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A SIMPLE-MINDED COMPUTATION OF HEAT KERNELS
ON HEISENBERG GROUPS

BY

FRANÇOISE LUST-PIQUARD (Cergy-Pontoise)

Abstract. We compute the heat kernel on the classical and nonisotropic Heisenberg
groups, and on the free step two nilpotent groups Nn,2, by an elementary method, in
particular without using Laguerre calculus.

Introduction. The heat kernels (pt)t>0 associated with subelliptic Lap-
lacians L on the Heisenberg groups G, or on the free step two nilpotent
groups G = Nn,2, are well known. Their computation is usually rather elab-
orate, using either Brownian motion [G], [K], or the spherical Fourier trans-
form [H], [C], [CT] (see also the book [FH]), i.e. the knowledge of the eigen-
vectors of L, through the representations of G, finally reducing the problem
to the knowledge of the kernel of the harmonic oscillator on some Rd (La-
guerre calculus). Let us also mention [B], where a simple direct computation
(for the Heisenberg groups) relies on a guessed form of the solution.

The heat equation

(H ) −1
2
Lpt =

∂

∂t
pt, t > 0,

combined with the expression of pt as a dilation of p1, gives a partial dif-
ferential equation (H1) for p1. We simply give sufficient conditions on a
solution p of (H1) which ensure that the corresponding pt are the kernels of
a strongly continuous semigroup of contractions on L2(G), whose generator
is of course −1

2L, and we exhibit such a solution p = p1, which is obviously
unique.

It seems difficult to verify directly that the exhibited solution p1 is a
positive function on G. This is true a posteriori, because the existence of
such a semigroup, and the positivity of the associated kernels, are well known
facts for every stratified group (see e.g. [FS, Prop. 1.68, 1.70]).

More precisely, the paper is organized as follows. In the first part, we
consider homogeneous groups G, and more particularly step two stratified
groups, with dilations δt, t > 0, and (unbounded) positive operators L on
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L2(G) which commute with left translations and satisfy δt−1Lδt = t2L. We
give in Proposition 4 elementary sufficient conditions on p as mentioned
above; a weaker sufficient condition is given in Proposition 6 when moreover
∂
∂t+

L
2 is hypoelliptic. Computations when L is the sublaplacian on a Heisen-

berg group or G = Nn,2 are done in the second part, where we express (H1)
explicitly as a partial differential equation on Rd. Using ordinary Fourier
transform, we exhibit a solution of (H1) and check that the conditions of
Proposition 4 are satisfied in the case of Heisenberg groups, while those of
Proposition 6 are satisfied in the case of Nn,2.

Acknowledgments. This paper is an (unexpected) byproduct of a re-
search initiated with J. L. Torrea during a stay of the author at the Universi-
dad Autónoma (Madrid), which was supported by the European network in
Harmonic Analysis. We also thank T. Coulhon and V. Georgescu for useful
discussions, and Z. Rzeszotnik for providing references.

Notation. G will denote a homogeneous Lie group, as defined in [FS,
Chapter I A]. The group operation is denoted multiplicatively, unless other-
wise specified. Let us recall the main properties of these groups ([FS, Chapter
I A,B,C,D]). G is a connected and simply connected nilpotent Lie group, its
Haar measure dg is left and right invariant. G is equipped with a group of
dilations δt, t > 0, which are automorphisms of G, i.e. δt(gg′) = δt(g)δt(g′)
for g, g′ ∈ G and δst(g) = δsδt(g). More precisely, the Lie algebra G of G is
real, and has finite dimension d, δt = exp(A log t), where A is a diagonaliz-
able linear operator on G, with strictly positive eigenvalues dj , 1 ≤ j ≤ d.
Let (Zj)dj=1 be a linear basis of G given by eigenvectors of A, corresponding
to the eigenvalues (dj)dj=1; since the exponential mapping G → G is a dif-
feomorphism, every g ∈ G has the form exp(z1Z1 + . . .+ zdZd) for a unique
(z1, . . . , zd) ∈ Rd; we write g = (z1, . . . , zd), hence

δt(g) = (td1z1, . . . , t
ddzd).

We denote by N =
∑d

j=1 dj the homogeneous dimension of G, which implies

d(δt(g)) = tNdg and t−N‖f ◦ δt−1‖L1(G) = ‖f‖L1(G).

Setting δt(f) = f ◦ δt for a function f on G, we obtain

Zj(δt(f)) = tdjδt(Zjf).

K(G) denotes the space of complex-valued, continuous, compactly supported
functions on G, D(G) denotes K(G)∩C∞(G), and D′(G) denotes the distri-
butions on G. The space S(G) and the space S ′(G) of tempered distributions
are defined as in [FS, Chapter I D].
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The right translate fg of a function f on G is γ 7→ f(γg) , the left one is
γf : g 7→ f(γg). The convolution of two functions f, p ∈ K(G) is defined by

f ∗ p(γ) =
�

G

f(γg−1)p(g) dg =
�

G

f(g)p(g−1γ) dg,

and for every left invariant vector field X ∈ G,

X(f ∗ p) = f ∗X(p).

In particular, if G is a step two stratified Lie group, as defined in [FS,
p. 5], we denote by X1, . . . ,Xn a linear basis of the first layer of G, which
spans G as a Lie algebra, and corresponds to d1 = 1, and by U1, . . . , Um
a linear basis of the (second) central layer, which corresponds to d2 = 2.
Hence

Xk(δt(f)) = tδt(Xkf), Uj(δt(f)) = t2δt(Ujf).

This basis corresponds to coordinates g = (x, u) = (x1, . . . , xn, u1, . . . , um)
and δt(g) = (tx1, . . . , txn, t

2u1, . . . , t
2um). Here N = n+ 2m.

The Fourier transform of a function f ∈ D(Rd) is defined by f̂(ξ) =�
Rd e

−i〈ξ,x〉f(x) dx.

I. Remarks on some kernels on homogeneous Lie groups. The
results gathered in the next three lemmas are classical.

Lemma 1. Let G be a homogeneous Lie group. Let L be a linear operator
D′(G)→ D′(G) and D(G) ⊂ domL2 L→ L2(G) which preserves real-valued
functions, such that 〈L(w), w〉 ≥ 0 for every w ∈ domL2 L. Assume that for
every real-valued f ∈ D(G) and t > 0, there exists a real-valued function
u(t) such that

(i) u is differentiable ]0,∞[→ L2(G),
(ii) ‖u(t)− f‖L2(G) → 0 as t→ 0+,

(iii) for every t > 0, in D′(G),

(E ) −1
2
L(u(t)) = u′(t).

Then such a u is unique, −L is the generator of a strongly continuous semi-
group of contractions on L2(G) and u(t) = e−tL/2(f).

Proof. Since (E) holds in D′(G) and u′(t) ∈ L2(G), L(u(t)) also belongs
to L2(G), i.e. u(t) ∈ domL2 L. Let u, v be two functions satisfying (i)–(iii);
by (i) and (iii) the derivative of h(t) = ‖u(t)− v(t)‖2L2(G) is

2〈u′ − v′, u− v〉 = −〈L(u− v), u− v〉 ≤ 0,

hence h is a decreasing function on ]0,∞[, which by (ii) tends to 0 as t→ 0+,
hence h = 0. In the same way, ‖u(t)‖2L2(G) is decreasing on ]0,∞[, hence less

than ‖f‖2L2(G). The last assertion follows by definition.
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Lemma 2. Let G be a homogeneous Lie group. Let L be a linear operator
D′(G)→ D′(G) and D(G) ⊂ domL2 L→ L2(G) such that

(a) L commutes with left translations,
(b) δt−1Lδt = t2L.

Let p ∈ L1(G) and pt = t−N/2δt−1/2(p). Then the following assertions are
equivalent :

(1) For every f ∈ D(G), the function f ∗ pt satisfies equation (E) in
D′(G× ]0,∞[).

(2) The function pt satisfies in D′(G× ]0,∞[) the equation

(H ) −1
2
Lpt =

∂pt
∂t
.

(3) The function p satisfies in D′(G) the equation

(H1) (N Id−L)p = tδt
d

dt
(δt−1(p)).

Proof. (1)⇔(2). By (a), L(f ∗ pt) = f ∗ Lpt in D′(G) for t > 0, and
∂(f∗pt)
∂t = f ∗ ∂pt∂t in D′(G× ]0,∞[).
(2)⇔(3). (H) is equivalent to

−tLpt2 =
∂

∂t
pt2 .

By (b), Lpt2 = t−N−2δt−1(Lp) and the above equation can be rewritten as

−t−N−1δt−1(Lp) = −Nt−N−1δt−1(p) + t−N
d

dt
δt−1(p),

which is (H1).

We now collect some properties of the functions f ∗ pt2 (see e.g. [FS,
Prop. 1.20] for (a), (b)). The use of the expression

�
G f(γδt(g−1))p(g) dg is

also reminiscent of [CMZ].

Lemma 3. Let 1 ≤ q < ∞ and let G be a homogeneous Lie group. Let
p ∈ L1(G) and pt2 = t−Nδt−1(p). For f ∈ K(G), let F0 = f

�
G p(g) dg, and

for t > 0,
Ft = f ∗ pt2 .

Then

(a) For γ ∈ G,

Ft(γ) =
�

G

f(γδt(g−1))p(g) dg = (δt−1 [(f ◦ δt) ∗ p])(γ).

In particular ,
‖Ft‖Lq(G) ≤ ‖f‖Lq(G)‖p‖L1(G).
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(b) For t ≥ 0,
‖Fs − Ft‖Lq(G)−→

s→t
0.

(c) Assume that G is a step two stratified group. Let (X1, . . . ,Xn, U1, . . . ,
Um) be a linear basis of G as defined in the notation. Then, for f ∈ D(G)
and t > 0, g, γ ∈ G, g = (x1, . . . , xn, u1, . . . , um),

∂

∂t
f(γδt(g)) =

n∑

i=1

xi(Xif)(γδt(g)) + 2t
m∑

j=1

uj(Ujf)(γδt(g)).

(d) With the notation of (c), the function t 7→ Ft is differentiable ]0,∞[
→ Lq(G) whenever all xip, ujp, 1 ≤ i ≤ n, 1 ≤ j ≤ m, belong to L1(G).

Proof. (a) comes from the change of variable g = δt−1(g′).
(b) For every g ∈ G, ‖fδs(g−1) − fδt(g−1)‖Lq(G) → 0 as s → t; by (a) and

the dominated convergence theorem,

‖Fs − Ft‖Lq(G) =
∥∥∥

�

G

[f(γδs(g−1))− f(γδt(g−1))]p(g) dg
∥∥∥
Lq(G)

≤
�

G

‖fδs(g−1) − fδt(g−1)‖Lq(G)|p(g)| dg−→
s→t

0.

(c) Let g = exp(X+U) ∈ G, where X =
∑n

i=1 xiXi and U =
∑m

j=1 ujUj .
Since tX + t2U commutes with sX + (2st+ s2)U,

δt+s(g) = exp((t+ s)X + (t+ s)2U) = δt(g) exp(sX + (2st+ s2)U).

For h ∈ D(G) and t > 0,

∂

∂t
h ◦ δt(g) =

∂

∂s
h(δt+s(g))

∣∣∣∣
s=0

= (X + 2tU)(h)(δt(g)).

Taking h = γf yields the claimed formula by the left invariance of the Xi’s
and Uj ’s.

(d) Defining

φt(γ, g) =
∂

∂t
f(γδt(g−1))

and writing

f(γδt+h(g−1))− f(γδt(g−1)) = h

1�

0

φt+%h(γ, g) d%

we get

B(t, h) =
1
|h|
∥∥∥Ft+h − Ft − h

�

G

φt(·, g)p(g) dg
∥∥∥
q

=
∥∥∥

�

G

[ 1�

0

φt+%h(·, g) d%− φt(·, g)
]
p(g) dg

∥∥∥
q
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≤
∥∥∥

1�

0

�

G

|φt+%h(·, g)− φt(·, g)| |p(g)| dg d%
∥∥∥
q

≤
1�

0

�

G

‖φt+%h(·, g)− φt(·, g)‖q|p(g)| dg d%.

By (c), for g = (x1, . . . , xn, u1, . . . , um) ∈ G,

‖φs(·, g)‖Lq(G,dγ) ≤
n∑

i=1

|xi| ‖Xif‖Lq(G) + 2s
m∑

j=1

|uj | ‖Ujf‖Lq(G),

and ‖φs(·, g)− φt(·, g)‖Lq(G) → 0 as s→ t, as in the proof of (b); hence the
assumption and the dominated convergence theorem imply B(t, h) → 0 as
h→ 0, which proves the differentiability of t 7→ Ft on ]0,∞[.

Putting together Lemmas 1–3, we get:

Proposition 4. Let G be a step two stratified Lie group. Let L be a
linear operator D′(G) → D′(G) and D(G) ⊂ domL2 L → L2(G) which pre-
serves real-valued functions and satisfies:

(a) L commutes with left translations,
(b) δt−1Lδt = t2L,
(c) 〈L(w), w〉 ≥ 0 for w ∈ domL2 L.

Then there exists at most one real-valued function p such that

(i) p ∈ L1(G) with
�
G p(g) dg = 1 and xkp, ujp ∈ L1(G), 1 ≤ k ≤ n,

1 ≤ j ≤ m,
(ii) p satisfies in D′(G) the equation

(H1) (N Id−L)p+
n∑

k=1

xkXkp+ 2
m∑

j=1

ujUjp = 0.

If such a p exists, then −L is the generator of a strongly continuous
semigroup of contractions of L2(G), and for f ∈ D(G) and t > 0, e−

t
2Lf =

f ∗ pt.
Proof. If G is step two stratified, and g = (x, u), then by Lemma 3,

− d

dt
p(δt−1(g)) =

1
t2

n∑

k=1

xk(Xkp)(δt−1(g)) +
2
t3

m∑

j=1

uj(Ujp)(δt−1(g))

and

−tδt
d

dt
(p ◦ δt−1) =

n∑

k=1

xkXkp+ 2
m∑

j=1

ujUjp,

hence (ii) specifies equation (H1) from Lemma 2 in this setting.
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If there exists a p satisfying (i), (ii), then for every f ∈ D(G), u(t) = f ∗pt
satisfies all assumptions of Lemma 1, owing to Lemmas 2 and 3.

We will now weaken condition (i) in the above proposition. We have not
found the statement of the next lemma in the literature, though it proba-
bly belongs to the folklore, and the implication (1)⇒(2),(3) is known ([FS,
Props. 1.71, 1.72, 1.74]). We denote by 〈S, f〉 the action of a distribution S
on a function f . We recall that for every compact setK ⊂ Rd, the topological
space DK(Rd) of K-supported functions in D(Rd) embeds continuously in
the space A(Rd) of functions on Rd whose Fourier transforms lie in L1(Rd),
equipped with the norm ‖f‖A(Rd) = ‖f̂‖L1(Rd).

Lemma 5. Let p ∈ S ′(Rd) be the inverse Fourier transform of a bounded
continuous function p̂ on Rd satisfying p̂(0) = 1. Let pt be the inverse
Fourier transform of p̂(td1/2ξ1, t

d2/2ξ2, . . . , t
dd/2ξd), where t, dj > 0. Then

(1) (a) pt → δ0 in D′(Rd) as t→ 0+,

(b) Pε = 1[ε,∞[(t)pt → P = 1]0,∞[(t)pt in D′(Rd+1) as ε→ 0+,

(c) pt satisfies the following homogeneity condition, with N=
∑d

j=1dj:

pr2t(r
d1y1, . . . , r

ddyd) = r−Npt(y1, . . . , yd).

(2) If pt satisfies the equation (H): −1
2Lpt = ∂pt

∂t in S ′(Rd × ]0,∞[),
where L is a differential operator on Rd, then(

∂

∂t
+

1
2
L

)
P = δ(0,0).

(3) Assume moreover that ∂
∂t + 1

2L is hypoelliptic. Then p ∈ S(Rd).

Proof. (1)(a) Since p̂ is bounded and continuous, the dominated conver-
gence theorem implies, for f ∈ D(Rd),

�

Rd
p̂(td1/2ξ1, t

d2/2ξ2, . . . , t
dd/2ξd)f̂(ξ) dξ −→

t→0+

�

Rd
p̂(0)f̂(ξ) dξ = 2πf(0).

(b) Let f ∈ D(Rd+1) be supported on Rd× [−T, T ], T > 0, and let f̂(·, t)
denote the Fourier transform of f(z, t) with respect to z ∈ Rd. Then

|〈P, f(z, t)〉| =
∣∣∣
∞�

0

〈pt, f(·, t)〉 dt
∣∣∣ ≤

∣∣∣
∞�

0

〈p̂ t, f̂(·, t)〉 dt
∣∣∣

≤ T‖p̂‖∞‖f‖L∞(R,A(Rd)) ≤ T‖p̂‖∞‖f‖A(Rd+1),

hence P is well defined as a distribution on Rd+1. In the same way, for ε > 0,

|〈P − Pε, f(z, t)〉| ≤
∣∣∣
ε�

0

〈p̂t, f̂(·, t)〉 dt
∣∣∣ ≤ ε‖p̂‖∞‖f‖A(Rd+1).
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(c) This is obvious since pt(y1, . . . , yd) = t−N/2p(t−d1/2y1, . . . , t
−dd/2yd).

(2) By (1)(b) it is enough to show that, in D′(Rd+1),(
∂

∂t
+

1
2
L

)
Pε −→

ε→0+
δ(0,0).

By (H) and (1)(a),(
∂

∂t
+
L

2

)
(1[ε,∞[(t)pt) = 1[ε,∞[(t)

L

2
(pt) + 1[ε,∞[(t)

∂

∂t
(pt) + pt

∂

∂t
(1[ε,∞[(t))

= pt
∂

∂t
(1[ε,∞[(t)) = pε ⊗ δε

−→
ε→0+

δ(0,0).

(3) Since ∂
∂t + L

2 is hypoelliptic on Rd+1, (2) implies that P is C∞ on
Rd+1 \ (0, 0). By (1)(c) the claim now follows from [FS, Props. 1.72, 1.74].

In the next proposition we identify the step two stratified group G with
some Rd, both as a manifold and a measure space; the Fourier transform is
the usual one on Rd.

Proposition 6. Let G be a step two stratified Lie group, and L =
−∑n

k=1X
2
k , where (X1, . . . ,Xn) is a basis of the first layer of G. Then there

is at most one p satisfying both equation (H1) in Proposition 4 and

(i)′ p ∈ S ′(G) = S ′(Rd) is the inverse Fourier transform of a bounded
continuous function p̂ on Rd satisfying p̂(0) = 1.

Such a p lies in S(G).

Proof. In the stratified setting, the sublaplacian L satisfies the assump-
tions (a)–(c) of Proposition 4; by a theorem of Hörmander, L and ∂

∂t + L
2

are hypoelliptic. By Lemmas 2 and 5, the two assumptions of Proposition 6
imply p ∈ S(G), hence all xkp and ujp lie in L1(G), i.e. (i) of Proposition 4
is satisfied.

For the next examples we follow the definitions of [G]. We present them in
increasing order of difficulty. By [C], the heat kernels of all step two stratified
Lie groups can theoretically be recovered from the Nn,2 heat kernel. Let us
mention that the heat kernels of the generalized Heisenberg groups, which
we do not treat here, can be explicitly deduced from those of Heisenberg
groups [R].

II.A. Computation of the heat kernel on the Heisenberg groups.
Let (aj)nj=1 be strictly positive numbers. We consider the isotropic (i.e.
aj = 1, 1 ≤ j ≤ n) or nonisotropic Heisenberg group G = Ha

n. Via the
exponential map, it may be identified with R2n+1, n ≥ 1, equipped with
Lebesgue measure and the group law



HEAT KERNELS ON HEISENBERG GROUPS 241

γg = (x1, y1, . . . , xn, yn, u)(x′1, y
′
1, . . . , x

′
n, y
′
n, u
′)

=
(
x1+ x′1, y1 + y′1, . . . , xn + x′n, yn + y′n, u+ u′+ 2

n∑

j=1

aj(yjx′j − xjy′j)
)
.

Here the first layer has dimension 2n, the central one has dimension 1, and
N = 2n+ 2. A basis of the top layer is

Xj =
∂

∂xj
+ 2ajyj

∂

∂u
, Yj =

∂

∂yj
− 2ajxj

∂

∂u
,

and

[Xj, Yj] = −4aj
∂

∂u
= −4ajU, 1 ≤ j ≤ n,

the other brackets being zero. Equation (H1) in Proposition 4 reduces to

(2n+ 2)p− Lp = −
n∑

j=1

(
xj

∂p

∂xj
+ yj

∂p

∂yj

)
− 2uUp.

The sublaplacian is given by

−L =
n∑

j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

+ 4a2
j (x

2
j + y2

j )
∂2

∂u2 + 4aj

(
yj

∂2

∂xj∂u
− xj

∂2

∂yj∂u

))
.

Since yj ∂
∂xj
− xj ∂

∂yj
is the generator of rotations in the xj , yj coordinates,

L commutes with these rotations; hence, if a function p as in Proposition 4
exists, it must depend only on u and rj = (x2

j + y2
j )

1/2, 1 ≤ j ≤ n; if we set
p(x, y, u) = h(r1, . . . , rj , u), equation (H1) reduces to

(∗) (2n+ 2)h+
n∑

j=1

(
∂2h

∂r2
j

+
1
rj

∂h

∂rj
+ 4a2

jr
2
j

∂2h

∂u2

)

+
n∑

j=1

rj
∂h

∂rj
+ 2u

∂h

∂u
= 0.

We first consider the isotropic case aj = 1, 1 ≤ j ≤ n, G = Hn. Here,
L commutes with rotations on R2n, p must depend only on u and r =
(x2

1 + y2
1 + . . .+ x2

n + y2
n)1/2. We set p(x1, y1, . . . , xn, yn, u) = h(r, u). Then

−Lh =
∂2h

∂r2 +
2n− 1
r

∂h

∂r
+ 4r2 ∂

2h

∂u2

and equation (H1) reduces to

(∗) ∂2h

∂r2 + 4r2 ∂
2h

∂u2 +
(
r +

2n− 1
r

)
∂h

∂r
+ 2u

∂h

∂u
+ (2n+ 2)h = 0,

with h ∈ L1(R+×R, r2n−1drdu) and σ2n
�
R+×R h(r, u)r2n−1 dr du = 1, where

σ2n denotes the area of the unit sphere in R2n. We denote by q(r, λ) the
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Fourier transform of h(r, u) with respect to u. Since the transform of u ∂h∂u is
−q − λ ∂q∂λ , (∗) becomes

(∗∗) ∂2q

∂r2 +
(
r +

2n− 1
r

)
∂q

∂r
− 2(2r2λ2 − n)q − 2λ

∂q

∂λ
= 0,

with σ2n
�
R+ q(r, 0)r2n−1 dr = 1. In particular, Q(r) = q(r, 0) satisfies

Q′′ +
(
r +

2n− 1
r

)
Q′ + 2nQ = 0,

whose solutions belong to a two-dimensional vector space; an obvious so-
lution is Q1(r) = (2π)−ne−r

2/2 ∈ L1(R+, r2n−1dr). Up to a multiplicative
constant, it is the only solution lying in this space, which is proved either
by computing another independent solution, or by Proposition 4 applied to
G = R2n, or by noticing that we have indeed switched to the problem of
recovering the usual heat kernel on G = R2n.

This is a motivation for looking for a solution of (∗∗) of the form

q(r, λ) = C(λ)e−α(λ)r2/2

with α(0) = 1 and C(0) = (2π)−n. We get

r2(α2 − α− 4λ2 + λα′)q +
(
−2nα+ 2n− 2λ

C ′

C

)
q = 0,

which splits into the two differential equations

α2 − α− 4λ2 + λα′ = 0, α(0) = 1,
C ′

C
= n

1− α
λ

, C(0) =
1

(2π)n
.

The first one is a Riccati equation (as in [B]) with an obvious solution
α1(λ) = 2λ, so we look for a solution α(λ) = 2λ+ 1/β(λ). We get

(4λ− 1)β − λβ′ = −1, β(0) = 1,

hence β(λ) = e4λ−1
4λ , and

α(λ) = 2λ coth 2λ.

Then C′
C = n

λ − 2 coth 2λ, hence

q(r, λ) =
(

2λ
2π sinh 2λ

)n
e−(λ coth 2λ)r2

.

Let h be the inverse Fourier transform of q with respect to λ and let p
be the corresponding function on R2n+1. We will now show directly that p
satisfies (i) of Proposition 4. (At this step, the positivity of p is not known.)
It is also easy to verify that p̂ is continuous and bounded, and we may use
Proposition 6, which is however less elementary than Lemma 7.
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Lemma 7. (a) The function

φ(x, λ) =

√
2λ

2π sinh 2λ
e−2λ(coth 2λ)x2/2

is the Fourier transform with respect to u of a function ϕ(x, u) ∈ L1(R2).
(b) xϕ(x, u) and uϕ(x, u) also belong to L1(R2).
(c) The function

2πp(x1, y1, . . . , xn, yn, u) =
�

R
eiλu

(
2λ

2π sinh 2λ

)n
e−λ coth 2λ

∑n
j=1(x2

j+y2
j ) dλ

belongs to L1(R2n+1), and so do up, xjp, yjp, 1 ≤ j ≤ n.

Proof. (a)&(b) By the Cauchy–Schwarz inequality,

‖ϕ(x, u)‖1 ≤ ‖(1 + |u|)ϕ(x, u)‖L1(dx,L2(du))‖(1 + |u|)−1‖L2(du),

and by the Plancherel formula,

‖(1 + |u|)ϕ(x, u)‖L1(dx,L2(du))

≤ ‖φ(x, λ)‖L1(dx,L2(dλ)) +

∥∥∥∥
∂

∂λ
φ(x, λ)

∥∥∥∥
L1(dx,L2(dλ))

.

In the same way, ‖xϕ(x, u)‖1 and ‖uϕ(x, u)‖1 are controlled respectively by
the L1(dx, L2(dλ)) norms of xφ, x∂φ∂λ , and ∂φ

∂λ ,
∂2φ
∂λ2 .

Let c > 0 be such that λ cothλ ≥ c for every λ ∈ R. Since

|φ(x, λ)| ≤
√

2λ
2π sinh 2λ

e−cx
2/2,

φ and xφ belong to L1(dx, L2(dλ)).
The first two derivatives of λ cothλ are bounded on R, and the function

v(λ) =
√

2λ/(sinh 2λ) is such that v′/v and v′′/v are bounded on R. Hence
∣∣∣∣
∂φ

∂λ

∣∣∣∣ ≤ C(1 + x2)φ,

∣∣∣∣
∂2φ

∂λ2

∣∣∣∣ ≤ C(1 + x2)2φ,

which implies that x∂φ∂λ ,
∂φ
∂λ ,

∂2φ
∂λ2 ∈ L1(dx, L2(dλ)).

(c) Let ϕ̂(ξ, λ) be the full Fourier transform of ϕ on R2. Since

1√
2π

�

R
e−iξxe−(2λ coth 2λ)x2/2 dx =

√
tanh 2λ

2λ
e−

tanh 2λ
2λ

ξ2

2

we get

ϕ̂(ξ, λ) =
1√

cosh 2λ
e−

tanh 2λ
2λ

ξ2

2 .
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The full Fourier transform p̂ of p on R2n+1 is

p̂(ξ1, η1, . . . , ξn, ηn, λ) =
n∏

j=1

1
cosh 2λ

e−
tanh 2λ

2λ

ξ2j+η2
j

2 =
n∏

j=1

ϕ̂(ξj , λ)ϕ̂(ηj , λ);

it is the Fourier transform of a bounded measure, because ϕ̂(ξj, λ) is the
transform on R2n+1 of the bounded measure

δ0(x1)⊗ . . .⊗ ϕ(xj , u)dxjdu⊗ δ0(xj+1)⊗ . . .⊗ δ0(yn).

On the other hand, by the Plancherel formula, p ∈ L2(R2n+1): indeed,

‖p̂‖2L2(R2n+1) =
�

R

1
(cosh 2λ)2n‖e

− tanh 2λ
2λ

t2

2 ‖4nL2(dt) dλ

= cn
�

R

1
(cosh 2λ)2n

(
2λ

tanh 2λ

)2n

dλ <∞.

Hence p ∈ L1(R2n+1). In the same way, x̂jp = i ∂
∂ξj
p̂ and ûp = i ∂∂λ p̂ are

Fourier transforms of bounded measures, because so are, by (b), i ∂∂ξ ϕ̂ = x̂ϕ

and ∂
∂λ ϕ̂ = ûϕ.

Proposition 4 implies:

Theorem 8 ([G], [H]). The heat kernel on Hn is pt = t−(n+1)δt−1/2(p),
i.e.

2πpt(x1, y1, . . . , xn, yn, u)

= t−(n+1)
�

R
eiλu/t

(
2λ

2π sinh 2λ

)n
e−(λ coth 2λ)t−1∑n

j=1(x2
j+y2

j ) dλ.

We now come back to the nonisotropic Heisenberg group Ha
n. We recall

that we must solve

(∗) 2u
∂h

∂u
+ (2n+ 2)h+

n∑

j=1

(
∂2h

∂r2
j

+ 4a2
jr

2
j

∂2h

∂u2 +
(
rj +

1
rj

)
∂h

∂rj

)
= 0

with h ∈ L1(Rn+ × R, (
∏n
j=1 rjdrj)du). By Fourier transform with respect

to u we get

(∗∗) − 2λ
∂q

∂λ
+ 2nq +

n∑

j=1

(
∂2q

∂r2
j

+
(
rj +

1
rj

)
∂q

∂rj
− 4a2

jr
2
jλ

2q

)
= 0.

We look for a solution of (∗∗) of the form

q(r1, . . . , rn, λ) = C(λ)
n∏

j=1

e−αj(λ)r2
j /2.
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We get the differential equations

α2
j − αj − 4λ2a2

j + λα′j = 0,
C ′

C
=
n−∑n

j=1 αj

λ
, αj(0) = 1

with αj(0) = 1, (2π)nC(0) = 1, whose solutions are, as before,

αj(λ) = 2λaj coth 2λaj , C(λ) =
n∏

j=1

2λaj
2π sinh 2λaj

.

Hence

p̂(ξ1, . . . , ξn, η1, . . . , ηn, λ) =
n∏

j=1

ϕ̂(ξj, λaj)ϕ̂(ηj , λaj).

Using Lemma 7 and Proposition 4, we get, as in the isotropic case:

Theorem 9 ([CT]). The heat kernel on the nonisotropic Heisenberg
group Ha

n is pt = t−(n+1)δt−1/2(p), i.e.

2πpt(x1, y1, . . . , xn, yn, u)

= t−(n+1)
�

R
eiλu/t

n∏

j=1

2λaj
2π sinh 2λaj

exp
(
−1
t

n∑

j=1

(x2
j + y2

j )λaj coth 2λaj

)
dλ.

II.B. Computation of the heat kernel on the group Nn,2. We
consider the group Nn,2, whose Lie algebra is the step two nilpotent free
algebra with n generators, i.e. Nn,2 is Rn+C2

n , n ≥ 1, equipped with Lebesgue
measure, and the group law

γg = (x1, . . . , xn, (ukl)1≤k<l≤n)(x′1, . . . , x
′
n, (u

′
kl)1≤k<l≤n)

=
(
x1 + x′1, . . . , xn + x′n,

(
ukl + u′kl +

1
2

(xkx
′
l − xlx′k)

)

1≤k<l≤n

)
.

The first layer has dimension n, the central one has dimension C2
n, hence

N = n+ 2C2
n = n2. A basis of the top layer is

Xj =
∂

∂xj
+

1
2

( ∑

1≤k<j
xk

∂

∂ukj
−
∑

j<l≤n
xl

∂

∂ujl

)
, 1 ≤ j ≤ n,

and

[Xj,Xk] =
∂

∂ujk
= Ujk, 1 ≤ j < k ≤ n.

On the other hand, L satisfies (see [G, p. 121])

−L−
n∑

j=1

∂2

∂x2
j

+
n∑

j=1

(∑

k<j

xk
∂

∂ukj
−
∑

j<l

xl
∂

∂ujl

)
∂

∂xj
=

1
4

n∑

j=1

Rj ,
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where

Rj =
∑

k,l<j

xkxl
∂

∂ukj

∂

∂ulj
+
∑

k,l>j

xkxl
∂

∂ujk

∂

∂ujl
− 2

∑

k<j<l

xkxl
∂

∂ukj

∂

∂ujl

and equation (H1) reduces to

(∗) − Lp+ n2p+
n∑

j=1

xj
∂p

∂xj
+ 2

∑

1≤k<l≤n
ukl

∂p

∂ukl
= 0.

Since L is formally self-adjoint, we must have p(g) = p(g−1), which means
that p is even on Rn+C2

n, and implies
n∑

j=1

(∑

k<j

xk
∂

∂ukj
−
∑

j<l

xl
∂

∂ujl

)
∂p

∂xj
= 0.

We denote by q(x1, . . . , xn, (λkl)1≤k<l≤n) the Fourier transform of p with
respect to all ukl. The Fourier transform of ukl

∂p
∂ukl

is −q − λkl ∂q∂λkl
, and the

transform of Rj is −(ΛX)2
jq, where X is the column matrix of the coordi-

nates x1, . . . , xn, Λ is the n × n antisymmetric matrix with λkl above the
diagonal and (ΛX)j denotes the jth coordinate of the column matrix ΛX.
This gives

(∗∗) nq − 2
∑

1≤k<l≤n
λkl

∂q

∂λkl
+

n∑

j=1

∂2q

∂x2
j

+
n∑

j=1

xj
∂q

∂xj
− 1

4
‖ΛX‖2q = 0.

Let Ω ∈ SO(n) be an orthogonal matrix, and X ′ = Ω∗X, Λ′ = Ω∗ΛΩ.
Obviously

∑n
j=1 xj

∂q
∂xj

,
∑n

j=1
∂2q
∂x2
j
, ‖ΛX‖ are invariant under such a change

of variable, and so is
∑

1≤k<l≤n λkl
∂q
∂λkl

, because if (λkl)1≤k<l≤n and the over-

diagonal entries (λ′kl)1≤k<l≤n of Λ′ are identified with vectors in Rn(n−1)/2,
the mapping Λ 7→ Λ′ defines a linear isometry TΩ of Rn(n−1)/2 equipped
with the euclidean norm. Hence, by unicity of L1(G) solutions of (∗) with
integral 1,

q(X, (λkl)k<l) = q(Ω∗X,TΩ(λkl)k<l).

It follows, by inverse Fourier transform, that

p(X, (ukl)1≤k<l≤n) = p(ΩX,TΩ(ukl)1≤k<l≤n).

We now use the same trick as in [G]. There exists an orthogonal matrix
Ω ∈ SO(n), which depends on Λ, such that

Λ = ΩMΩ∗,

where M is block diagonal: if n is even, each block of M is a 2× 2 matrix

µh

(
0 1
−1 0

)
, 1 ≤ h ≤ n/2;
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if n is odd, there are [n/2] such blocks and the last one is the 1 × 1 zero
matrix.

Let Y = Ω∗X. We define

q(x1, . . . , xn, (λkl)1≤k<l≤n) = Q(y1, . . . , yn, µ1, . . . , µ[n/2])

and get

nQ+
[n/2]∑

h=1

(
−2µh

∂Q

∂µh
− 1

4
µ2
h(y2

2h−1 + y2
2h)Q

)
+

n∑

j=1

(
∂2Q

∂y2
j

+ yj
∂Q

∂yj

)
= 0.

Using polar coordinates rh, θh instead of y2h−1, y2h, 1 ≤ h ≤ [n/2], denoting
by R the function obtained from Q by this change of variable, we rewrite
(∗∗) if n is even as

(∗∗∗) nR+
n/2∑

h=1

∂2R

∂r2
h

+
(

1
rh

+ rh

)
∂R

∂rh
− 1

4
µ2
hr

2
hR− 2µh

∂R

∂µh
= 0.

Since this looks like equation (∗∗) for the nonisotropic case, we look for a
solution

R(r1, . . . , rn/2, µ1, . . . , µn/2) =
n/2∏

h=1

Ch(µh)e−αh(µh)r2
h/2,

which yields the differential equations

α2
h − αh −

1
4
µ2
h + µhα

′
h = 0,

C ′h
Ch

=
1− αh
µh

with αh(0) = 1, 2πCh(0) = 1. We get as in the previous cases

Q(y1, . . . , yn, µ1, . . . , µn/2) =
n/2∏

h=1

1
2µh

2π sinh 1
2µh

e−( 1
2µh coth 1

2µh) 1
2 (y2

2h−1+y2
2h).

If n is odd, we get in the same way

Q(y1, . . . , yn, µ1, . . . , µ[n]/2)

=
1√
2π

e−y
2
n/2

[n]/2∏

h=1

1
2µh

2π sinh 1
2µh

e−( 1
2µh coth 1

2µh) 1
2 (y2

2h−1+y2
2h).

Theorem 10 ([G], [C]). The heat kernel on Nn,2 is pt = t−n
2/2δt−1/2(p).

Writing Λ = Ω∗MΩ as explained above, let

Ph(t, Y,M) =
1
2µh

2π sinh 1
2µh

e−
1
2t (y

2
2h−1+y2

2h) 1
2µh coth 1

2µh , 1 ≤ h ≤ [n]
2
.
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Then pt(x1, . . . , xn, (ukl)k<l) is given, for even n, by

(2π)−n(n−1)/2t−n
2/2

�

Rn(n−1)/2

e
i
t

∑
1≤k<l≤n λklukl

n/2∏

h=1

Ph(t, Ω∗X,M)
∏

1≤k<l≤n
dλkl,

and for odd n, by

(2π)−n(n−1)/2t−n
2/2

×
�

Rn(n−1)/2

e
i
t

∑
1≤k<l≤n λklukl

1√
2π

e−
(Ω∗X)2n

2t

[n/2]∏

h=1

Ph(t, Ω∗X,M)
∏

1≤k<l≤n
dλkl.

Proof. We have not been able to prove directly that p, xjp, uklp belong
to L1(Rn+C2

n), so we will use Proposition 6. If n is even, let p̂ be the Fourier
transform of q with respect to x1, . . . , xn:

p̂(ξ1, . . . , ξn, (λkl)k<l)

=
�

Rn
e−i

∑n
j=1(Ω∗ξ)jyjQ(y1, . . . , yn, µ1, . . . , µn/2) dy1 . . . dyn

=
n/2∏

h=1

ϕ̂

(
(Ω∗ξ)2h−1,

1
4
µh

)
ϕ̂

(
(Ω∗ξ)2h,

1
4
µh

)
,

where ξ is the column matrix of coordinates ξ1, . . . , ξn and ϕ̂ has been com-
puted in the proof of Lemma 7. Obviously, |p̂| ≤ 1 = p̂(0, . . . , 0) and p̂ is
a continuous function because so is ϕ̂ and we may choose the eigenvalues
µh and the matrix Ω of corresponding eigenvectors as continuous functions
of Λ. The verification is analogous if n is odd, which ends the proof.
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Tunis, Birkhäuser, 1987.
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