0.
Hence, for a.e. x ∈ Ω and t ∈ R,

|g(x, t)| ≤ a.(3.1)

Now, we consider the problem

(Pµ,g)
{−∆pu+ λ(x)|u|p−2u = µg(x, u) in Ω,

∂u/∂ν = 0 on ∂Ω.

The weak solutions of (Pµ,g) are the critical points of the functional

Φµ(u) =
1
pµ
‖u‖p −

�

Ω

(u(x)�

0

g(x, t) dt
)
dx (u ∈W 1,p(Ω)).(3.2)

Owing to (3.1) and the compact embedding of W 1,p(Ω) into Lq+1(Ω) (resp.
into C0(Ω) if p > N), Φµ is well defined, weakly sequentially lower semicon-
tinuous and Gateaux differentiable in W 1,p(Ω).
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Taking into account (3.1) and condition (iii′) and using the same methods
applied in the proof of Theorem 2.1, one can prove that for every n ∈ N,
Φµ admits a local minimum un that belongs to En = {u ∈ W 1,p(Ω) :
0 ≤ u(x) ≤ ξ ′n}. More precisely, every un assumes its values in the interval
[0, ξn] except for a null measure subset of Ω.

For every n ∈ N and u ∈ En, one has

Φµ(u) ≥ −am(Ω)ξ′n.

Then, since −am(Ω)ξ′n ≤ Φµ(un) ≤ 0, it follows that

lim
n→+∞

Φµ(un) = 0.

From un ∈ En, it follows that

‖un‖p = pµ
( �

Ω

(un(x)�

0

g(x, t) dt
)
dx+ Φµ(un)

)
≤ pµ(am(Ω)ξ′n + Φµ(un)).

Hence limn→+∞ � Ω |∇un|p dx = 0.
To obtain the conclusion, it is enough to prove that such local minima

are pairwise distinct. We exploit the fact that for every n ∈ N,

Φµ(un) = inf
u∈En

Φµ(u).

Fix n ∈ N. Since

1
pµ

<
1

� Ω λ(x) dx
lim sup
t→0+

� Ω � t0 f(x, s) ds dx
tp

,

there exists a sequence of positive numbers tk ↘ 0 such that for every k ∈ N,

� Ω � tk0 f(x, s) ds dx
tpk

>
1
pµ

�

Ω

λ(x) dx.

Then there exists k ∈ N such that tk < ξ′n. Hence, the constant function
on Ω, v(x) ≡ tk, belongs to En and this implies that

Φµ(un) ≤ Φµ(v).

Moreover, we have

− � Ω � tk0 f(x, s) ds dx
‖tk‖p

< − 1
pµ
.

Hence, Φµ(un) < 0. It is easily seen that since Φµ(un) < 0 for every n ∈ N,
there exists a subsequence of {un} with pairwise distinct elements.

Remark 3.1. Condition (ii′) of Theorem 3.1 can be weakened when
p > N . In that case, (ii′) can be replaced by the following assumption: There



230 G. ANELLO AND G. CORDARO

exists t > 0 such that for 0 ≤ t ≤ t and a.e. x ∈ Ω,

|f(x, t)| ≤ α(x),

with α ∈ L1(Ω) almost everywhere nonnegative in Ω.

4. Comparison with existing results. This section is dedicated to
the question asked by Ricceri and recalled in the first section.

Theorem 4.1. Let f : R→ R be a continuous function, α ∈ L1(Ω) with
α(x) ≥ 0 a.e. in Ω, and p > N . Assume that there are sequences {bn} and
{ξn} in R+ with ξn < bn and limn→∞ bn = 0 such that for each n ∈ N,

ξn�

0

f(t) dt = sup
|ξ|≤bn

ξ�

0

f(t) dt.(4.1)

Moreover , assume that

lim sup
ξ→0+

� Ω α(x) dx � ξ0 f(t) dt
ξp

>
� Ω λ(x) dx

p
.(4.2)

Then the problem
{−∆pu+ λ(x)|u|p−2u = α(x)f(u) in Ω,

∂u/∂ν = 0 on ∂Ω,

admits a sequence of weak solutions, a.e. positive in Ω, which strongly con-
verges to zero in W 1,p(Ω).

Proof. By (4.1) it follows that f(ξn) = 0 for each n ∈ N, and so f(0) = 0
because of the continuity of f . Hence, taking into account Remark 3.1, the
statement follows by Theorem 3.1.
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