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Abstract. In a previous paper the authors developed an H1-BMO theory for un-
bounded metric measure spaces (M,ρ, µ) of infinite measure that are locally doubling and
satisfy two geometric properties, called “approximate midpoint” property and “isoperi-
metric” property. In this paper we develop a similar theory for spaces of finite measure.
We prove that all the results that hold in the infinite measure case have their counter-
parts in the finite measure case. Finally, we show that the theory applies to a class of
unbounded, complete Riemannian manifolds of finite measure and to a class of metric
measure spaces of the form (Rd, ρϕ, µϕ), where dµϕ = e−ϕ dx and ρϕ is the Riemannian
metric corresponding to the length element ds2 = (1 + |∇ϕ|)2(dx2

1 + · · · + dx2
d). This

generalizes previous work of the last two authors for the Gauss space.

1. Introduction. In [3] the authors developed an H1-BMO theory on
unbounded metric measure spaces (M,ρ, µ) that are locally doubling and
satisfy two additional “geometric” properties, called approximate midpoint
(AM) property and isoperimetric (I) property. Roughly speaking, a space
satisfies (AM) if its points do not become too sparse at infinity, and satisfies
(I) if a fixed proportion of the measure of any bounded set is concentrated
near the boundary.

For each scale parameter b in R+, we defined the spaces H1
b (µ) and

BMOb(µ) much as in the classical case of spaces of homogeneous type, in
the sense of Coifman and Weiss [6], the only difference being that the balls
involved have at most radius b. Then we showed that these spaces do not de-
pend on the scale b, at least if b is sufficiently large, and that all the classical
results that hold on spaces of homogeneous type, such as a John–Nirenberg
inequality, the H1(µ)-BMO(µ) duality, complex interpolation, hold for these
spaces. Moreover, these spaces provide end-point estimates for some inter-
esting singular integrals which arise in various settings. We also showed
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that the theory applies to noncompact complete Riemannian manifolds with
Ricci curvature bounded from below and strictly positive spectrum, e.g. to
noncompact Riemannian symmetric spaces.

In [3] we focused on the case where µ(M) =∞. In this paper we tackle
the case where µ(M) <∞. In this case we must modify slightly the isoperi-
metric property, by assuming that, instead of (I), M satisfies the comple-
mentary isoperimetric property (IcB0

). Roughly speaking, M satisfies (IcB0
)

if there exists a ball B0 such that a fixed proportion of the measure of any
open set contained in M \ B̄0 is concentrated near the boundary of the set.

When µ(M) is finite, the definitions of the atomic Hardy space H1(µ)
and the space BMO(µ) of functions of bounded mean oscillation are quite
similar to those of the corresponding spaces in the infinite measure case
considered in [3].

To be specific, for each b in R+ denote by Bb the collection of balls of
radius at most b. The constant b may be thought of as a “scale parameter”,
and the balls in Bb are called admissible balls at the scale b. An atom a is
either the exceptional atom 1/µ(M) or a function in L1(µ) supported in
a ball B which satisfies an appropriate “size” and cancellation condition.
Fix a sufficiently large “scale parameter” b in R+ (how large depends on
the constants that appear in the definition of the (AM) property). Then
H1(µ) is the space of all functions in L1(µ) that admit a decomposition of
the form

∑
j λjaj , where the aj ’s are atoms supported in balls in Bb or the

exceptional atom, and the sequence of complex numbers {λj} is summable.
A locally integrable function f is in BMO(µ) if it is in L1(µ) and

sup
B

1
µ(B)

�

B

|f − fB| dµ <∞,

where the supremum is taken over all balls B in Bb, and fB denotes the
average of f over B. This definition of BMO(µ) is inspired by previous work
of A. Ionescu [12], who defined a similar space on rank one noncompact
symmetic spaces.

We prove that these spaces indeed do not depend on the parameter b,
that the topological dual of H1(µ) is isomorphic to BMO(µ), and an inequal-
ity of John–Nirenberg type holds for functions in BMO(µ). Furthermore, the
spaces Lp(µ) are intermediate spaces between H1(µ) and BMO(µ) for the
complex interpolation methods. It is worth observing that some important
operators, which are bounded on Lp(µ) for all p in (1,∞), but otherwise
unbounded on L1(µ) and on L∞(µ), turn out to be bounded from H1(µ) to
L1(µ) and from L∞(µ) to BMO(µ).

Some of the proofs of these results require only simple adaptations of
the proofs of the analogous results in [3]. In these cases we shall briefly
indicate the variations needed. Other proofs, like those of the duality and
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the interpolation results, require more substantial changes, and we give full
details.

In Section 7 we show that our theory applies to unbounded complete
Riemannian manifolds M of finite volume with Ricci curvature bounded
from below such that Cheeger’s isoperimetric constant h(M) is strictly pos-
itive. It is well known that, on such manifolds, Cheeger’s constant is strictly
positive if and only if the Laplace–Beltrami operator L on M has spectral
gap, i.e. if and only if 0 is an isolated eigenvalue of L on L2(µ).

In [15] G. Mauceri and S. Meda defined an atomic Hardy space H1(γ)
and a space BMO(γ) of functions of bounded mean oscillation associated to
the Gauss measure dγ(x) = e−|x|

2
dx on Rd. We recall briefly the definitions

of these spaces. For each scale parameter b we denote by Bγb the set of all
Euclidean balls B in Rd such that

rB ≤ bmin(1, 1/|cB|),
where cB and rB denote the centre and the radius of B respectively. Now,
H1(γ) is defined as H1(µ) above, but with the family of admissible balls Bb
replaced by Bγb , and similarly for BMO(γ). In [15] the authors proved that
H1(γ) and BMO(γ) possess the analogues of the properties enumerated
above for H1(µ) and BMO(µ). They also showed that some important op-
erators related to the Ornstein–Uhlenbeck operator on Rd that are bounded
on Lp(γ) for all p in (1,∞), but otherwise unbounded on L1(γ) and on
L∞(γ), are bounded from H1(γ) to L1(γ) and from L∞(γ) to BMO(γ).

It may be worth observing that the metric measure space (Rd, ρ, γ),
where ρ denotes the Euclidean distance, has finite measure and is not locally
doubling.

The definition of the class Bγb of admissible balls in [15] suggests that
on the Gauss space (Rd, ρ, γ) the Euclidean metric ρ should be replaced by
the Riemannian metric associated to the length element ds2 = (1 + |x|)2

(dx2
1 + · · ·+ dx2

d).
In Section 8 we exploit and generalize this idea, by considering metric

measure spaces of the form (Rd, ρϕ, µϕ) where ϕ is a function in C2(Rd),
ρϕ is the Riemannian metric on Rd defined by the length element ds2 =
(1 + |∇ϕ|)2(dx2

1 + · · · + dx2
d) and dµϕ = eϕ dλ, where λ is the Lebesgue

measure on Rd. We prove that if the function ϕ satisfies appropriate condi-
tions, the space (Rd, ρϕ, µϕ) is locally doubling and satisfies properties (AM)
and (IcB0

).
Finally, we recall that Hardy spaces and spaces of functions of bounded

mean oscillation have recently been studied on various nondoubling metric
measure spaces [14, 18, 19, 20]. We point out that our spaces are differ-
ent and that they provide end-point estimates for singular integrals which
do not satisfy the standard Calderón–Zygmund estimates at infinity, still
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maintaining the important property that the complex interpolation spaces
between H1(µ) and BMO(µ) are the spaces Lp(µ).

2. Geometric assumptions. Suppose that (M,ρ, µ) is a metric mea-
sure space and denote by B the family of all balls in M . We assume that
0 < µ(M) < ∞. For each B in B we denote by cB and rB the centre and
the radius of B respectively. Furthermore, for each κ > 0, we denote by κB
the ball with centre cB and radius κrB. For each b in R+, we denote by Bb
the family of all balls B in B such that rB ≤ b. For any subset A of M and
each κ in R+ we denote by Aκ and Aκ the sets

{x ∈ A : ρ(x,Ac) ≤ κ} and {x ∈ A : ρ(x,Ac) > κ}
respectively.

In this paper we assume that (M,ρ, µ) is an unbounded metric measure
space of finite measure, which possesses the following properties:

(i) Local doubling property (LD): for every b in R+ there exists a con-
stant Db such that

µ(2B) ≤ Dbµ(B) ∀B ∈ Bb.
This property is often called local doubling condition in the liter-
ature, and we adhere to this terminology. Note that if (LD) holds
and M is bounded, then µ is doubling.

(ii) Property (AM) (approximate midpoint property): there exist R0

in [0,∞) and β in (1/2, 1) such that for every pair of points x and
y in M with ρ(x, y) > R0 there exists a point z in M such that
ρ(x, z) < βρ(x, y) and ρ(y, z) < βρ(x, y).

(iii) Complementary isoperimetric property (IcB0
): there exist a ball B0

in M , and κ0 and C in R+, such that for every open set A contained
in M \ B̄0,

(2.1) µ(Aκ) ≥ Cκµ(A) ∀κ ∈ (0, κ0].

Suppose that M has property (IcB0
). For each t in (0, κ0] we denote

by Ct the supremum over all constants C for which (2.1) holds for
all κ in (0, t]. Then we define

IcM,B0
= sup{Ct : t ∈ (0, κ0]}.

Note that the function t 7→ Ct is decreasing on (0, κ0], so that

(2.2) IcM,B0
= lim

t→0+
Ct.

Remark 2.1. The first two geometric assumptions (LD) and (AM) co-
incide with the corresponding assumptions made in [3] for spaces of infinite
measure. The isoperimetric property is sligthly different from the isoperi-
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metric property (I) in [3], because in the infinite measure case we assumed
that inequality (2.1) holds for all bounded open sets in M .

Remark 2.2. The local doubling property implies that for each τ ≥ 2
and for each b in R+ there exists a constant C such that

(2.3) µ(B′) ≤ Cµ(B)

for each pair of balls B and B′ with B ⊂ B′, B in Bb, and rB′ ≤ τrB. We shall
denote by Dτ,b the smallest constant for which (2.3) holds. In particular, if
(2.3) holds (with the same constant) for all balls B in B, then µ is doubling
and we shall denote by Dτ,∞ the smallest constant for which (2.3) holds.

Remark 2.3. Loosely speaking, the approximate midpoint property
means that the points of M “do not become too sparse at infinity”. The
property is obviously satisfied on all length metric spaces.

Remark 2.4. In Section 7 we shall see that, on complete Riemannian
manifolds, the complementary isoperimetric property is equivalent to the
positivity of Cheeger’s isoperimetric constant

h(M) = inf
σ(∂A)
µ(A)

where the infimum runs over all bounded open sets A with µ(A) ≤ µ(M)/2
and with smooth boundary ∂A. Here σ denotes the induced Riemannian
measure on ∂A. Moreover, if the Ricci curvature of M is bounded from
below, both properties are equivalent to the existence of a spectral gap for
the Laplacian.

Remark 2.5. The local doubling property is needed for all the results
in this paper, but many results in Sections 2–5 depend only on some but not
all of the properties (i)–(iii). In particular, all the results in Sections 3 and
4 require property (AM) but not (IcB0

); Lemma 5.4 and Theorem 5.5, which
are crucial to proving the interpolation result Theorem 5.6, require prop-
erty (IcB0

), but not (AM). Finally, all the properties (i)–(iii) above are needed
for the interpolation results and the theory of singular integral operators in
Section 5.

Proposition 2.6. Suppose that M possesses property (IcB0
). The follow-

ing hold:

(i) for every open set A contained in M \ B̄0,

µ(At) ≥ (1− e−I
c
M,B0

t)µ(A) t ∈ R+;

(ii) for every point x in M there exists a constant C, which depends on
x, IcM,B0

and B0, such that

µ(B(x, r)c) ≤ C e−I
c
M,B0

r ∀r > 0.
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Proof. The proof of (i) is almost verbatim the same as the proof of
[3, Proposition 3.1], and is omitted.

Now we prove (ii). Denote by Vr the measure ofB(x, r)c. Since µ(B(x, r)c)
≤ µ(M) for every r > 0, it is clearly enough to prove the inequality for r
sufficiently large, say r > rB0 + d(x, cB0) + 1. Then B(x, r − 1)c ⊂ M \ B̄0

and B(x, r − 1)c \B(x, r)c ⊇ (B(x, r − 1)c)1. Thus, by (i),

Vr−1 − Vr ≥ µ((B(x, r − 1)c)1) ≥ (1− e−I
c
M,B0 )Vr−1.

Hence
Vr ≤ e−I

c
M,B0 Vr−1.

By iteration, if rB0 + d(x, cB0) + n < r ≤ rB0 + d(x, cB0) + n+ 1 we obtain

Vr ≤ e−I
c
M,B0

n
Vr−n ≤ C e−I

c
M,B0

r
,

where C = exp((rB0 + d(x, cB0) + 1)IcM,B0
)µ(M).

3. H1 and BMO. In this section we define the Hardy space H1(µ) and
the space BMO(µ). The definitions are very similar to those given in [3] for
metric spaces of infinite measure. The only differences are the existence of
the “exceptional atom” in H1(µ) and the fact that BMO(µ) is defined as a
subspace of L1(µ).

Definition 3.1. Suppose that r is in (1,∞]. A (1, r)-standard atom a is
a function in L1(µ) supported in a ball B in B with the following properties:

(i) ‖a‖∞ ≤ µ(B)−1 if r =∞ and(
1

µ(B)

�

B

|a|r dµ
)1/r

≤ µ(B)−1 if r ∈ (1,∞);

(ii)
	
B a dµ = 0.

The constant function 1/µ(M) is referred to as the exceptional atom.

Definition 3.2. Suppose that b is in R+ and that r is in (1,∞]. The
Hardy space H1,r

b (µ) is the space of all functions g in L1(µ) that admit a
decomposition of the form

(3.1) g =
∞∑
k=1

λkak,

where ak is either a (1, r)-atom supported in a ball B of Bb or the exceptional
atom, and

∑∞
k=1 |λk| < ∞. The norm ‖g‖

H1,r
b (µ)

of g is the infimum of∑∞
k=1 |λk| over all decompositions (3.1) of g.
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Definition 3.3. Suppose that b is in R+ and that q is in [1,∞). For
each locally integrable function f we define N q

b (f) by

N q
b (f) = sup

B∈Bb

(
1

µ(B)

�

B

|f − fB|q dµ
)1/q

,

where fB denotes the average of f over B. We denote by BMOq
b(µ) the space

of all functions f in L1(µ) such that N q
b (f) is finite, endowed with the norm

‖f‖BMOqb(µ) = ‖f‖1 +N q
b (f).

Note that only balls of radius at most b enter in the definitions of H1,r
b (µ)

and BMOq
b(µ).

It is a nontrivial fact that H1,r
b (µ) and BMOq

b(µ) are independent of
the parameter b, provided b is large enough. Recall that R0 and β are the
constants which appear in the definition of the (AM) property.

Proposition 3.4. Suppose that r is in (1,∞], q is in [1,∞), and b and
c are in R+ and satisfy R0/(1− β) < c < b. The following hold:

(i) the identity is a Banach space isomorphism between H1,r
c (µ) and

H1,r
b (µ) and between BMOq

b(µ) and BMOq
c(µ);

(ii) (John–Nirenberg type inequality) there exist positive constants c and
C such that for all f ∈ BMO1

b(µ) and all B in Bb,

µ({x ∈ B : |f(x)− fB| > s}) ≤ C e−cs/N
1
b (f)µ(B);

(iii) for each q in (1,∞) there exists a constant C such that

N1
b (f) ≤ N q

b (f) ≤ CN1
b (f) f ∈ BMOq

b(µ).

Proof. The proof of (i) is almost verbatim the same as the proofs of
[3, Prop. 4.3] and [3, Prop. 5.1] respectively, and is omitted. The proof of
(ii) is the same as the proof of [3, Thm. 5.4], and the proof of (iii) follows
the lines of the proof of [3, Corollary 5.5].

Suppose that b and c are in R+ and satisfy R0/(1 − β) < c < b. In
view of Proposition 3.4(ii)–(iv), if q and r are in [1,∞), then the identity is
a Banach space isomorphism between BMOq

b(µ) and BMOr
c(µ). We denote

simply by BMO(µ) the Banach space BMOq
b(µ) endowed with any of the

equivalent norms N q
b .

Similarly, in view of Proposition 3.4(i), if r is in (1,∞), and R0/(1− β)
< c < b, then H1,r

b (µ) and H1,r
c (µ) are isomorphic Banach spaces, and they

will simply be denoted by H1,r(µ). In Section 4 we shall prove that the topo-
logical dual of H1,r(µ) may be identified with BMOr′(µ), where r′ denotes
the index conjugate to r. Suppose that 1 < r < s <∞. Then (H1,r(µ))∗ =
(H1,s(µ))∗, because we have proved that BMOr′(µ) = BMOs′(µ). Observe
that the identity is a continuous injection of H1,s(µ) into H1,r(µ), and
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H1,s(µ) is a dense subspace of H1,r(µ). Hence we may conclude that
H1,s(µ) = H1,r(µ). Therefore we shall denote H1,r(µ) simply by H1(µ).

4. Duality. In this section we prove the analogue of the duality result
[3, Thm. 6.1]. The proof in the finite measure case is more difficult because
we must show that for every linear functional ` in the dual of H1(µ) the
function f ` that represents the functional on H1(µ)∩L2

c(µ), constructed in
[3, Thm. 6.1], is also in L1(µ).

We need more notation and some preliminary observation. Suppose that
b > R0/(1 − β), where R0 and β are the constants in the approximate
midpoint property (AM) (see Section 2). A ball B in Bb is said to be maximal
if rB = b.

We shall make use of the analogues in our setting of the so-called dyadic
cubes Qkα introduced by G. David and M. Christ [8, 5] on spaces of homo-
geneous type.

Theorem 4.1. There exists a collection of open subsets {Qkα : k ∈ Z,
α ∈ Ik} and constants δ in (0, 1), and a0, C1 in R+, such that

(i)
⋃
αQ

k
α is a set of full measure in M for each k in Z;

(ii) if l ≥ k, then either Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that Qkα⊂Qlβ;
(iv) diam(Qkα) ≤ C1δ

k;
(v) each Qkα contains some ball B(zkα, a0δ

k).

It may help to think of Qkα as being essentially a cube of diameter δk

with “centre” zkα. Note that (iv) and (v) imply that for every integer k and
each α in Ik,

B(zkα, a0δ
k) ⊂ Qkα ⊂ B(zkα, C1δ

k/2).

Remark 4.2. When we use dyadic cubes, we implicitly assume that for
each k in Z the set M \

⋃
α∈Ik Q

k
α has been permanently deleted from the

space.

We shall denote by Qk the class of all dyadic cubes of “resolution” k,
i.e., the family of cubes {Qkα : α ∈ Ik}, and by Q the set of all dyadic cubes.
We denote by Zν the set {zνα : α ∈ Iν}, i.e. the set of “centres” of all dyadic
cubes of “resolution” ν. We recall that, in Christ’s construction of the family
Q of dyadic cubes, the set Zν is a maximal collection of points in M such
that

ρ(zνα, z
ν
β) ≥ δν

for all α, β in Iν with α 6= β.
We shall need the following additional properties of dyadic cubes.
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Lemma 4.3. Choose an integer ν such that δν min(1, 2a0) > R0 and b
in R+ such that b > 4δν max(1/(1 − β), a0). For each zνα in Zν denote by
Bα the ball B(zνα, b). The following hold:

(i) the balls {Bα} form a locally uniformly finite covering of M , i.e.
there exists an integer N0 such that

1 ≤
∑
α∈N

1Bα ≤ N0;

(ii) for every pair o, z of distinct points in Zν , there exists a chain of
points zνα1

, . . . , zναN in Zν such that o = zνα1
, z = zναN ,

N ≤ 4(2d/b)1/[1−log2(1+β)] + 1 and ρ(zναj , z
ν
αj+1

) < b/2,

where d denotes the distance ρ(o, z). Furthermore, for 1 ≤ j ≤ N−1
the intersection Bαj ∩Bαj+1 contains the ball B(zαj+1 , a0δ

ν), and

(4.1)
µ(Bαj+1)

µ(B(zναj+1
, a0δν))

≤ Db/(a0δν),a0δν .

Proof. First we prove (i). By the maximaliy of the collection Zν , for each
x in M there exists zνα in Zν such that ρ(zνα, x) < δν . This implies the left
inequality in (i).

A simple variation of the proof of [3, Prop. 3.4(iv)] shows that there
exists an integer N0, which depends on b, ν, a0 and C1, such that a ball
of radius 2b intersects at most N0 cubes in Qν . Let A(x) = {Bα : x ∈ Bα}.
Since zνα ∈ Bα and

⋃
Bα∈A(x)Bα ⊂ B(x, 2b), the cubes Qνzνα , Bα ∈ A(x),

intersect B(x, 2b). Thus the cardinality of A(x) is at most N0. This proves
the right inequality in (i).

Next we prove (ii). Recall that d denotes the distance between o and z.
Denote by Bo and Bz the balls with radius b centred at o and z respectively.

First suppose that d < b/2. Then the chain reduces to the two points o
and z. Moreover, Bo ∩Bz contains the ball B(z, a0δ

ν). Indeed, Bz contains
B(z, a0δ

ν) (recall that b > 4a0δ
ν), and Bo contains B(z, a0δ

ν), because Bo

has radius b and b > b/2+a0δ
ν is equivalent to b > 2a0δ

ν , which we assume.
Next suppose that d ≥ b/2. Since b/2 > R0, there exists a point z1 in M

such that
max(ρ(z1, o), ρ(z1, z)) < βd

by the (AM) property. In general, z1 need not be in Zν . However, by the
maximality of Zν , there exists zνα1

in Zν such that ρ(zνα1
, z1) < δν . We observe

that

max(ρ(zνα1
, o), ρ(zνα1

, z)) <
1 + β

2
d.
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Indeed, by the triangle inequality

ρ(zνα1
, o) ≤ ρ(zνα1

, z1) + ρ(z1, o) ≤ δν + βd.

Now, note that the conditions d ≥ b/2 and b > 4δν/(1 − β) imply δν <
(1− β)d/2, and we may conclude that

ρ(zνα1
, o) <

(
1− β

2
+ β

)
d =

1 + β

2
d.

Similarly, we may show that ρ(zνα1
, z) < (1 + β)d/2.

We now have a chain consisting of three ordered points o, zνα1
and z. The

distance of two subsequent points is < (1 + β)d/2.
Now consider the first two points o and zνα1

of the chain. If their distance
is < b/2, then Bo ∩ Bα1 contains the ball B(zνα1

, a0δ
ν). If, instead, their

distance is ≥ b/2, then we may repeat the argument above, and find zν
α

(2)
1in Zν such that

max(ρ(zν
α

(2)
1

, o), ρ(zν
α

(2)
1

, zνα1
)) <

(
1 + β

2

)2

d.

Next we consider the two points zνα1
and z of the chain and argue similarly.

Either their distance is < b/2, and Bz ∩Bα1 contains the ball B(z, a0δ
ν), or

their distance is ≥ b/2, and we may find zν
α

(2)
2

in Zν such that

max(ρ(zν
α

(2)
2

, zνα1
), ρ(zν

α
(2)
2

, z)) <
(

1 + β

2

)2

d.

By iterating the procedure described above n times, we find a chain of
points zνα1

, . . . , zναN such that o = zνα1
, z = zναN , and

ρ(zναj , z
ν
αj+1

) <
(

1 + β

2

)n
d j ∈ {1, . . . , N − 1}.

If n is the least integer ≥ log2(2d/b)/log2[2/(1 + β)], then(
1 + β

2

)n
d < b/2,

and for all j in {1, . . . , N − 1} the intersection Bαj ∩Bαj−1 contains the ball
B(zαj+1 , a0δ

ν). Furthermore, the number N of points of the chain is at most

4(2d/b)1/[1−log2(1+β)] + 1,

and
µ(Bαj+1)

µ(B(zναj+1
, a0δν))

≤ Db/(a0δν),a0δν

for all j in {1, . . . , N − 1}, by the locally doubling property.
This concludes the proof of (ii).
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We need more notation and some preliminary observations. Let b > 0.
For each ball B in Bb let L2

0(B) denote the Hilbert space of all functions f
in L2(µ) with support contained in B and

	
B f dµ = 0. We remark that a

function f in L2
0(B) is a multiple of a (1, 2)-atom, and that, for all c ≥ b,

(4.2) ‖f‖
H1,2
c (µ)

≤ µ(B)1/2‖f‖L2(B).

Let ` be a bounded linear functional on H1,2(µ). Then for each B in B the
restriction of ` to L2

0(B) is a bounded linear functional on L2
0(B). Therefore,

by the Riesz representation theorem there exists a unique function `B in
L2

0(B) which represents the restriction of ` to L2
0(B). Note that for every

constant η the function `B + η represents the same functional, though it is
not in L2

0(B) unless η is equal to 0. Denote by ‖`‖H1,2(µ)∗ the norm of `.
Then, by (4.2), we have

(4.3) ‖`B‖L2
0(B) ≤ µ(B)1/2‖`‖H1,2(µ)∗

For every f in BMOr′(µ) and every finite linear combination g of (1, r)-atoms
the integral

	
Rd fg dµ is convergent. Let H1,r

fin (µ) denote the subspace of
H1,r(µ) consisting of all finite linear combinations of (1, r)-atoms. Then g 7→	
Rd fg dµ defines a linear functional on H1,r

fin (µ). We observe that H1,r
fin (µ) is

dense in H1,r(µ).

Theorem 4.4. Suppose that r is in (1,∞). The following hold:

(i) for every f in BMOr′(µ) the functional `, initially defined on H1,r
fin (µ)

by the rule
`(g) =

�

Rd
fg dµ,

extends to a bounded functional on H1,r(µ), and

‖`‖H1,r(µ) ≤ ‖f‖BMOr
′
(µ)

;

(ii) there exists a constant C such that for every continuous linear func-
tional ` on H1,r(µ) there exists a function f ` in BMOr′(µ) such that
‖f `‖

BMOr
′
(µ)
≤ C‖`‖H1,r(µ)∗ and

`(g) =
�

Rd
f `g dµ ∀g ∈ H1,r

fin (µ).

Proof. The proof of (i) follows the lines of the proof of [6] which is based
on the classical result of C. Fefferman [10, 11]. We omit the details.

Now we prove (ii) in the case where r is equal to 2. The proof for r in
(1,∞) \ {2} is similar and is omitted.

Let ` be a bounded linear functional on H1,2(µ). Fix ν ∈ Z and b ∈ R+

as in Lemma 4.3, such that b is also greater than R0/(1− β), where R0 and
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β are the constants of assumption (AM). Recall that for all b′ ≥ b the space
H1,2(µ) is isomorphic to H1,2

b′ (µ) with norm ‖·‖
H1,2

b′ (µ)
, by Proposition 3.4.

Thus, we may interpret ` as a continuous linear functional on H1,2
b′ (µ) for

all b′ ≥ b. Fix a point o in Zν . For each b′ ≥ b there exists a function `B(o,b′)

in L2
0(B(o, b′)) that represents ` as a functional on L2

0(B(o, b′)). Since both
`B(o,b) and the restriction of `B(o,b′) to B(0, b) represent the same functional
on L2

0(B(o, b)), there exists a constant ηB(0,b′) such that

`B(o,b) − `B(o,b′) = ηB(0,b′)

on B(o, b). By integrating both sides of this equality on B(o, b) we see that

ηB(0,b′) = − 1
µ(B(o, b))

�

B(o,b)

`B(o,b) dµ.

Note that, since `B(o,b) ∈ L2
0(B(o, b)),

(4.4) ηB(o,b) = 0.

Define

f `(x) = `B(0,b′)(x) + ηB(0,b′) ∀x ∈ B(o, b′) ∀b′ ≥ b.

It is straightforward to check that this is a good definition.
We claim that the function f ` is in BMO(µ) and there exists a constant C

such that

‖f `‖BMO(µ) ≤ C‖`‖H1,2(µ)∗ ∀` ∈ H1,2(µ)∗.

First we show that N2
b (f `) ≤ ‖`‖H1,2(µ)∗ . Indeed, choose a ball B in Bb.

Then there exists a function `B in L2
0(B) that represents the restriction of

` to L2
0(B) and a constant ηB such that

(4.5) f `|B = `B + ηB.

By integrating both sides on B, we see that ηB = (f `)B. Thus, by (4.5)
and (4.3),(

1
µ(B)

�

B

|f ` − (f `)B|2 dµ
)1/2

=
(

1
µ(B)

�

B

|`B|2 dµ
)1/2

≤ ‖`‖H1,2(µ)∗ ,

so that N2
b (f `) ≤ ‖`‖H1,2(µ)∗ , as required.

Next we show that f ` is in L1(µ) and that ‖f `‖1 ≤ C‖`‖H1,2(µ)∗ . Let
{Bα} be the covering described in Lemma 4.3. For each integer h ≥ 2 let
Ah denote the annulus B(o, hb) \ B(o, (h − 1)b). For the sake of brevity
denote B(o, b) by Bo. Observe that M = Bo ∪

⋃∞
h=2Ah. The left inequality
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in Lemma 4.3(i) implies that

‖f `‖1 = ‖f `‖L1(Bo) +
∞∑
h=2

‖f `‖L1(Ah)(4.6)

≤ ‖`Bo‖L1(Bo) +
∞∑
h=2

∑
{Bα:Bα∩Ah 6=∅}

‖f `‖L1(Bα).

By (4.5), the triangle inequality, the Schwarz inequality and (4.3),

‖f `‖L1(Bα) ≤ µ(Bα)1/2‖`Bα‖L2
0(Bα) + µ(Bα)|ηBα |(4.7)

≤ µ(Bα)‖`‖H1,2(µ)∗ + µ(Bα)|ηBα |.

Now, we claim that if Bα ∩Ah 6= ∅, then

(4.8) |ηBα | ≤ 8(2d/b)1/[1−log2(1+β)]
√
D ‖`‖H1,2(µ)∗ ,

where D = Db/(a0δν),a0δν is the doubling constant corresponding to the pa-
rameters b/(a0δ

ν) and a0δ
ν (see Remark 2.2), and d denotes the distance of

o from the centre zνα of Bα.
By Lemma 4.3(ii) there exists a chain of points zνα1

, . . . , zναN such that
o = zνα1

, zνα = zναN , with

N ≤ 4(2d/b)1/[1−log2(1+β)] + 1,

and such that for all j in {1, . . . , N−1} the intersection Bαj∩Bαj−1 contains
the ball B(zναj+1

, a0δ
ν). Denote by B′αj the ball B(zναj , a0δ

ν). Since, by (4.5),

`Bαj−1 + ηBαj−1 = `Bαj + ηBαj on Bαj−1 ∩Bαj , it follows that on B′αj ,

|ηBαj | ≤ |(`Bαj−1 + ηBαj−1 )B′αj |+ |(`
Bαj )B′αj |

≤
(

1
µ(B′αj )

�

B′αj

|`Bαj−1 |2 dµ
)1/2

+ |ηBαj−1 |

+
(

1
µ(B′αj )

�

B′αj

|`Bαj |2 dµ
)1/2

by the triangle inequality and Schwarz’s inequality. Now we use (4.3) to
estimate the first and the third summands and obtain

|ηBαj | ≤

√
µ(Bαj−1)
µ(B′αj )

‖`‖H1,2(µ)∗ + |ηBαj−1 |+

√
µ(Bαj )
µ(B′αj )

‖`‖H1,2(µ)∗(4.9)

≤ 2
√
D ‖`‖H1,2(µ)∗ + |ηBαj−1 |.

Note that we have used (4.1) of Lemma 4.3(ii) in the last inequality. Hence,
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iterating this inequality, we obtain

|ηBα | = |ηBαN | ≤ 2(N − 1)
√
D ‖`‖H1,2(µ)∗ + |ηB0 |

≤ 8(2d/b)1/[1−log2(1+β)]
√
D ‖`‖H1,2(µ)∗ ,

because ηB0 = 0. This proves the claim (4.8).
Now (4.7) and (4.8) imply that for all the balls of the covering {Bα},

(4.10) ‖f `‖L1(Bα) ≤ [1 + 8(2d/b)1/[1−log2(1+β)]
√
D ]µ(Bα)‖`‖H1,2(µ)∗ ,

where d denotes the distance ρ(zνα, o). Note that if Bα ∩ Ah 6= ∅ then d ≤
(h+ 1)b.

We estimate the first summand in (4.6) by Schwarz’s inequality and (4.3),
while we use (4.10) to estimate the other summands, and obtain

‖f `‖1 ≤ ‖`‖H1,2(µ)∗

(
µ(Bo) + C

∞∑
h=2

(h+ 1)1/[1−log2(1+β)]
∑

{α:Bα∩Ah 6=∅}

µ(Bα)
)
.

Since by Lemma 4.3(i) the balls {Bαj} have the finite intersection property,
and each intersects at most three annuli Ah, we have

‖f `‖1 ≤ µ(Bo)‖`‖H1,2(µ)∗ +C‖`‖H1,2(µ)∗

∞∑
h=2

(h+ 1)1/[1−log2(1+β)]
h+2∑
j=h−2

µ(Aj).

By Proposition 2.6(ii) there exist constants η in (0, 1) and C > 0 such that
µ(Aj) ≤ Cηj . Thus

∞∑
h=2

(h+ 1)1/[1−log2(1+β)]
h+2∑
j=h−2

µ(Aj) <∞,

and we may conclude that

‖f `‖1 ≤ C‖`‖H1,2(µ)∗ ,

thereby proving that f ` is in L1(µ).

Remark 4.5. Note that the proof of Theorem 4.4 does not apply, strictly
speaking, to the case where r is equal to ∞. However, a straightforward,
though tedious, adaptation to the case where µ is only locally doubling of
a classical result [6] shows that H1,∞(µ) and H1,2(µ) coincide, with equiv-
alence of norms. Consequently, the dual space of H1,∞(µ) is BMO(µ).

5. Interpolation. In this section we prove, for the finite measure case,
the analogues of the interpolation theorems proved in [3] when µ(M) =∞.
Because of the close similarity with the infinite measure case, we shall be
rather sketchy in our exposition and we shall only indicate the necessary
modifications to the statements and proofs.
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The first technical ingredient in the proof of the interpolation theorems
in [3] is a covering lemma (see [3, Prop. 5.3]). To prove the analogous result
for spaces that satisfy the complementary isoperimetric property we need
a lemma. We recall that B0 is the ball in the complementary isoperimetric
property (IcB0

) (see Section 2).

Lemma 5.1. Suppose that A is an open subset of M such that A ∩ B̄0

is contained in At for some t in R+. Then

µ(At) ≥ (1− e−I
c
M,B0

t/2)µ(A)/2.

Proof. First we prove that (A ∩ B̄c
0)t is contained in A2t.

Indeed, suppose that x is in (A ∩ B̄c
0)t. Then either x is in At, hence in

A2t, or x is in (A∩B̄c
0)t\At. In the latter case x is in A∩B̄c

0, and ρ(x,Ac) > t.
Furthermore ρ(x,B0) ≤ t, for otherwise the ball B(x, t) would be contained
in A∩B̄c

0, i.e., ρ(x,Ac∪B0) > t, contradicting the fact that x is in (A∩B̄c
0)t.

Therefore the ball B(x, t) is contained in A and there exists a point y in
A ∩ B̄0 such that ρ(x, y) < t. By assumption y is in At, whence

ρ(x,Ac) < ρ(x, y) + ρ(y,Ac) < 2t,

as required.
Now,

µ(A) = µ(A ∩ B̄0) + µ(A ∩ B̄c
0) ≤ µ(At) + (1− e−I

c
M,B0

t)−1µ((A ∩ B̄c
0)t)

≤ µ(A2t) + (1− e−I
c
M,B0

t)−1µ(A2t) =
2− e−I

c
M,B0

t

1− e−I
c
M,B0

t
µ(A2t),

from which the desired estimate follows directly.

Lemma 5.2. Suppose that ν is an integer. For every κ in R+, every
open subset A of M such that A∩ B̄0 ⊆ Aκ and every collection C of dyadic
cubes of resolution at least ν such that

⋃
Q∈C Q = A, there exist mutually

disjoint cubes Q1, . . . , Qk in C such that

(i)
∑k

j=1 µ(Qj) ≥ (1− e−I
c
M,B0

κ/2)µ(A)/4;
(ii) ρ(Qj , Ac) ≤ κ for every j in {1, . . . , k}.
Proof. The proof is almost verbatim the same as the proof of [3, Proposi-

tion 3.5]. The only difference is that we use Lemma 5.1 in the proof of (i).

Remark 5.3. Observe that in Remark 2.4 we may replace B0 with any
ball containing B0. Therefore we may assume that rB0 ≥ C1δ

2.

The second technical ingredient is a relative distributional inequality for
the noncentred dyadic maximal function

(5.1) M2f(x) = sup
Q

1
µ(Q)

�

Q

|f |dµ ∀x ∈M,
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where the supremum is taken over all dyadic cubes of resolution ≥ 2 that
contain x, and the local sharp function

f ],b(x) = sup
B∈Bb(x)

1
µ(B)

�

B

|f − fB|dµ ∀x ∈M.

Observe that f is in BMO(µ) if and only if f ∈ L1(µ) and ‖f ],b‖∞ is
finite for some (hence for all) b > R0/(1− β).

Note that the maximal operator M2 is of weak type 1. We denote by
|||M2|||1;1,∞ its weak type 1 quasi norm.

For every α > 0 denote by A(α) and S(α) the level sets {M2f > α} and
{f ],b′ > α} respectively. Thus, for α, ε > 0,

{M2f > α, f ],b
′ ≤ εα} = A(α) ∩ S(εα)c.

The following lemma is the analogue of [3, Lemma 7.2] for spaces of finite
measure that satisfy the complementary isoperimetric property.

Lemma 5.4. Let B0 be as in Remark 2.4, with rB0 ≥ C1δ
2. Define con-

stants b′, σ and D by

b′ = 2C1 + C0, σ = (1− e−I
c
M,B0

C1δ2/2)/4 and D = Db′/a0,a0
,

where a0, C1 and δ are as in Theorem 4.1, and Db′/a0,a0
is defined in Re-

mark 2.2. Denote by ω the number

inf{µ(Q) : Q ∈ Q2, Q ∩ B̄0 6= ∅},

and by M a constant > |||M2|||1;1,∞/ω. Then for every η′ in (0, 1), for all
positive ε < (1− η′)/(2D), and for every f in L1(µ),

µ(A(α) ∩ S(εα)c) ≤ ηµ(A(η′α)) ∀α ≥ M

η′
‖f‖L1(µ)

where

(5.2) η = 1− σ +
2εD

σ(1− η′)
.

Proof. First we prove that ω is strictly positive. Indeed, suppose that
Q2
α is a dyadic cube of resolution 2 with nonempty intersection with B0; the

cube Q2
α contains the ball B(z2

α, a0δ
2) by Theorem 4.1(v) and is contained

in the ball 2B0 by the triangle inequality.
Denote by D the doubling constant Da0δ2/(2rB0

),a0δ2 . By the local
doubling property,

µ(2B0) ≤ Dµ(B(z2
α, a0δ

2)) ≤ Dµ(Q2
α).

Therefore ω ≥ D−1µ(2B0) > 0, as required. For the rest of this proof we
shall write κ instead of C1δ

2. Suppose that α ≥M‖f‖L1(µ)/η
′. Since f is in
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L1(µ), we have

(5.3) µ(A(η′α)) ≤ |||M2|||1;1,∞
η′α

‖f‖L1(µ) ≤
|||M2|||1;1,∞

M
< ω.

We claim that (A(η′α))κ = {x ∈ A(η′α) : ρ(x,A(η′α)c) > κ} is contained
in B̄c

0. Indeed, if x is in (A(η′α))κ, and Q is the dyadic cube of resolution 2
that contains x, then Q is contained in A(η′α) by the triangle inequality.
Therefore µ(Q) ≤ µ(A(η′α)) < ω by (5.3). Hence x is not in B̄0 by the def-
inition of ω. The claim proved above implies that A(η′α)∩ B̄0 ⊆ (A(η′α))κ.

The rest of the proof is the same as that of [3, Lemma 7.2]. The only
difference is that we use Lemma 5.2 instead of [3, Prop. 5.3].

Next, we prove the analogue of [3, Thm. 7.3].

Theorem 5.5. For each p in (1,∞) there exists a positive constant C
such that

‖f‖L1(µ) + ‖f ],b′‖Lp(µ) ≥ C‖f‖Lp(µ) ∀f ∈ Lp(µ).

Proof. Observe that it suffices to show that

(5.4) ‖f‖L1(µ) + ‖f ],b′‖Lp(µ) ≥ C‖M2f‖Lp(µ),

because M2f ≥ |f | by the differentiation theorem for integrals.
Let σ and M be as in the statement of Lemma 5.4. Fix η′ = (1−σ/4)1/p

and let η be as in (5.2). Denote by ξ the number M‖f‖L1(µ)/η
′. Then

‖M2f‖pp = p

∞�

0

αp−1µ(A(α)) dα

= p

∞�

ξ

αp−1[µ(A(α) ∩ S(εα)c) + µ(A(α) ∩ S(εα))] dα

+ p

ξ�

0

αp−1µ(A(α)) dα,

so that, by Lemma 5.4,

‖M2f‖pp ≤ pη
∞�

0

αp−1µ(A(η′α)) dα+ p

∞�

0

αp−1µ(S(εα)) dα

+ pµ(M)
ξ�

0

αp−1 dα

= pηη′−p
∞�

0

γp−1µ(A(γ)) dγ + pε−p
∞�

0

γp−1µ(S(γ)) dγ + µ(M)ξp

≤ ηη′−p‖M2f‖pp + ε−p‖f ],b′‖pp + µ(M)
Mp

(η′)p
‖M2f‖p1.
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Now we choose ε small enough so that η ≤ 1 − σ/2. Therefore ηη′−p < 1
and (5.4) follows.

If X and Y are Banach spaces and θ is in (0, 1), we denote by (X,Y )[θ]

the complex interpolation space between X and Y with parameter θ.
Now that all the groundwork has been laid, we may proceed to state the

interpolation theorems without further ado. The proofs are adaptations of
classical results. We refer the reader to [3, Ths. 7.4 and 7.5] for more details.

Theorem 5.6. Suppose that θ is in (0, 1). The following hold:

(i) if pθ is 2/(1− θ), then (L2(µ),BMO(µ))[θ] = Lpθ(µ);
(ii) if pθ is 2/(2− θ), then (H1(µ), L2(µ))[θ] = Lpθ(µ).

Theorem 5.7. Let S denote the strip {z ∈ C : <z ∈ (0, 1)}. Suppose
that {Tz}z∈S̄ is a family of uniformly bounded operators on L2(µ) such that
z 7→

	
Rd Tzfg dµ is holomorphic in S and continuous in S̄ for all f and g

in L2(µ). Further, assume that there exists a constant A such that

|||Tis|||L2(µ) ≤ A and |||T1+is|||L∞(µ);BMO(µ) ≤ A.

Then for every θ in (0, 1) the operator Tθ is bounded on Lpθ(µ), where
pθ = 2/(1− θ), and

|||Tθ|||Lpθ (µ) ≤ Aθ,

where Aθ depends only on A and on θ.

6. Singular integrals. In this section we state the analogue of
[3, Thm. 8.2]. Assume that T is a bounded linear operator on L2(µ) with
kernel k, i.e. k is a function on M ×M which is locally integrable off the
diagonal in M ×M and such that for every function f with support of finite
measure,

T f(x) =
�

M

k(x, y)f(y) dµ(y) ∀x /∈ supp f.

Theorem 6.1. Suppose that b is in R+ and b > R0/(1 − β), where
R0 and β appear in the definition of property (AM). Suppose that T is a
bounded operator on L2(µ) and that its kernel k is locally integrable off the
diagonal of M ×M . Let υk and νk be defined by

υk = sup
B∈Bb

sup
x,x′∈B

�

(2B)c

|k(x, y)− k(x′, y)|dµ(y),

νk = sup
B∈Bb

sup
y,y′∈B

�

(2B)c

|k(x, y)− k(x, y′)| dµ(x).

The following hold:
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(i) if νk is finite, then T extends to a bounded operator on Lp(µ) for
all p in (1, 2] and from H1(µ) to L1(µ); furthermore, there exists a
constant C such that

|||T |||H1(µ);L1(µ) ≤ C(νk + |||T |||L2(µ));

(ii) if υk is finite, then T extends to a bounded operator on Lp(µ) for all
p in [2,∞) and from L∞(µ) to BMO(µ); furthermore, there exists
a constant C such that

|||T |||L∞(µ);BMO(µ) ≤ C(υk + |||T |||L2(µ));

(iii) if T is self-adjoint on L2(µ) and νk is finite, then T extends to a
bounded operator on Lp(µ) for all p in (1,∞), from H1(µ) to L1(µ)
and from L∞(µ) to BMO(µ).

Proof. The proof is almost verbatim the same as the proof of [3, Thm. 8.2],
and is omitted.

Remark 6.2. It is worth observing that in the case where M is a Rie-
mannian manifold and the kernel k is “regular”, the condition υk < ∞ of
Theorem 6.1(i) may be replaced by the condition υ′k <∞, where

(6.1) υ′k = sup
B∈Bb

rB sup
x∈B

�

(2B)c

|∇xk(x, y)|dµ(y).

Similarly, the condition νk <∞ of Theorem 6.1(ii) may be replaced by the
condition ν ′k <∞, where

(6.2) ν ′m = sup
B∈Bb

rB sup
y∈B

�

(2B)c

|∇yk(x, y)|dµ(x).

7. Riemannian manifolds. Let (M,ρ, µ) be a complete Riemannian
manifold of dimension d, endowed with the Riemannian metric ρ and the
corresponding Riemannian measure µ. Let h(M) be Cheeger’s isoperimetric
costant, defined by

h(M) = inf
σ(∂A)
µ(A)

where the infimum is taken over all bounded open sets A with smooth bound-
ary ∂A such that µ(A) ≤ µ(M)/2. Here σ denotes the induced (d − 1)-
dimensional Riemannian measure on ∂A. Note that the condition µ(A) ≤
µ(M)/2 is automatically satisfied if µ(M) =∞.

In [3, Section 9] we proved that, on Riemannian manifolds of infinite mea-
sure, the isoperimetric property (I) is equivalent to the positivity of h(M).
Moreover, if the Ricci curvature is bounded from below, both properties are
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equivalent to the positivity of the bottom of the spectrum of M ,

b(M) = inf
{ �

M

|∇f |2 dµ : f ∈ C1
c (M), ‖f‖2 = 1

}
.

Here we shall prove that when M has finite measure, an analogous char-
acterization holds for the complementary isoperimetric property (IcB0

), pro-
vided that we replace b(M) by the spectral gap of the Laplacian,

λ1(M) = inf
{ �

M

|∇f |2 dµ : f ∈ C1
c (M), ‖f‖2 = 1 and

�

M

f dµ = 0
}
.

Again, since the arguments coincide to a large extent with those used to
prove [3, Thm. 9.5], we only point out the differences, referring the reader
to [3] for details and unexplained terminology.

Given a measurable set E in M , we shall denote by P (E) its perimeter,
i.e. the total variation Var(1E ,M) in M of the indicator function 1E of E.
The following lemma is the counterpart of [3, Prop. 9.2] in the finite measure
case.

Lemma 7.1. Suppose that M is a complete unbounded Riemannian man-
ifold of finite volume. If h(M) > 0, then for every measurable set E with
µ(E) ≤ µ(M)/2,

P (E) ≥ h(M)µ(E).

Proof. Let f be a real-valued function in C1
c (M) whose support has

measure less than µ(M)/2. By the coarea formula [4],�

M

|∇f | dµ ≥ h(M)
�

M

|f |dµ.

By [17, Prop. 1.4], there exists a sequence (fn) of functions in C1
c (M) with

supports of measure less than µ(M)/2 and such that fn → 1E in L1(M)
and

	
M |∇fn| dµ→ Var(1E ,M) = P (E). Hence, passing to the limit, we get

P (E) ≥ h(M)µ(E).

Now we are ready to state the main result of this section. We recall that
the constant IcM,B0

is defined in (2.2).

Theorem 7.2. Suppose that M is a complete unbounded Riemannian
manifold of finite volume and Ricci curvature bounded from below. Then the
following are equivalent:

(i) h(M) > 0;
(ii) M possesses property (IcB0

);
(iii) λ1(M) > 0.

Proof. To prove that (i) implies (ii), we fix a ball B0 such that µ(B0) >
µ(M)/2 and we consider an open set A in M \ B̄0. Fix t > 0 and let f be
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the function defined by

f(x) =


t−1ρ(x,Ac) if x ∈ At,
1 if x ∈ A \At,
0 if x ∈ Ac.

Then f is Lipschitz and |∇f(x)| = t−1 for almost every x in At, |∇f(x)| = 0
elsewhere. Thus, by the coarea formula for functions of bounded variation
[9, 16] and Lemma 7.1,

t−1µ(At) =
�
|∇f | dµ =

1�

0

P ({f > s}) ds

≥ h(M)
1�

0

µ({f > s}) ds = h(M)
�
f dµ

≥ h(M)(µ(A)− µ(At)).

Thus

µ(At) ≥
h(M)

1 + h(M)t
tµ(A) ∀t > 0.

Hence M satisfies property (IcB0
) and by (2.2) the constant IcM,B0

is at least
h(M).

Next, we prove that (ii) implies (iii). Let A be a bounded open set with
regular boundary, contained in M \ B̄0. Then µ(At) ≥ (1 − e−IM,B̄0

t)µ(A)
for all t > 0, by Proposition 2.6. Since the boundary of A is regular,

σ(∂A) = lim
t→0+

µ(At)
t
≥ IM,B0µ(A).

Hence, by the coarea formula, for every real-valued function f in C∞c (M\B̄0),

(7.1) IM,B0

�

M

|f |dµ ≤
�

M

|∇f |dµ.

By replacing f with f2 in (7.1), we obtain

(7.2) inf

	
M |∇f |

2 dµ	
M |f |2 dµ

≥
I2
M,B0

4
,

where the infimum is taken over all real f in C∞c (M \B̄0) such that ‖f‖2 6= 0.
Hence the bottom of the essential spectrum bess(M) of the Laplace–Beltrami
operator on M is positive, by the variational characterization of bess(M) [1].
Thus 0 is an isolated point in the spectrum and λ1(M) > 0.

Finally, to prove that (iii) implies (i), we use the fact that if the Ricci
curvature is bounded below by −K for some K ≥ 0, then

λ1(M) ≤ C(
√
K h(M) + h(M)2),

where C is a constant which depends only on the dimension of M [2, 13].
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8. Another family of metric spaces. In this section we shall con-
struct another family of metric measure spaces which are locally doubling
and satisfy the approximate midpoint property and the isoperimetric prop-
erty. They may have either infinite or finite measure. In the first case they
satisfy property (I), in the latter case, property (IcB0

) (see Remark 2.1 or [3]
for the definition of property (I)). The spaces we consider are of the form
(Rd, ρϕ, µϕ) or (Rd, ρϕ, µ−ϕ), where ϕ is a function in C2(Rd) which satisfies
certain additional conditions specified later, ρϕ is the Riemannian measure
on Rd defined by the length element ds2 = (1 + |∇ϕ|)2(dx2

1 + · · · + dx2
d)

and dµ±ϕ = e±ϕ dλ. Note that µ±ϕ is not the Riemannian metric on
(Rd, ρϕ). First we need some preliminaries on Riemannian metrics of the
form ds2 = m2(dx2

1 + · · ·+ dx2
d), where m is a continuous positive function

on Rd which tends to infinity at infinity.
We say that a positive function m ∈ C0(Rd) is tame if for every R > 0

there exists a constant C(R) ≥ 1 such that

C(R)−1 ≤ m(x)
m(y)

≤ C(R) ∀x, y ∈ Rd such that |x− y| < R.

The following lemma provides a simple criterion for establishing tame-
ness.

Lemma 8.1. Let m be a function in C1(Rd) such that m ≥ 1 and |∇m| ≤
Cmα for some α in [0, 1] and some C > 0. Then m is tame.

Proof. By the mean value theorem, for all x, y in Rd such that |x−y|<R,∣∣∣∣ log
m(x)
m(y)

∣∣∣∣ ≤ |x− y|max
z∈Rd

|∇m(z)|
m(z)

≤ CR.

It is easy to see that the functions m(x) = 1 + |x|α with α ≥ 0 are tame.
The function e|x|

α
is tame if and only if 0 ≤ α ≤ 1.

Proposition 8.2. Let m be a tame function such that limx→∞m(x)
=∞. Denote by ρ the Riemannian metric on Rd defined by the length ele-
ment ds2 = m(x)2(dx2

1 + · · ·+ dx2
d). Then the manifold (Rd, ρ) is complete.

Moreover, for every R > 0, there exists a constant C(R) ≥ 1 such that for
all x, y in Rd with ρ(x, y) < R,

(8.1) C(R)−1m(x)|x− y| ≤ ρ(x, y) ≤ C(R)m(x)|x− y|.

Proof. The function m has a positive minimum on Rd, which we may
assume to be greater than or equal to one, by multiplying m by a positive
constant if necessary. If γ is a path in Rd we shall denote by `(γ) its length
with respect to the Riemannian metric ρ and by `e(γ) its Euclidean length.
Since the minimum of m on Rd is at least 1 we have `(γ) ≥ `e(γ) for all
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paths γ. Hence

(8.2) ρ(x, y) ≥ |x− y| ∀x, y ∈ Rd.

Let x and y be two points in Rd such that ρ(x, y) < R and denote by γ the
line segment joining them. Since |x− y| ≤ ρ(x, y) < R and m is tame,

(8.3) ρ(x, y) ≤ `(γ) =
1�

0

m(γ(t))|γ′(t)|dt ≤ C(R)m(x)|x− y|.

This proves the second inequality in (8.1).
Together the two inequalities (8.2) and (8.3) imply that the manifold

(Rd, ρ) is complete. In particular, any two points in (Rd, ρ) may be joined
by a minimizing geodesic by the Hopf–Rinow theorem.

It remains to prove the first inequality in (8.1). We observe that there
exists a constant A such that for all S > 0 there exists a compact set K(S)
in Rd such that

(8.4) A−1 ≤ m(x)
m(y)

≤ A ∀x, y ∈ Rd with x /∈ K(S), |x− y| < S/m(x).

Indeed, by the definition of tame function it suffices to choose A = C(1) and
K(S) = {x ∈ Rd : m(x) ≤ S}.

Fix R > 0 and let x, y in Rd be such that ρ(x, y) < R. Assume first
that x /∈ K(AR) and let γ : [0, ρ(x, y)] → Rd be a minimizing geodesic
joining x and y. We claim that |γ(t)− x| < AR/m(x) for all t in [0, ρ(x, y)].
Indeed, suppose by contradiction that there exists t0 in [0, ρ(x, y)] such that
|γ(t0)− x| = AR/m(x) and |γ(t)− x| < AR/m(x) for all t in [0, t0). Then,
by (8.4),

ρ(x, y) ≥
t0�

0

m(γ(t))|γ′(t)| dt ≥ A−1m(x)|γ(t0)− x| = R,

which contradicts the assumption ρ(x, y) < R. Thus the claim is proved.
Hence by (8.4),

ρ(x, y) =
ρ(x,y)�

0

m(γ(t))|γ′(t)| dt ≥ A−1m(x)|y − x|.

Finally, if x ∈ K(AR) then by (8.2),

m(x)|x− y| ≤ m(x)ρ(x, y) ≤ max
x∈K(AR)

m(x)ρ(x, y).

This concludes the proof of the proposition.

Proposition 8.3. Let ϕ be a function in C1(Rd) such that 1 + |∇ϕ|
is tame and limx→∞ |∇ϕ(x)| = ∞. Then the metric measure spaces
(Rd, ρϕ, µϕ) and (Rd, ρϕ, µ−ϕ) are locally doubling.
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Proof. Write m(x) = 1 + |∇ϕ(x)| for the sake of brevity. Let Be(x, r)
denote the Euclidean ball of centre x and radius r in Rd. We claim that for
every R > 0 there exists a constant D(R) such that

(8.5) D(R)−1 eϕ(x) ≤ eϕ(y) ≤ D(R) eϕ(x) ∀y ∈ Be(x,R/m(x)).

Indeed, by the mean value theorem and the fact that m is tame,

|ϕ(x)− ϕ(y)| ≤ max {|∇ϕ(z)| |x− y| : z ∈ Be(x,R/m(x))}
≤ C(R)m(x) |x− y| ≤ C(R)R,

whence (8.5) follows with D(R) = eC(R)R. Thus for every R > 0,

D(R)−1 eϕ(x) ≤ µϕ(Be(x, r/m(x)))
λ(Be(x, r/m(x)))

(8.6)

≤ D(R) eϕ(x) ∀x ∈ Rd, 0 < r ≤ R.

Thus (Rd, ρϕ, µϕ) is locally doubling, because by Proposition 8.2 there exists
a constant C (which depends on R but not on r) such that

Be(x,C−1r/m(x)) ⊂ B(x, r) ⊂ B(x, 2r) ⊂ Be(x, 2Cr/m(x)) ∀r ∈ [0, R]

and the Lebesgue measure is doubling. The proof for (Rd, ρϕ, µ−ϕ) is simi-
lar.

Next, we look for sufficient conditions that guarantee that the spaces
(Rd, ρϕ, µϕ) and (Rd, ρϕ, µ−ϕ) satisfy the isoperimetric property.

Definition 8.4. Let ϕ be function in C1(Rd). We say that ϕ is admis-
sible if

(i) there exists τ0 > 0 such that ϕ is C2 for |x| ≥ τ0;
(ii) 1 + |∇ϕ| is tame and

lim
x→∞

|∇ϕ(x)| =∞, lim
x→∞

|Hessϕ(x)|
|∇ϕ(x)|2

= 0;

(iii) the radial derivative ∂rϕ = x
|x| · ∇ϕ satisfies

lim inf
x→∞

∂rϕ(x)
|∇ϕ(x)|

> 0.

It is easy to see that the functions |x|α with α > 1 are admissible. The
function e|x|

α
is not admissible if α > 1.

Lemma 8.5. Let ψ : [0,∞) → R be a continuous function such that
ψ ∈ C2([τ0,∞)) for some τ0 > 0. Assume that

lim inf
r→∞

ψ′(r) > 0, lim
r→∞

ψ′′(r)
(ψ′(r))2

= 0.
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Let h be a positive function in C0([0,∞)) such that

lim inf
r→∞

h(r)ψ′(r) > 0.

Then for every d ≥ 1 there exists a positive constant C such that
τ+ah(τ)�

τ

eψ(r)rd−1 dr ≥ Ca
τ+ah(τ)�

0

eψ(r)rd−1 dr ∀τ ∈ R+ ∀a ∈ [0, 1].

Proof. It is clearly enough to prove that
τ+ah(τ)�

τ

eψ(r)rd−1 dr ≥ Ca
τ�

0

eψ(r)rd−1 dr ∀τ ∈ R+.

The integral on the right hand side is asymptotic to eψ(τ)τd−1/ψ′(τ) as τ
tends to infinity, by l’Hôpital’s rule and the assumptions on ψ. Let τ1 > τ0

be such that

(8.7)
τ�

0

eψ(r)rd−1 dr ≤ 2 eψ(τ) τ
d−1

ψ′(τ)
∀τ ≥ τ1.

The assumptions on ψ and h imply that if we choose τ1 sufficiently large
there exists η > 0 such that

ψ′(τ) ≥ η, h(τ)ψ′(τ) ≥ η ∀τ ≥ τ1.

Thus, if τ > τ1 the function ψ is increasing. Hence for τ > τ1,
τ+ah(τ)�

τ

eψ(r)rd−1 dr ≥ eψ(τ)τd−1ah(τ) ≥ ηa eψ(τ) τ
d−1

ψ′(τ)

≥ η

2
a

τ�

0

eψ(r)rd−1 dr,

where in the last inequality we have used (8.7). It remains to prove the
desired inequality for τ in [0, τ1]. Set m0 = min[0,∞] ψ, M0 = max[0,τ1] ψ and
h0 = min[0,τ1] h. Then for τ ∈ [0, τ1],

τ�

0

eψ(r)rd−1 dr ≤ eM0
τd

d

and
τ+ah(τ)�

τ

eψ(r)rd−1 dr ≥ em0τd−1ah(τ) ≥ em0τdah0/τ1.

This implies that the desired inequality holds also for τ in [0, τ1].

Lemma 8.6. Let ψ and h be two functions which satisfy the assumptions
of Lemma 8.5. Assume further that

lim
r→∞

(r − h(r)) =∞.
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Then for every d ≥ 1 there exist positive constants C and T such that
τ�

τ−ah(τ)

e−ψ(r)rd−1 dr ≥ Ca
∞�

τ−ah(τ)

e−ψ(r)rd−1 dr ∀τ ≥ T ∀a ∈ [0, 1].

Proof. It is clearly enough to prove that
τ�

τ−ah(τ)

e−ψ(r)rd−1 dr ≥ Ca
∞�

τ

e−ψ(r)rd−1 dr ∀τ ≥ T ∀a ∈ [0, 1].

The integral on the right hand side is asymptotic to e−ψ(τ)τd−1/ψ′(τ) as τ
tends to infinity, by l’Hôpital’s rule and the assumptions on ψ. Thus there
exists τ1 > τ0 such that

(8.8)
∞�

τ

e−ψ(r)rd−1 dr ≤ 2 e−ψ(τ) τ
d−1

ψ′(τ)
∀τ ≥ τ1.

The assumptions on ψ and h imply that if we choose τ1 sufficiently large
there exists η > 0 such that

ψ′(τ) ≥ η, h(τ)ψ′(τ) ≥ η, rψ′(r) > d− 1 ∀τ ≥ τ1.

Note that the last inequality implies that the function r 7→ e−ψ(r)rd−1 is
decreasing for r > τ1. Choose T > τ1 such that τ − h(τ) > τ1 for τ ≥ T .
Then for τ ≥ T ,

τ�

τ−ah(τ)

e−ψ(r)rd−1 dr ≥ e−ψ(τ)τd−1ah(τ) ≥ ηae−ψ(τ) τ
d−1

ψ′(τ)

≥ η

2
a

∞�

τ

e−ψ(r)rd−1 dr

where in the last inequality we have used (8.8). This concludes the proof of
the lemma.

Theorem 8.7. Suppose that the function ϕ is admissible. Then

(i) the metric measure space (Rd, ρϕ, µϕ) is locally doubling, µϕ(Rd)
=∞, and satisfies property (I);

(ii) the space (Rd, ρϕ, µ−ϕ) is locally doubling, µ−ϕ(Rd) < ∞, and sat-
isfies property (IcB0

) for some ball B0 ⊂ Rd.

Proof. Both spaces are locally doubling by Proposition 8.3. It easily
follows from the assumptions on ϕ that µϕ(Rd) =∞ and µ−ϕ(Rd) <∞. To
prove that (Rd, ρϕ, µϕ) also has property (I) we must prove that there exists
a constant C such that for every bounded open set A and every κ in [0, 1),

µϕ(Aκ) ≥ Cµϕ(A),

where we recall that Aκ = {x ∈ A : ρ(x,Ac) < κ}.
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Henceforth we shall write m = 1 + |∇ϕ|, for the sake of brevity. Since m
is tame there exists a constant C1 ≥ 1 such that

C−1
1 ≤ m(x)

m(y)
≤ C1 ∀x, y such that |x− y| < 1.

Let de denote the Euclidean distance in Rd and set

A′κ =
{
x ∈ A : de(x,Ac) <

κ

C1m(x)

}
.

We observe that if x ∈ A′κ, then there exists y in Ac such that

|x− y| < κ

C1m(x)
≤ 1.

Thus, by (8.1), we get ρ(x, y) < C1m(x)|x− y| < κ. Hence A′κ ⊂ Aκ and it
suffices to prove that there exists a constant C such that

µϕ(A′κ) ≥ Cµϕ(A).

For every ω in the unit sphere Sd−1 let µωϕ denote the measure on R+

defined by
µωϕ(E) =

�

E

eϕ(rω)rd−1 dr

for every measurable subset E of R+.
The functions ψω(r) = ϕ(rω) and hω(r) = 1/m(rω) satisfy the assump-

tions of Lemma 8.5 uniformly with respect to ω in Sd−1. Thus for all a ∈ [0, 1]
there exists a constant C > 0 such that

(8.9) µωϕ((τ, τ + ahω(τ))) ≥ Caµωϕ([0, τ + ahω(τ))) ∀τ ∈ R+ ∀ω ∈ Sd−1.

If F is a measurable subset of Rd let F (ω) denote the set {r ∈ R+ : rω ∈ F}.
If the set (A \A′κ)(ω) is empty then obviously

µωϕ(A′κ(ω)) = µωϕ(A(ω)).

Otherwise, set τω = sup(A \A′κ)(ω). Observe that τωω ∈ A \A′κ. Indeed, by
the definition of τω, there exists a sequence sn → τω such that snω ∈ A\A′κ.
By the continuity of m,

d(τωω,Ac) = lim
n
d(snω,Ac) ≥ lim

n

κ

C1m(snω)
=

κ

C1m(τωω)
> 0.

This implies that τωω ∈ A \A′κ.
The set (A\A′κ)(ω) is obviously contained in the interval [0, τω). We claim

that the set A′κ(ω) contains the interval (τω, τω + C−1
1 κhω(τω)). Indeed, if

s ∈ (τω, τω+C−1
1 κhω(τω)), then d(τωω, sω) < κ/(C1m(τωω)). Hence sω ∈ A,

because otherwise τωω would be in A′κ. Since sω /∈ A \A′κ by the definition
of τω, the claim is proved.
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Then, writing a = C−1
1 κ for the sake of brevity, using the fact that for

every positive number δ the function x 7→ x/(δ + x) is increasing and (8.9),
we see that

µωϕ(A′κ(ω))
µωϕ(A(ω))

=
µωϕ(A′κ(ω))

µωϕ((A \A′κ)(ω)) + µωϕ(A′κ(ω))

≥
µωϕ((τω, τω + ahω(τω)))

µωϕ([0, τω)) + µωϕ((τω, τω + ahω(τω)))

=
µωϕ((τω, τω + ahω(τω)))
µωϕ([0, τω + ahω(τω)))

≥ Ca = CC−1
1 κ.

Thus, integrating in polar coordinates, one has

µϕ(A′κ) =
�

Sd−1

µωϕ(A′κ(ω)) dσ(ω)

≥ Cκ
�

Sd−1

µωϕ(A(ω)) dσ(ω) = Cκµϕ(A).

This concludes the proof of property (I) for (Rd, ρϕ, µϕ).
The proof of property (IcB0

) for (Rd, ρ−ϕ, µ−ϕ) is similar. The main dif-
ferences are the following:

(i) the set A is an open set contained in {x ∈ Rd : |x| ≥ T} for some
T > 0 which depends only on ϕ;

(ii) τω is now inf (A \A′κ)(ω);
(iii) (A \A′κ)(ω) ⊆ (τω,∞) and A′κ(ω) ⊇ (τω − C−1

1 κhω(τω), τω);
(iv) Lemma 8.6 is used instead of Lemma 8.5.

We omit the details.

Remark 8.8. We point out that the H1-BMO theory for the Gaussian
space (Rd, γ) developed in [15] is a particular case of the theory developed
in the present paper. Indeed, γ = µ−ϕ with ϕ(x) = |x|2. Moreover, in
[15] the family of admissible balls is the set Bγ1 of all Euclidean balls B
in Rd such that rB ≤ min(1, 1/|cB|), where cB and rB denote the centre
and the radius of B respectively, while the family B1 of admissible balls in
(Rd, ρϕ, γ) is the set of all balls of radius at most one with respect to the
metric ds2 = (1 + |x|)2(dx2

1 + · · ·+ dx2
d). By Proposition 8.2, every ball in

Bγ1 is contained in a ball in B1 of comparable measure and vice versa. Thus
the spaces H1(γ) and BMO(γ) defined in [15] coincide with those defined
in the present paper.
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