COLLOQUIUM MATHEMATICUM

INFINITELY MANY POSITIVE SOLUTIONS FOR THE NEUMANN PROBLEM INVOLVING THE p-LAPLACIAN

ву
 GIOVANNI ANELLO and GIUSEPPE CORDARO (Messina)

Abstract

We present two results on existence of infinitely many positive solutions to the Neumann problem $$
\begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=\mu f(x, u) & \text { in } \Omega \\ \partial u / \partial \nu=0 & \text { on } \partial \Omega\end{cases}
$$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded open set with sufficiently smooth boundary $\partial \Omega, \nu$ is the outer unit normal vector to $\partial \Omega, p>1, \mu>0, \lambda \in L^{\infty}(\Omega)$ with $\operatorname{ess}^{\inf }{ }_{x \in \Omega} \lambda(x)>0$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.

1. Introduction. In this paper, we consider the problem

$$
\begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=\mu f(x, u) & \text { in } \Omega \\ \partial u / \partial \nu=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded open set with sufficiently smooth boundary $\partial \Omega, \nu$ is the outer unit normal vector to $\partial \Omega, p>1, \Delta_{p}$ is the p Laplacian operator, that is, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \mu>0, \lambda \in L^{\infty}(\Omega)$ with essinf $\inf _{x \in \Omega} \lambda(x)>0$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function. We are interested in the existence of a sequence of nonzero and nonnegative weak solutions of $\left(\mathrm{P}_{\mu}\right)$ in $W^{1, p}(\Omega)$. The space $W^{1, p}(\Omega)$ is endowed with the norm

$$
\|u\|=\left(\int_{\Omega} \lambda(x)|u|^{p} d x+\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p}
$$

equivalent to the usual one.
A weak solution of $\left(\mathrm{P}_{\mu}\right)$ is any $u \in W^{1, p}(\Omega)$ such that

$$
\begin{aligned}
& \qquad \int_{\Omega} \lambda(x)|u(x)|^{p-2} u(x) v(x) d x+\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) d x \\
& \text { for each } v \in W^{1, p}(\Omega)
\end{aligned}
$$

[^0]To obtain our multiplicity results, we employ the same methods that allowed us to find infinitely many small positive solution for the analogous Dirichlet problem [2]. We follow the general approach applied by Ricceri in [10], that is, to look for solutions to problem $\left(\mathrm{P}_{\mu}\right)$ as local minima of the underlying energy functional.

While for the Dirichlet problem the existence of infinitely many solutions has been widely studied (see for instance $[2,3,4,6-9,12]$), actually, the only paper that deals with the existence of infinitely many solutions to the Neumann problem is [11]. There Ricceri applies the variational principle of [10].

For the reader's convenience, we quote below his result about the existence of a sequence of small weak solutions.

Theorem. A ([11, Theorem 2]). Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions with $\sup _{\xi \in \mathbb{R}} \int_{0}^{\xi} g(t) d t \leq 0$, let $\alpha, \beta \in L^{1}(\Omega)$ with $\min \{\alpha(x), \beta(x)\}$ ≥ 0 a.e. in Ω, let $\lambda \in L^{\infty}(\Omega)$ with $\operatorname{ess}^{\inf }{ }_{x \in \Omega} \lambda(x)>0$, and let $p>N$. Moreover, assume that there are sequences $\left\{r_{n}\right\}$ in \mathbb{R}_{+}with $\lim _{n \rightarrow \infty} r_{n}=0$ and $\left\{\xi_{n}\right\}$ in \mathbb{R} such that, for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\frac{\int_{\Omega} \lambda(x) d x}{p}\left|\xi_{n}\right|^{p}-\int_{\Omega} \beta(x) \int_{0}^{\xi_{n}} g(t) d t d x<r_{n} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\xi_{n}} f(t) d t=\sup _{|\xi| \leq c\left(p r_{n}\right)^{1 / p}} \int_{0}^{\xi} f(t) d t \tag{1.2}
\end{equation*}
$$

where

$$
c=\sup _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\sup _{x \in \Omega}|u(x)|}{\left(\int_{\Omega}|\nabla u(x)|^{p} d x+\int_{\Omega} \lambda(x)|u(x)|^{p} d x\right)^{1 / p}} .
$$

Finally, assume that

$$
\begin{equation*}
\limsup _{\xi \rightarrow 0} \frac{\int_{\Omega} \alpha(x) d x \int_{0}^{\xi} f(t) d t+\int_{\Omega} \beta(x) d x \int_{0}^{\xi} g(t) d t}{|\xi|^{p}}>\frac{\int_{\Omega} \lambda(x) d x}{p} \tag{1.3}
\end{equation*}
$$

Then the problem

$$
\begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=\alpha(x) f(u)+\beta(x) g(u) & \text { in } \Omega \tag{P}\\ \partial u / \partial \nu=0 & \text { on } \partial \Omega\end{cases}
$$

admits a sequence of nonzero weak solutions which strongly converges to zero in $W^{1, p}(\Omega)$.

From (1.1) it follows $\left|\xi_{n}\right|<c\left(p r_{n}\right)^{1 / p}$. In Remark 2 of [11], Ricceri asked if the conclusion of Theorem A would hold when, instead of (1.1) and (1.2), it is supposed that there is a sequence $\left\{b_{n}\right\}$ in \mathbb{R}_{+}, convergent to zero, such
that for each $n \in \mathbb{N}$,

$$
\int_{0}^{\xi_{n}} f(t) d t=\sup _{|\xi| \leq b_{n}} \int_{0}^{\xi} f(t) d t
$$

for some ξ_{n} with $\left|\xi_{n}\right|<b_{n}$.
In Section 4, we show that the answer is positive when $g(t)=0$ but the sequence $\left\{\xi_{n}\right\}$ is in \mathbb{R}_{+}and (1.3) is replaced by the following stronger condition:

$$
\limsup _{\xi \rightarrow 0^{+}} \frac{\int_{\Omega} \alpha(x) d x \int_{0}^{\xi} f(t) d t}{\xi^{p}}>\frac{\int_{\Omega} \lambda(x) d x}{p}
$$

Under our assumptions, the weak solutions are almost everywhere nonnegative in Ω.
2. Unbounded sequence of solutions. In this section, we establish the existence of $\mu^{*} \geq 0$ such that for any $\mu>\mu^{*}$ problem (P_{μ}) admits an unbounded sequence of nonzero and nonnegative weak solutions.

Throughout this section, we assume that when $1<p \leq N$, there exist $a \in \mathbb{R}_{+}$and $q>p-1$, with $q<\frac{(p-1) N+p}{N-p}$ if $p<N$, such that

$$
\begin{equation*}
|f(x, t)| \leq a\left(1+|t|^{q}\right) \tag{2.1}
\end{equation*}
$$

for a.e. $x \in \Omega$ and $t \in \mathbb{R}$. In the case $p>N$, we assume that for every $r>0$,

$$
\begin{equation*}
\sup _{|t| \leq r}|f(\cdot, t)| \in L^{1}(\Omega) \tag{2.2}
\end{equation*}
$$

Theorem 2.1. Suppose that the function f satisfies the following conditions:
(i) $f(x, 0) \geq 0$ for a.e. $x \in \Omega$.
(ii) There exist two sequences $\left\{\xi_{n}\right\},\left\{\xi_{n}^{\prime}\right\}$ in \mathbb{R} with $\lim _{n \rightarrow+\infty} \xi_{n}=+\infty$ such that $0 \leq \xi_{n}<\xi_{n}^{\prime}$ and

$$
\int_{0}^{\xi_{n}} f(x, s) d s=\sup _{t \in\left[\xi_{n}, \xi_{n}^{\prime}\right]} \int_{0}^{t} f(x, s) d s
$$

for each $n \in \mathbb{N}$ and a.e. $x \in \Omega$.
(iii) One has

$$
\limsup _{t \rightarrow+\infty} \frac{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}{t^{p}}>0
$$

Set

$$
\mu^{*}=\frac{\int_{\Omega} \lambda(x) d x}{p} \liminf _{t \rightarrow+\infty} \frac{t^{p}}{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}
$$

Then, for every $\mu>\mu^{*}$, problem $\left(\mathrm{P}_{\mu}\right)$ admits an unbounded sequence $\left\{u_{n}\right\}$ of nonnegative weak solutions.

Proof. Define

$$
g(x, t)= \begin{cases}f(x, t) & \text { if } t \geq 0 \\ f(x, 0) & \text { if } t<0\end{cases}
$$

Consider the problem

$$
\begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=\mu g(x, u) & \text { in } \Omega \\ \partial u / \partial \nu=0 & \text { on } \partial \Omega\end{cases}
$$

The weak solutions of $\left(P_{\mu, g}\right)$ are the critical points of the functional

$$
\Phi_{\mu}(u)=\frac{1}{p \mu}\left(\int_{\Omega} \lambda(x)|u|^{p} d x+\int_{\Omega}|\nabla u|^{p} d x\right)-\int_{\Omega}\left(\int_{0}^{u(x)} g(x, t) d t\right) d x
$$

in $W^{1, p}(\Omega)$. Owing to (2.1) and the compact embedding of $W^{1, p}(\Omega)$ into $L^{q+1}(\Omega), \Phi_{\mu}$ is well defined, weakly sequentially lower semicontinuous and Gateaux differentiable in $W^{1, p}(\Omega)$.

Fix $n \in \mathbb{N}$. We set

$$
E_{n}=\left\{u \in W^{1, p}(\Omega): 0 \leq u(x) \leq \xi_{n}^{\prime} \text { a.e. in } \Omega\right\}, \quad \alpha_{n}=\inf _{E_{n}} \Phi_{\mu}
$$

Following the arguments used in [2], we can prove that there exists $u_{n} \in E_{n}$ such that

$$
\Phi_{\mu}\left(u_{n}\right)=\alpha_{n}
$$

Moreover, $u_{n}(x) \in\left[0, \xi_{n}\right]$ a.e. in Ω.
Define $h: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
h(t)= \begin{cases}\xi_{n}, & t>\xi_{n} \\ t, & 0 \leq t \leq \xi_{n} \\ 0, & t<0\end{cases}
$$

and consider the continuous superposition operator $T: W^{1, p}(\Omega) \rightarrow E_{n}$,

$$
T u(x)=h(u(x)) \quad(x \in \Omega)
$$

We put $v^{*}=T u_{n}$ and $X=\left\{x \in \Omega: u_{n}(x) \notin\left[0, \xi_{n}\right]\right\}$. For a.e. $x \in X$, one has $\xi_{n}<u_{n}(x) \leq \xi_{n}^{\prime}$, hence

$$
\int_{0}^{u_{n}(x)} g(x, t) d t \leq \int_{0}^{v^{*}(x)} g(x, t) d t
$$

and $\left|\nabla v^{*}\right|=0$. We have

$$
\begin{aligned}
\left\|v^{*}\right\|^{p}-\left\|u_{n}\right\|^{p} & =\int_{\Omega} \lambda(x)\left(\left|v^{*}\right|^{p}-\left|u_{n}\right|^{p}\right) d x+\int_{\Omega}\left(\left|\nabla v^{*}\right|^{p}-\left|\nabla u_{n}\right|^{p}\right) d x \\
& =\int_{X} \lambda(x)\left(\xi_{n}^{p}-\left(u_{n}(x)\right)^{p}\right) d x-\int_{X}\left|\nabla u_{n}\right|^{p} d x \\
& \leq-\int_{X} \lambda(x)\left(u_{n}(x)-\xi_{n}\right)^{p} d x-\int_{X}\left|\nabla v^{*}-\nabla u_{n}\right|^{p} d x \\
& =-\int_{\Omega} \lambda(x)\left|v^{*}-u_{n}\right|^{p} d x-\int_{\Omega}\left|\nabla v^{*}-\nabla u_{n}\right|^{p} d x=-\left\|v^{*}-u_{n}\right\|^{p}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Phi_{\mu}\left(v^{*}\right)-\Phi_{\mu}\left(u_{n}\right) & =\frac{1}{p \mu}\left(\left\|v^{*}\right\|^{p}-\left\|u_{n}\right\|^{p}\right)-\int_{\Omega}\left(\int_{u_{n}(x)}^{v^{*}(x)} g(x, t) d t\right) d x \\
& \leq-\frac{1}{p \mu}\left\|v^{*}-u_{n}\right\|^{p}-\int_{X}\left(\int_{u_{n}(x)}^{v^{*}(x)} g(x, t) d t\right) d x \\
& \leq-\frac{1}{p \mu}\left\|v^{*}-u_{n}\right\|^{p}
\end{aligned}
$$

Since $v^{*} \in E_{n}$, it follows that $\Phi_{\mu}\left(v^{*}\right)-\Phi_{\mu}\left(u_{n}\right) \geq 0$. Then $\left\|v^{*}-u_{n}\right\|^{p}=0$, which entails that $u_{n}(x)=v^{*}(x) \in\left[0, \xi_{n}\right]$ a.e. in Ω.

Now we prove that u_{n} is a local minimum of Φ_{μ}. Let $u \in W^{1, p}(\Omega)$ and put $X=\left\{x \in \Omega: u(x) \notin\left[0, \xi_{n}\right]\right\}$. In case $p>N$, owing to the compact embedding of $W^{1, p}(\Omega)$ into $C^{0}(\bar{\Omega})$ and the fact that $u_{n}(x) \in\left[0, \xi_{n}\right]$ for each $x \in \Omega$, it follows that $u(x) \leq \xi_{n}^{\prime}$ for all $x \in \Omega$, provided that u is chosen in a suitable neighbourhood of u_{n}.

By definition of the operator T, one has $\int_{T u(x)}^{u(x)} g(x, t) d t=0$ for $x \in \Omega \backslash X$. Suppose $x \in X$. Then $\int_{T u(x)}^{u(x)} g(x, t) d t \leq 0$ whenever $u(x) \leq \xi_{n}^{\prime}$. In case $p \leq N$ and $u(x)>\xi_{n}^{\prime}$, we exploit (2.1), where without loss of generality we can suppose that $q>p-1$, and so

$$
\begin{aligned}
\int_{T u(x)}^{u(x)} g(x, t) d t & =\int_{\xi_{n}}^{u(x)} g(x, t) d t \leq \int_{\xi_{n}}^{u(x)} a\left(1+t^{q}\right) d t \\
& =a\left(u(x)-\xi_{n}\right)+\frac{a}{q+1}\left((u(x))^{q+1}-\xi_{n}^{q+1}\right)
\end{aligned}
$$

Define

$$
C=\sup _{\xi \geq \xi_{n}^{\prime}} \frac{a\left(\xi-\xi_{n}\right)+\frac{a}{q+1}\left(\xi^{q+1}-\xi_{n}^{q+1}\right)}{\left(\xi-\xi_{n}\right)^{q+1}}
$$

It follows that for a.e. $x \in \Omega$,

$$
\int_{T u(x)}^{u(x)} g(x, t) d t \leq C|u(x)-T u(x)|^{q+1}
$$

and so

$$
\int_{\Omega}\left(\int_{T u(x)}^{u(x)} g(x, t) d t\right) d x \leq C \gamma^{q+1}\|u-T u\|^{q+1}
$$

where we have put

$$
\gamma=\sup _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\left(\int_{\Omega}|u|^{q+1} d x\right)^{1 /(q+1)}}{\|u\|},
$$

which is finite because of the embedding theorem.
Then, since

$$
\begin{aligned}
\|u\|^{p}-\|T u\|^{p}= & \int_{\Omega} \lambda(x)\left(|u|^{p}-|T u|^{p}\right) d x+\int_{\Omega}\left(|\nabla u|^{p}-|\nabla(T u)|^{p}\right) d x \\
= & \int_{\{x \in X: u(x)<0\}} \lambda(x)|u|^{p} d x \\
& +\int_{\{x \in X: u(x)>0\}} \lambda(x)\left((u(x))^{p}-\xi_{n}^{p}\right) d x+\int_{X}|\nabla u|^{p} d x \\
\geq & \int_{\{x \in X: u(x)<0\}} \lambda(x)|u-T u|^{p} d x \\
& +\int_{\{x \in X: u(x)>0\}} \lambda(x)\left(u(x)-\xi_{n}\right)^{p} d x+\int_{X}|\nabla u-\nabla T u|^{p} d x \\
= & \|u-T u\|^{p},
\end{aligned}
$$

we have

$$
\begin{aligned}
\Phi_{\mu}(u)-\Phi_{\mu}(T u) & =\frac{1}{p \mu}\left(\|u\|^{p}-\|T u\|^{p}\right)-\int_{\Omega}\left(\int_{T u(x)}^{u(x)} g(x, t) d t\right) d x \\
& \geq \frac{1}{p \mu}\|u-T u\|^{p}-\int_{\Omega}\left(\int_{T u(x)}^{u(x)} g(x, t) d t\right) d x \\
& \geq \frac{1}{p \mu}\|u-T u\|^{p}-C \gamma^{q+1}\|u-T u\|^{q+1}
\end{aligned}
$$

From $T u \in E_{n}$, it follows that $\Phi_{\mu}(T u) \geq \Phi_{\mu}\left(u_{n}\right)$. Thus, we have

$$
\Phi_{\mu}(u) \geq \Phi_{\mu}\left(u_{n}\right)+\|u-T u\|^{p}\left(\frac{1}{p \mu}-C \gamma^{q+1}\|u-T u\|^{q+1-p}\right)
$$

Since T is continuous, $u_{n}=T u_{n}, q+1-p>0$ and

$$
\|u-T u\| \leq\left\|u-u_{n}\right\|+\left\|u_{n}-T u\right\|=\left\|u-u_{n}\right\|+\left\|T u_{n}-T u\right\|,
$$

there exists $\beta>0$ such that for every $u \in W^{1, p}(\Omega)$ with $\left\|u-u_{n}\right\|<\beta$, one has $\|u-T u\|^{q+1-p} \leq 1 /\left(2 \mu p C \gamma^{q+1}\right)$. Consequently, if $\left\|u-u_{n}\right\|<\beta$, it turns
out that

$$
\Phi_{\mu}(u) \geq \Phi_{\mu}\left(u_{n}\right)+\frac{1}{2 p \mu}\|u-T u\|^{p} \geq \Phi_{\mu}\left(u_{n}\right)
$$

Fix $\mu>\mu^{*}$. Then

$$
\frac{1}{p \mu}<\frac{1}{\int_{\Omega} \lambda(x) d x} \limsup _{t \rightarrow+\infty} \frac{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}{t^{p}}
$$

Now, we prove that, for this μ, one has $\liminf _{n \rightarrow+\infty} \alpha_{n}=-\infty$.
Let $L \in \mathbb{R}$ be such that

$$
\frac{1}{p \mu}<L<\frac{1}{\int_{\Omega} \lambda(x) d x} \limsup _{t \rightarrow+\infty} \frac{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}{t^{p}}
$$

Then there exists a sequence $\left\{t_{k}\right\}$ of positive numbers, diverging to $+\infty$, which satisfies

$$
\frac{\int_{\Omega} \int_{0}^{t_{k}} f(x, s) d s d x}{t_{k}^{p}}>L \int_{\Omega} \lambda(x) d x
$$

for every $k \in \mathbb{N}$. We can choose a subsequence $\left\{\xi_{n_{k}}^{\prime}\right\}$ such that $\xi_{n_{k}}^{\prime}>t_{k}$. Thus the constant function t_{k} belongs to $E_{n_{k}}$. This implies that for every $k \in \mathbb{N}$,

$$
\begin{aligned}
\alpha_{n_{k}} & \leq \Phi_{\mu}\left(t_{k}\right)=\frac{1}{p \mu} t_{k}^{p} \int_{\Omega} \lambda(x) d x-\int_{\Omega}^{t_{k}} \int_{0} f(x, s) d s d x \\
& <t_{k}^{p} \int_{\Omega} \lambda(x) d x\left(\frac{1}{p \mu}-L\right)
\end{aligned}
$$

hence $\lim _{k \rightarrow+\infty} \alpha_{n_{k}}=-\infty$. At this point, we can prove that the sequence of local minima $u_{n_{k}}$ must be unbounded. In fact, if it were bounded, there would be a subsequence, denoted by $\left\{u_{n_{k}}\right\}$ again, weakly convergent to some $\bar{u} \in W^{1, p}(\Omega)$. Then we have the contradiction

$$
\Phi_{\mu}(\bar{u}) \leq \liminf _{k \rightarrow+\infty} \Phi_{\mu}\left(u_{n_{k}}\right)=-\infty
$$

and the assertion is completely proved.
3. Many small solutions. In this section, we consider the existence of infinitely many arbitrarily small positive solution to problem $\left(\mathrm{P}_{\mu}\right)$. In this case we only require that $p>1$. Since the proof is based on arguments similar to those used to prove Theorem 2.1, some details are omitted.

Theorem 3.1. Suppose that the function f satisfies the following conditions:
(i') $f(x, 0)=0$ for a.e. $x \in \Omega$.
(ii') There exists $\bar{t}>0$ such that

$$
\sup _{t \in[0, \bar{t}]}|f(\cdot, t)| \in L^{\infty}(\Omega)
$$

(iii') There exist two sequences $\left\{\xi_{n}\right\},\left\{\xi_{n}^{\prime}\right\}$ in \mathbb{R}, with $\lim _{n \rightarrow+\infty} \xi_{n}^{\prime}=0$, such that $0 \leq \xi_{n}<\xi_{n}^{\prime}$ and

$$
\int_{0}^{\xi_{n}} f(x, s) d s=\sup _{t \in\left[\xi_{n}, \xi_{n}^{\prime}\right]} \int_{0}^{t} f(x, s) d s
$$

for every $n \in \mathbb{N}$ and a.e. $x \in \Omega$.
(iv') One has

$$
\limsup _{t \rightarrow 0^{+}} \frac{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}{t^{p}}>0
$$

Set

$$
\mu^{*}=\frac{\int_{\Omega} \lambda(x) d x}{p} \liminf _{t \rightarrow 0^{+}} \frac{t^{p}}{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}
$$

Then, for every $\mu>\mu^{*}$, problem $\left(\mathrm{P}_{\mu}\right)$ admits a sequence $\left\{u_{n}\right\}$ of almost everywhere positive weak solutions strongly convergent to zero such that $\lim _{n \rightarrow+\infty} \sup _{\Omega} u_{n}=0$.

Proof. We choose $q \in] p-1, \frac{(p-1) N+p}{N-p}[$ if $p<N$. In the other cases it is enough to choose $q>p-1$. From (ii'), it follows that there exists $a>0$ such that for every $0 \leq t \leq \bar{t}$ and a.e. $x \in \Omega$, one has

$$
|f(x, t)| \leq a
$$

Without loss of generality, we suppose that $\xi_{n}^{\prime} \leq \bar{t}$ for every $n \in \mathbb{N}$. Let $\mu>\mu^{*}$. Then we define $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
g(x, t)= \begin{cases}f(x, \bar{t}) & \text { if } t>\bar{t} \\ f(x, t) & \text { if } 0 \leq t \leq \bar{t} \\ 0 & \text { if } t<0\end{cases}
$$

Hence, for a.e. $x \in \Omega$ and $t \in \mathbb{R}$,

$$
\begin{equation*}
|g(x, t)| \leq a \tag{3.1}
\end{equation*}
$$

Now, we consider the problem
$\left(\mathrm{P}_{\mu, g}\right) \quad \begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=\mu g(x, u) & \text { in } \Omega, \\ \partial u / \partial \nu=0 & \text { on } \partial \Omega .\end{cases}$
The weak solutions of $\left(\mathrm{P}_{\mu, g}\right)$ are the critical points of the functional

$$
\begin{equation*}
\Phi_{\mu}(u)=\frac{1}{p \mu}\|u\|^{p}-\int_{\Omega}\left(\int_{0}^{u(x)} g(x, t) d t\right) d x \quad\left(u \in W^{1, p}(\Omega)\right) \tag{3.2}
\end{equation*}
$$

Owing to (3.1) and the compact embedding of $W^{1, p}(\Omega)$ into $L^{q+1}(\Omega)$ (resp. into $C^{0}(\bar{\Omega})$ if $\left.p>N\right), \Phi_{\mu}$ is well defined, weakly sequentially lower semicontinuous and Gateaux differentiable in $W^{1, p}(\Omega)$.

Taking into account (3.1) and condition (iii') and using the same methods applied in the proof of Theorem 2.1 , one can prove that for every $n \in \mathbb{N}$, Φ_{μ} admits a local minimum u_{n} that belongs to $E_{n}=\left\{u \in W^{1, p}(\Omega)\right.$: $\left.0 \leq u(x) \leq \xi_{n}^{\prime}\right\}$. More precisely, every u_{n} assumes its values in the interval $\left[0, \xi_{n}\right]$ except for a null measure subset of Ω.

For every $n \in \mathbb{N}$ and $u \in E_{n}$, one has

$$
\Phi_{\mu}(u) \geq-a m(\Omega) \xi_{n}^{\prime}
$$

Then, since $-\operatorname{am}(\Omega) \xi_{n}^{\prime} \leq \Phi_{\mu}\left(u_{n}\right) \leq 0$, it follows that

$$
\lim _{n \rightarrow+\infty} \Phi_{\mu}\left(u_{n}\right)=0
$$

From $u_{n} \in E_{n}$, it follows that

$$
\left\|u_{n}\right\|^{p}=p \mu\left(\int_{\Omega}^{u_{n}(x)}\left(\int_{0} g(x, t) d t\right) d x+\Phi_{\mu}\left(u_{n}\right)\right) \leq p \mu\left(\operatorname{am}(\Omega) \xi_{n}^{\prime}+\Phi_{\mu}\left(u_{n}\right)\right)
$$

Hence $\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=0$.
To obtain the conclusion, it is enough to prove that such local minima are pairwise distinct. We exploit the fact that for every $n \in \mathbb{N}$,

$$
\Phi_{\mu}\left(u_{n}\right)=\inf _{u \in E_{n}} \Phi_{\mu}(u)
$$

Fix $n \in \mathbb{N}$. Since

$$
\frac{1}{p \mu}<\frac{1}{\int_{\Omega} \lambda(x) d x} \limsup _{t \rightarrow 0^{+}} \frac{\int_{\Omega} \int_{0}^{t} f(x, s) d s d x}{t^{p}}
$$

there exists a sequence of positive numbers $t_{k} \searrow 0$ such that for every $k \in \mathbb{N}$,

$$
\frac{\int_{\Omega} \int_{0}^{t_{k}} f(x, s) d s d x}{t_{k}^{p}}>\frac{1}{p \mu} \int_{\Omega} \lambda(x) d x .
$$

Then there exists $\bar{k} \in \mathbb{N}$ such that $t_{\bar{k}}<\xi_{n}^{\prime}$. Hence, the constant function on $\Omega, v(x) \equiv t_{\bar{k}}$, belongs to E_{n} and this implies that

$$
\Phi_{\mu}\left(u_{n}\right) \leq \Phi_{\mu}(v)
$$

Moreover, we have

$$
-\frac{\int_{\Omega} \int_{0}^{t_{\bar{k}}} f(x, s) d s d x}{\left\|t_{\bar{k}}\right\|^{p}}<-\frac{1}{p \mu}
$$

Hence, $\Phi_{\mu}\left(u_{n}\right)<0$. It is easily seen that since $\Phi_{\mu}\left(u_{n}\right)<0$ for every $n \in \mathbb{N}$, there exists a subsequence of $\left\{u_{n}\right\}$ with pairwise distinct elements.

Remark 3.1. Condition (ii') of Theorem 3.1 can be weakened when $p>N$. In that case, (ii') can be replaced by the following assumption: There
exists $\bar{t}>0$ such that for $0 \leq t \leq \bar{t}$ and a.e. $x \in \Omega$,

$$
|f(x, t)| \leq \alpha(x)
$$

with $\alpha \in L^{1}(\Omega)$ almost everywhere nonnegative in Ω.
4. Comparison with existing results. This section is dedicated to the question asked by Ricceri and recalled in the first section.

ThEOREM 4.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, $\alpha \in L^{1}(\Omega)$ with $\alpha(x) \geq 0$ a.e. in Ω, and $p>N$. Assume that there are sequences $\left\{b_{n}\right\}$ and $\left\{\xi_{n}\right\}$ in \mathbb{R}_{+}with $\xi_{n}<b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$ such that for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\int_{0}^{\xi_{n}} f(t) d t=\sup _{|\xi| \leq b_{n}} \int_{0}^{\xi} f(t) d t \tag{4.1}
\end{equation*}
$$

Moreover, assume that

$$
\begin{equation*}
\limsup _{\xi \rightarrow 0^{+}} \frac{\int_{\Omega} \alpha(x) d x \int_{0}^{\xi} f(t) d t}{\xi^{p}}>\frac{\int_{\Omega} \lambda(x) d x}{p} \tag{4.2}
\end{equation*}
$$

Then the problem

$$
\begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=\alpha(x) f(u) & \text { in } \Omega \\ \partial u / \partial \nu=0 & \text { on } \partial \Omega\end{cases}
$$

admits a sequence of weak solutions, a.e. positive in Ω, which strongly converges to zero in $W^{1, p}(\Omega)$.

Proof. By (4.1) it follows that $f\left(\xi_{n}\right)=0$ for each $n \in \mathbb{N}$, and so $f(0)=0$ because of the continuity of f. Hence, taking into account Remark 3.1, the statement follows by Theorem 3.1.

REFERENCES

[1] G. Anello and G. Cordaro, An existence theorem for the Neumann problem involving the p-Laplacian, J. Convex Anal. 10 (2003), 185-198.
[2] —, 一, Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A. 132 (2002), 511-519.
[3] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. 20 (1993), 1205-1216.
[4] T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), 3555-3561.
[5] M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217-229.
[6] F. I. Njoku, P. Omari and F. Zanolin, Multiplicity of positive radial solutions of a quasilinear elliptic problem in a ball, Adv. Differential Equations 5 (2000), 15451570.
[7] F. I. Njoku and F. Zanolin, Positive solutions for two-point BVPs: existence and multiplicity results, Nonlinear Anal. 13 (1989), 1329-1338.
[8] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations 21 (1996), 721-733.
[9] -, —, An elliptic problem with arbitrarily small positive solutions, Electron. J. Differ. Equ. Conf. 5 (2000), 301-308.
[10] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.
[11] -, Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc. 33 (2001), 331-340.
[12] J. Saint Raymond, On the multiplicity of the solutions of the equation $-\Delta u=$ $\lambda \cdot f(u)$, J. Differential Equations 180 (2002), 65-88.

Department of Mathematics
University of Messina
98166 Sant'Agata-Messina, Italy
E-mail: anello@dipmat.unime.it cordaro@dipmat.unime.it

Received 10 March 2003;
revised 17 June 2003

[^0]: 2000 Mathematics Subject Classification: Primary 35J20.
 Key words and phrases: p-Laplacian, small solutions, positive solutions.
 The work has been partially supported by I.N.D.A.M.

