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Abstract. A relatively simple algebraic framework is given, in which all the compact
symmetric spaces can be described and handled without distinguishing cases. We also give
some applications and further results.

Introduction. This article deals with compact Riemannian globally
symmetric spaces of rank one. These spaces are very important for geometry,
and of course they are well known. They are the spheres and the projective
spaces over R,C,H,O (in the last case only of dimension at most 2).

There are two standard ways of describing them and make computations
on them. One is to use classification; this is the approach, e.g., in [Be]. The
projective spaces over R,C,H are easily handled together, but the case of
O is different because of the non-associativity of the octonions. For the
O-case one has to refer, as does [Be], to the rather complicated articles of
Freudenthal (cf., for instance, [Ba, S]).

The other way is is to use the general theory of symmetric spaces [Hel1].
Here there is no need to distinguish cases, but one has to use the large
machinery of semisimple Lie group theory, which was designed for much
more general situations and is rather unwieldy when applied to the special
case of spaces of rank one.

In this article we set up a new framework which does not make explicit
use of the octonions and applies to spaces of rank one in an essentially
unified way and makes it easy to work on them, including the O-case. This
is done in the first six sections.

The basic notion is that of a C-module with J2-condition (briefly: J2C-
module). A C-module is the same thing as the classical notion of composition
of quadratic forms, or orthogonal multiplication [Hus], and is closely related
to the notion of a Clifford module. The J2-condition specifies a subclass; it
already played a fundamental rôle in [CDKR2]. As we have discovered since,
its basic idea goes back to [Hei].
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For non-compact symmetric spaces, a program similar to the present one
was carried out in [CDKR2] and our article can be regarded as a continuation
of [CDKR2], although our starting point is somewhat different. In [CDKR2]
the basic objects are H-type Lie algebras; they form a category essentially
equivalent to that of Clifford modules.

Some of the arguments in the introductory sections of this article are clas-
sical or are reformulations of proofs in [CDKR2], but we prove everything
we need. Some other facts, which we do not need but which are of inter-
est for understanding the full picture, are only described without proof in
Section 3. This section also contains the classification of J2C-modules, with
proofs. This, together with the known classification of all symmetric spaces
[Hel1, W], could be used to quickly show that our theory covers all the com-
pact rank-one symmetric spaces. However, we will give a classification-free
proof of this fact in Section 8.

Sections 1 and 2 contain the basic properties of J2C-modules. In Sec-
tion 4 we introduce the space W = C⊕V , with V a J2C-module. This space
W is a weaker substitute for a J2C-module, but a good notion of C-line can
still be defined in it.

With these tools, we construct CPW as a compactification of W by
adjoining a point at infinity for every family of parallel C-lines in W . In
Section 5 we describe the topology and the differentiable structure on CPW ,
and in Section 6 its metric and its isometry group U , proving that CPW is
actually a compact rank-one symmetric space. This ends the construction
of the symmetric spaces.

In the subsequent part of the paper we prove various facts about the
geometry of these spaces and the relevant transformation groups on them.

In Section 7 we illustrate the usefulness of our construction by reproving
in simple ways some known properties of these spaces. As mentioned already,
we prove in Section 8 that they are all the compact rank-one symmetric
spaces, without appealing to classification.

In Section 9 we analyze the structure of the group GL(W,C) of invert-
ible linear transformations of W which preserve C-lines. This is preliminary
to Section 10, where we introduce the group of collineations of CPW . The
collineation group G is a transformation group properly containing the isom-
etry group U and GL(W,C), and whose elements are characterized by the
property of preserving projective C-lines (i.e., closures in CPW of the C-
lines of W , or images of these under isometries). We prove that collineations
form a semisimple Lie group and that they act conformally on each projec-
tive C-line.

In Section 11 we prove that the collineation groups G are characterized
as the semisimple parts of automorphism groups of irreducible symmetric
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cones. We do so by constructing a representation of G and identifying the
cone in a real form of the representation space. The induced projective action
of G on the space of extremal lines of the cone provides an identification of
this space with CPW .

In the Appendix at the end of the paper we show how the general non-
compact symmetric space can be realized as the unit ball in W with a
different metric. This amounts to redoing [CDKR2] from a different starting
point.

We wish to point out that our construction results in an actual unification
in the geometric as well as the algebraic sense. The spheres are included as
the extreme case V = 0 and C arbitrary. In such a case the whole CPW
consists of a single projective C-line. The other extreme case, C = R and
V arbitrary, gives real projective space. In both extreme cases the unit ball
of W is real hyperbolic space; in the first case it appears as the Poincaré
model, in the second as the Klein model. In the cases in between, it agrees
with the models used in [M].

1. C-modules with the J2-condition. Let C, V be finite-dimensional
real Euclidean spaces over R. We write the inner products as 〈·, ·〉 and the
norms as | · |. We assume that C has a distinguished unit element, denoted
by 1.

A C-module structure on V is a bilinear map J : C × V → V such that

J(1, v) = v (∀ v ∈ V ),(1.1)
|J(ζ, v)| = |ζ| |v| (∀ζ ∈ C, v ∈ V ).(1.2)

Instead of J(ζ, v) we will also use the notation Jζv and, more frequently,
ζv. We also write Cv = {ζv : ζ ∈ C} for v ∈ V .

We say that the C-module V satisfies the J2-condition (or, briefly, is a
J2C-module) if

(1.3) C(Cv) = Cv (∀v ∈ V ).

We do not exclude the “trivial” cases where C = R1 or V = 0. Notice
that in such cases the J2-condition is trivially satisfied and most of the next
definitions are vacuous.

We denote by C ′ the orthogonal complement of R1 in C. If ζ = a1 + z
with a ∈ R and z ∈ C ′, we set ζ̄ = a1− z, a = Re ζ, z = Im ζ.

Polarizing (1.2) in both ζ and v, we have

(1.4) 〈ζu, ηv〉+ 〈ηu, ζv〉 = 2〈ζ, η〉〈u, v〉.
Taking η = 1, ζ = z ∈ C ′, we see that Jz is skew-symmetric. For general

ζ ∈ C, this implies that

(1.5) Jζ̄Jζ = |ζ|2 id.
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For z ∈ C ′, (1.5) gives J2
z = −|z|2 id. From this it is clear that the action

of C ′ on V via J extends to an action of the Clifford algebra Cliff(C ′). (We
recall that Cliff(C ′) is the associative algebra generated by C ′ and a unit
element e subject to the relations z2 = −|z|2e. In other words, if {z1, . . . , zm}
is an orthonormal basis of C ′, then Cliff(C ′) is generated by these elements
and e, subject to the relations zizj + zjzi = −2δije.)

So V is automatically a Clifford module, meaning a representation of the
associative algebra Cliff(C ′). (More exactly, we should say an “orthogonal”
Clifford module, to take into account the added condition |zv| = |z| |v| for
all z ∈ C ′, v ∈ V .)

For any α ∈ Cliff(C ′), we still write its action on v ∈ V as αv.
By (1.3), for every v 6= 0 in a J2C-module V , Cv is a Cliff(C ′) sub-

module, necessarily irreducible. From (1.4), it follows that the orthogonal
complement of a submodule is again a submodule. So we can inductively
construct orthonormal C-bases, i.e., orthonormal sets {v1, . . . , vn} such that
V is the orthogonal sum of Cv1, . . . , Cvn. If V = Cv for some v 6= 0, we say
that the J2C-module is irreducible.

Another important property of J2C-modules is that any non-zero ele-
ment v ∈ V determines a multiplication law on C, denoted by ·v and given
by

(ζ ·v η)v = ζηv.

Obviously, ·tv = ·v for t ∈ R∗.
For the remainder of this section, we assume that V is a non-trivial

J2C-module (but we allow C = R1).

Proposition 1.1. Under the multiplication ·v, C is a normed division
algebra.

Proof. The product is well defined because the map ζ 7→ ζv from C to
Cv is a bijection. It is obvious that the product is bilinear and has 1 as its
identity element. Also, |ζ ·v η| = |ζ| |η| by (1.2). To show that C is a division
algebra, we must solve the equations

ξ ·v η = ζ, η ·v ξ′ = ζ

in ξ, ξ′ when ζ and η 6= 0 are given. For the first equation, we have to solve

ξηv = ζv.

This can be done, because the map λ 7→ λ(ηv) is a bijection of C onto
C(ηv) ⊂ C(Cv) = Cv. Since both Cv and C(ηv) have the same dimension
as C, we have C(ηv) = Cv.

To solve the equation
ηξ′v = ζv,
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we multiply both sides by η̄ on the left and use (1.5) to obtain

ξ′v = |η|−2η̄ζv,

i.e., ξ′ = |η|−2η̄ ·v ζ.

Remark. As we shall see next in detail, ·v may actually depend on v,
and this dependence is equivalent to lack of associativity. Nevertheless, some
expressions are independent of v in general. We list a few.

1. The proof of Proposition 1.1 shows that ζ−1 = |ζ|−2ζ̄ when ζ 6= 0,
with respect to any multiplication ·v. It follows that the value of any
other rational expression in ζ with real coefficients is independent of
v and coincides with its value with respect to Clifford multiplication.

2. For any ζ, η ∈ C, the product ζ ·v (η ·v ζ) is equal to the Clifford
algebra product ζηζ and therefore it does not depend on v. To see
this, it is convenient to consider separately the case η ∈ R1 + R Im ζ
and the case η ⊥ (R1+R Im ζ). The first case is trivial. In the second
case we set ζ = a1 + z. Since η ∈ C ′ and η ⊥ z,

ζηζ = (a1 + z)η(a1 + z) = a2η + a(zη + ηz) + zηz

= a2η + |z|2η,
which is in C.

3. For any v, Re(ζ ·v η) = 〈ζ, η̄〉. In fact, both expressions are symmetric,
bilinear, and they agree when ζ = η.

Proposition 1.2. Any division subalgebra of (C, ·v) generated by two
elements is associative.

This is true in any normed division algebra. An easy classification-free
proof is in [FK, pp. 82–83]. It is well known and easy (cf., for instance, [FK])
that the only normed division algebras are R,C,H,O. But, for self-sufficiency
of this article, here is a proof of the Proposition, making use of the present
setup.

Proof. We look at the intersection of the subalgebra with C ′. If it has
dimension 0 or 1, the conclusion is trivial. If it has dimension at least 2, we
may assume that the two generators z1, z2 are both in C ′ and orthonormal.
Let z3 = z1 ·v z2. Then z3 ∈ C ′ and z3 is orthogonal to both z1 and z2. In
fact,

〈z3,1〉|v|2 = 〈z1z2v, v〉 = −〈z2v, z1v〉 = −〈z2, z1〉|v|2 = 0,

〈z3, z1〉|v|2 = 〈z1z2v, z1v〉 = 〈z2v, v〉 = 〈z2,1〉|v|2 = 0,

and similarly z3 ⊥ z2. Furthermore,

(z1 ·v z3)v = z1(z1z2v) = z2
1z2v = −z2v,
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so z1 ·v z3 = −z2. Similarly, z2 ·v z3 = z1. The Clifford relations imply that
zi ·v zj = −zj ·v zi. This shows that (C, ·v) ∼= H, which is associative.

Corollary 1.3. If ζ, η, λ ∈ C belong to a division subalgebra of (C, ·v)
generated by two elements, and λ 6= 0, then

ζ ·v η = ζ ·λv η.
Proof. We have

(ζ ·λv η)(λv) = ζηλv = ζ(η ·v λ)v
= (ζ ·v (η ·v λ))v = ((ζ ·v η) ·v λ)v
= (ζ ·v η)(λv),

where we have used associativity of ·v in the second line. Then use the fact
that the map τ 7→ τ(λv) from C to C(λv) is one-to-one.

Proposition 1.4. If (C, V ) is not irreducible, then the multiplication ·v
is independent of v.

The proof we give is also contained in the proof of Theorem 1.1 of
[CDKR1].

Proof. Given non-zero elements u, v of V , we prove that ·u = ·v. Assume
first that Cu+ Cv is a direct sum. For ζ, η ∈ C,

(ζ ·u+v η)(u+ v) = (ζ ·u+v η)u+ (ζ ·u+v η)v,

but also

(ζ ·u+v η)(u+ v) = ζη(u+ v) = ζηu+ ζηv = (ζ ·u η)u+ (ζ ·v η)v.

Therefore (ζ ·u+v η)u = (ζ ·u η)u and (ζ ·u+v η)v = (ζ ·v η)v, i.e., ζ ·u η =
ζ ·u+v η = ζ ·v η.

Assume now that Cu+ Cv is not a direct sum. If ζ0u = η0v with ζ0, η0

6= 0, then v = η−1
0 ζ0u ∈ C(Cu) = Cu, and so Cv = Cu. Since (C, V ) is not

irreducible, there is v′ 6= 0 such that v′ ⊥ Cv. By the first part of the proof,
·v = ·v′ = ·u.

Corollary 1.5. The product ·v is independent of v if and only if (C, ·v)
is associative for one (and hence for all) v. This is the case when dimC ≤ 4.

Proof. We have the general identity

(1.6) ζ ·v (η ·v λ) = (ζ ·λv η) ·v λ (∀ζ, η, λ ∈ C).

Hence, if ·v is independent of v, then (C, ·v) is clearly associative. Assume
now that, for some v 6= 0, (C, ·v) is associative. By Proposition 1.4, we can
restrict ourselves to the irreducible case V = Cv. So any other non-zero
u ∈ V is equal to λv for some non-zero λ ∈ C. By (1.6),

(ζ ·v η) ·v λ = ζ ·v (η ·v λ) = (ζ ·u η) ·v λ.
Dividing by λ, we have ζ ·v η = ζ ·u η.
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If dimC = 1, then C = R1 and there is nothing to say. If dimC = 2,
taking i ∈ C ′ with i2 = −1, it is immediate to see that C ∼= C. If dimC ≥ 3,
take orthonormal vectors i, j ∈ C ′. Fix a non-zero vector v ∈ V , and set k =
i ·v j. As shown in the proof of Proposition 1.2, k is linearly independent of
1, i, j, so that dimC = 4 and (C, ·v) is generated by i and j. By Proposition
1.2, (C, ·v) ∼= H is associative.

We shall say in short that C is associative, or non-associative, to distin-
guish between these two cases.

2. Automorphisms of J2C-modules. Let (C, V ) be a C-module. An
automorphism of (C, V ) is a pair m = (ϕ,ψ) of orthogonal maps ϕ : C → C,
ψ : V → V such that the diagram

C × V J−→ V

ϕ↓ ↓ψ ↓ψ
C × V J−→ V

is commutative, i.e.,

(2.1) ψ(ζv) = ϕ(ζ)ψ(v).

We write M for the group of automorphisms of the C-module. The au-
tomorphism group of a general C-module is described in detail in [R]. We
shall look more closely at the specific properties of M when V satisfies the
J2-condition.

We denote by M1 the subgroup of M defined by the condition ϕ = id.
M1 is the automorphism group of the Clifford module associated to (C, V ).

Proposition 2.1. Let (C, V ) be a J2C-module, and assume that C is
associative. Then M1 is in one-to-one correspondence with the ordered or-
thonormal C-bases of V .

Proof. Let {u1, . . . , un} and {v1, . . . , vn} be two orthonormal C-bases.
Define ψ : V → V by

ψ
(∑

ζjuj

)
=
∑

ζjvj .

This is clearly a well-defined orthogonal map. To prove that (id, ψ) ∈ M ,
we must verify that

(2.2) ψ(ηv) = ηψ(v) (∀η ∈ C, v ∈ V ).

Since ·v is independent of v,

ψ
(
η
∑

ζjuj

)
= ψ

(∑
(η ·uj ζj)uj

)
=
∑

(η ·uj ζj)vj

=
∑

(η ·vj ζj)vj = η
∑

ζjvj .
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It is then obvious that ψ is the only linear map satisfying (2.2) and mapping
each uj into vj .

To construct automorphisms that are not trivial on C we need a prelim-
inary remark about conjugation in Cliff(C ′).

If z is a unit element of C ′ and η ∈ C, then the Clifford product zηz−1 =
−zηz is also in C (see Remark 2 in Section 1). In fact, it is equal to η if
η ∈ R1+Rz, and −η if η ⊥ (R1+Rz) (in other words, zηz−1 is the reflection
of η in the plane R1 + Rz).

Let Pin(C ′) ⊂ Cliff(C ′) be the multiplicative group generated by unit
elements of C ′. It follows that, if α ∈ Pin(C ′), the map η 7→ αηα−1 is
orthogonal on C and is the identity on R1.

On a general C-module, for any α ∈ Pin(C ′),

(2.3) mα(ζ, v) = (αζα−1, αv)

is in M . The mα form a subgroup that we denote by M2. M2 acts on C ′ as
SO(C ′) if dimC ′ is odd, and as O(C ′) if dimC ′ is even (this follows because
this action is generated by the reflections η 7→ zηz−1). In particular, M2 acts
transitively on spheres in C ′. It follows that M2 is isomorphic with Pin(C ′)
modulo a finite subgroup. It is also true, even if of no great importance for
us here, that M1∩M2 is finite and that the group M1M2 has index at most 2
in M (cf. [R]).

Proposition 2.2. Let (C, V ) be a J2C-module, and let ΞV be the man-
ifold of ordered orthonormal C-bases of V . Let also SC′ be the unit sphere
in C ′. Then M acts transitively on SC′ ×ΞV .

Proof. For any m = (ϕ,ψ) ∈ M , ϕ(1) = 1, hence ϕ acts orthogonally
on C ′. It is also simple to verify that ψ transforms orthonormal C-bases of
V into orthonormal C-bases. Therefore M acts on SC′ ×ΞV .

Given two elements (z0, ξ0), (z′0, ξ
′
0) ∈ SC′ ×ΞV , we want to find m ∈M

such that m(z′0, ξ
′
0) = (z0, ξ0). There is α ∈ Pin(C ′) such that αz′0α

−1 = z0.
Then α transforms ξ′0 into another orthonormal basis ξ′1. Then we need to
find m ∈M such that m(z0, ξ

′
1) = (z0, ξ0).

If C is associative, Proposition 2.1 says that there is an element of M1

that does the job. If C is non-associative, we necessarily have dimC =
dimV ≥ 5, by Proposition 1.4 and Corollary 1.5. In particular, ΞV = SV ,
the unit sphere in V , since (C, V ) is irreducible. We then have two elements
v1, v2 ∈ SV , and we want to find β ∈ Pin(C ′) such that βz0β

−1 = z0 and
βv1 = v2.

Choose v ∈ SV orthogonal to vj and z0vj for j = 1, 2. Since V = Cv,
there are z1, z2 ∈ C such that vj = zjv, j = 1, 2. By (1.4), v ⊥ vj implies
that zj ∈ C ′, and v ⊥ z0vj implies that zj ⊥ z0. Let β = −z2z1 = z2z

−1
1 .
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Then
βz0β

−1 = z2z1z0z1z2 = −z2z0z2 = z0,

βv1 = z2z
−1
1 z1v = z2v = v2.

Corollary 2.3. M acts transitively on the product SC′×SV of the two
unit spheres in C ′ and V , and on the product of unit spheres SC′ × SCv1 ×
· · · × SCvn, if {v1, . . . , vn} is an orthonormal C-basis of V .

Transitivity of M on SC′ × SV is Kostant’s double transitivity for the
Ad(M)-action on the sum of root spaces gλ+g2λ in semisimple Lie algebras.

3. Classification and some background information. Theorem 3.1
below gives the classification of all J2C-modules in terms of normed division
algebras. This theorem will not be used at all in the rest of the article.

Theorem 3.1. Every J2C-module is isomorphic with one of the follow-
ing:

(i) C is any Euclidean space with a distinguished unit vector 1, V = 0;
(ii) C = F, a normed division algebra, V = Fn (with n a positive integer

if F is associative, and n = 1 if F is non-associative, the norm on
Fn being the usual `2-norm) and J is multiplication by elements of
F from the left.

Proof. These are clearly J2C-modules. The J2-condition is vacuous in
(i) and trivial in (ii) when F is associative. If F is non-associative, then
Cv = V for any v 6= 0, and the J2-condition follows trivially.

To prove that our list is complete, assume that (C, V ) is a J2C-module. If
V = 0, there is nothing to prove. If V 6= 0, we must provide an isomorphism
(f, g) from some (F,Fn) as above to (C, V ), i.e., a pair of orthogonal linear
maps f : F→ C, g : Fn → V such that

g(q(q1, . . . , qn)) = f(q)g(q1, . . . , qn) (∀q, q1, . . . , qn ∈ F).

Fix an orthonormal C-basis {v1, . . . , vn} of V and set F = (C, ·v1). Let
f : F→ C be the identity map and define g : Fn → V by

g(ζ1, . . . , ζn) =
∑

ζjvj .

If F is associative, ·v1 = ·vj for every j. Then (as in the proof of Propo-
sition 2.1)

g(η ·v1 (ζ1, . . . , ζn)) =
∑

(η ·v1 ζj)vj =
∑

ηζjvj = η
∑

ζjvj

= f(η)g(ζ1, . . . , ζn).

This computation also works when C is non-associative, due to the fact
that n = 1.
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We conclude this section by mentioning the relations among C-modules,
Clifford modules and H-type Lie algebras.

As pointed out in Section 1, every C-module extends in a natural way
to a Cliff(C ′)-module. This construction can be reversed: let C ′ be any
finite-dimensional (possibly trivial) vector space with a scalar product and
V a module over Cliff(C ′), endowed with a Pin(C ′)-invariant scalar product.
Setting C = R1 ⊕ C ′, there is a unique C-module structure (C, V ) induc-
ing the given Clifford module structure on V [K]. However, non-equivalent
Clifford modules may induce isomorphic C-modules. This is because (C, V )
and (C, V ′) may be isomorphic without any isomorphism being the identity
on C (cf. [KR]).

The main facts about Clifford modules can be derived from [Hus]. If the
dimension d of C is not divisible by 4, Cliff(C ′) has, up to equivalence, only
one irreducible module V0, and all other modules can be realized as Vk ∼
V0⊗F Fk, where F = R,C,H, depending on the congruence class of d mod 8.
If d is divisible by 4, then Cliff(C ′) has two inequivalent irreducible modules,
V1, V2, and any module V can be realized as Vkh = (V1⊗F Fk)⊕ (V2⊗F Fh),
with F = R if d is divisible by 8, and F = H otherwise. If k 6= h, Vkh and
Vhk are non-equivalent as Clifford modules, but the induced C-modules are
isomorphic.

The J2-condition makes sense on Clifford modules, and it can be restated
as Cliff(C ′)v = Cv for every v ∈ V . This may only occur when Cliff(C ′) has
a module (necessarily irreducible) of the same dimension as C, i.e., when
d = 1, 2, 4, 8. For these values of d, the J2-condition holds for every module
if d = 1, 2, only for the “isotypic” C-modules Vk0 = V0k if d = 4, and only
for the irreducible C-module if d = 8 [CDKR1].

There is a third category which must be mentioned in this context: the
H-type Lie algebras. An H-type Lie algebra (the notion of which is the basic
object in [CDKR1, CDKR2]) is a Lie algebra n with a positive definite inner
product. It is assumed that z is the center of n, n = v + z is an orthogonal
direct sum and [v, v] ⊂ z. Furthermore, for all z ∈ z, the map Jz : v → v,
defined by

(3.1) 〈Jzv, u〉 = 〈[v, u], z〉,

has the property

(3.2) J2
z = −|z|2 idv .

It is immediate that, given a C-module (C, V ), we obtain an H-type Lie
algebra by taking n as the Euclidean direct sum of v = V and z = C ′ and
defining the Lie bracket through (3.1). The converse is also easy to verify,
as well as that isomorphic C-modules produce isomorphic Lie algebras, and
vice versa [K, KR].
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4. The space W = C ⊕ V . Given a J2C-module (C, V ), let W =
C ⊕ V be the direct sum of Euclidean spaces. We introduce the following
equivalence relation on W \ {0}:

(i) (0, u) ∼ (0, v) if u ∈ Cv;
(ii) if ζ 6= 0, (η, u) ∼ (ζ, v) if η 6= 0 and η−1u = ζ−1v.

Notice that the J2-condition is required in (i) to prove transitivity. Given an
element w = (ζ, v) 6= 0 in W , we denote its equivalence class together with
point 0 by Cw or C(ζ, v). We must pay attention, however, to the fact that
the notation ηw does not make any sense for an individual η ∈ C. This is
related to the fact that in general W cannot be given a C-module structure
in a natural way (unless C is associative). We only have, for v 6= 0,

C(ζ, v) = {(λ ·v ζ, λv) : λ ∈ C} = {(λ, λζ−1v) : λ ∈ C}.

We call C-line, or affine C-line, any translate w0 + Cw of Cw, with
w 6= 0. The C-lines through 0 form a closed subset of the (Grassmannian)
manifold of real d-dimensional subspaces of W . To see this, one has to show
that if (ζn, vn) → (ζ, v), (ζ ′n, v

′
n) → (ζ ′, v′) and (ζn, vn) ∼ (ζ ′n, v

′
n), then

(ζ, v) ∼ (ζ ′, v′). This is easy and left to the reader. Since different C-lines
through 0 meet only at 0, we also see that wn → w 6= 0 implies that
Cwn → Cw.

It is clear that every C-line through 0 can be written in the form C(1, v)
(uniquely), or C(0, v) (non-uniquely). The C-lines of the first type form a
dense open set (dense because C(0, v) = limC(1/n, v) = limn→∞C(1, nv)
as n→∞).

We denote by GL(W,C) the group of R-linear transformations of W
preserving C-lines. We also set K = GL(W,C) ∩ O(W ). Since GL(W,C)
and K are closed subgroups of GL(W,R), they are Lie groups.

Proposition 4.1. If (ϕ,ψ) ∈ M , the map ϕ × ψ : W → W defined by
(ϕ×ψ)(ζ, v) = (ϕ(ζ), ψ(v)) is in K. This correspondence identifies M with
the subgroup of K whose elements fix the point (1, 0). The subgroup M1 of
M is then identified with the subgroup of K whose elements fix every point
in C.

Proof. If (ϕ,ψ) ∈ M , then ϕ(1) = 1, so that ϕ × ψ fixes (1, 0). Let
` = C(ζ, v) be a C-line through 0. If ζ = 0, then ` = {(0, ηv) : η ∈ C}, and

(ϕ× ψ)(0, ηv) = (0, ψ(ηv)) = (0, ϕ(η)ψ(v)) ∈ C(ϕ× ψ)(0, v).

If ζ 6= 0, then ` = C(1, ζ−1v), so we may as well assume that ζ = 1.
Then ` = {(η, ηv) : η ∈ C} and

(ϕ× ψ)(η, ηv) = (ϕ(η), ϕ(η)ψ(v)) ∈ C(1, ψ(v)) = C(ϕ× ψ)(1, v).
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Conversely, assume that k ∈ K fixes (1, 0). Then kC is the C-line con-
taining (1, 0), i.e., C. By orthogonality, kV = V . Denote by k1, k2 the re-
strictions of k to C and V respectively. Consider now an element (η, ηv) in
a C-line C(1, v) not contained in V . By linearity, k(η, ηv) = (k1(η), k2(ηv)).
Moreover, k(η, ηv) ∈ Ck(1, v) = C(1, k2(v)). Then necessarily k2(ηv) =
k1(η)k2(v), i.e., (k1, k2) ∈M .

The last part of the statement is now obvious.

We will construct elements of K that are not in M , i.e., that do not fix
(1, 0). But first we prove a more general statement, which will also be useful
later.

Proposition 4.2. Let {v1, . . . , vn} be an orthonormal C-basis of V . Let
w0 = (1, 0), wj = (0, vj) (1 ≤ j ≤ n) and (ajk)0≤j,k≤n be a real matrix.
Then the map A : W →W defined by

A
( n∑
j=0

ζjwj

)
=

n∑
j,k=0

ajkζkwj

is in GL(W,C).

Though the expression ζw does not make sense in general, the abuse
of notation in the statement above does not cause ambiguity. It must be
understood that ζ0w0 = (ζ0, 0) and ζjwj = (0, ζjvj) for j ≥ 1.

Proof. It is clear that A is well defined and R-linear, so that it suffices to
prove the last statement for C-lines through 0. By continuity, we may also
restrict ourselves to C-lines ` = C(1, v). Now, for v =

∑n
j=1 ζjvj ,

C(1, v) =
{(
λ,

n∑
j=1

λζjvj

)
: λ ∈ C

}
=
{ n∑
j=0

(λ ·vj ζj)wj : λ ∈ C
}

(where ζ0 = 1 and λ ·v0 ζ0 stands for λ). So,

A(`) =
{ n∑
j,k=0

ajk(λ ·vk ζk)wj : λ ∈ C
}
.

This is clearly a C-line if C is associative, because ·vk is independent
of k.

If C is non-associative, then n = 1 and we must verify that

(a00λ+ a01λ ·v1 ζ1)−1(a10λ+ a11λ ·v1 ζ1)

= [(a001 + a01ζ1)−1 ·v1 λ−1] ·(a10λ+a11λ·v1ζ1)v1 [λ ·v1 (a101 + a11ζ1)]

does not depend on λ. For fixed λ, every element of C appearing in this
expression belongs to the division subalgebra of (C, ·v1) generated by ζ1

and λ. By Proposition 1.2 and Corollary 1.3, this subalgebra is associative
and ·(a10λ+a11λ·v1ζ1)v1 = ·v1 , so that λ cancels out.
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Proposition 4.3. For a fixed unit vector v0 ∈ V , decompose v ∈ V as
v = ηv0 + v′, with v′ ∈ (Cv0)⊥, and set, for θ ∈ T,

σv0,θ(ζ, ηv0 + v′) = (cos θζ − sin θη, (cos θη + sin θζ)v0 + v′).

Then σv0,θ ∈ K.

Proof. It is trivial to verify that σv0,θ ∈ O(W ). It maps C-lines into
C-lines because v0 can be completed to an orthonormal basis of V and then
Proposition 4.2 applies.

Corollary 4.4. K acts transitively on the unit sphere SW (and hence
on C-lines through 0).

Proof. Given a point (ζ, v) ∈ SW , write (ζ, v) as (cζ ′, sv′) with ζ ′ ∈ SC ,
v′ ∈ SV , c = cos θ, s = sin θ for an appropriate θ ∈ T (if v = 0, we choose v′

arbitrarily). Then k = σζ′−1v′,θ−π/2 ◦ σv′,π/2 maps (1, 0) into (ζ, v).

We call linear C-subspace of W an R-linear subspace E such that Cw ⊂
E whenever w 6= 0 is in E.

We also call affine C-subspace of W a translate E′ = E + w of a linear
C-subspace E. This is equivalent to saying that E′ is a set that contains the
whole affine C-line w1+C(w2−w1) connecting any pair of points w1, w2 ∈ E′.

For an R-linear subspace of V , to be a sub-C-module of V is the same
as being a linear C-subspace of W .

Lemma 4.5. The orthogonal of a linear C-subspace is a linear C-subspace.

Proof. Let E be a linear C-subspace. Modulo the action of K, we may
assume that C ⊂ E. Then E = C ⊕ V0, with V0 a submodule of V . Then
the orthogonal of E in W is the same as the orthogonal of V0 in V , which
is a submodule too.

Proposition 4.6. The linear span in W of C-lines through 0 is a linear
C-subspace. Conversely, any linear C-subspace is the orthogonal sum of C-
lines through 0.

Proof. The first part of the statement follows by induction, if we prove
that the sum of a proper linear C-subspace E and a C-line ` through 0 is a
linear C-subspace.

Modulo the action of K, we may assume that E⊥ contains C, hence that
E ⊂ V . If ` is also contained in V , then E + ` is a submodule of V .

If ` 6⊂ V , then ` = C(1, v0) for some v0 ∈ V and

E + ` = {(η, ηv0 + v) : η ∈ C, v ∈ S}.
We need to prove that, if η 6= 0 and v ∈ E, then C(η, ηv0 + v) ⊂ E + `.

An element of C(η, ηv0 +v) has the form (ζ, ζv0 + ζη−1v), which is in E+ `,
as ζη−1v ∈ E.
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For the converse, we may assume that C ⊂ E. Then E = C ⊕ V0, with
V0 a C-submodule of V , and it can be decomposed into the orthogonal sum
of irreducible ones.

Proposition 4.6 allows us to introduce the notions of orthonormal C-basis
and of C-dimension of a linear C-subspace of W . We can then extend the
scope of Corollary 4.4.

Corollary 4.7. The group K acts transitively on the manifold ΞW of
ordered orthonormal C-bases of W and on the manifold of linear C-subspaces
of any fixed dimension.

Proof. It follows from Proposition 2.2 that M ⊂ K acts transitively on
ordered orthonormal C-bases of W whose first element is (1, 0). It is then
sufficient to prove that any other basis {w0, . . . , wn} can be mapped into a
basis of this type. But this amounts to saying that there is k ∈ K such that
kw0 = (1, 0), which follows from Corollary 4.4.

In the remainder of this section we describe the orbits of M on the unit
sphere SW of W and analyze the structure of K in more detail.

We assume that C ′ 6= 0 and V 6= 0, the degenerate cases being trivial.
We fix an orthonormal C-basis {v1, . . . , vn} of V and an element z ∈ C ′

with |z| = 1.

Lemma 4.8. Every M -orbit in SW meets the subspace R1+ Rz+ Rv1 in
the points a1± bz± cv1 for unique numbers a ∈ R, b, c ≥ 0 with a2 + b2 + c2

= 1.

Proof. M fixes 1, hence Re ζ remains constant on any orbit M · (ζ, v).
The rest of the statement follows from Corollary 2.3.

We write, for t ∈ R, ηt = (cos t)1 + (sin t)z, and define mt by

mt(ζ, v) = (ηtζη−1
t , ηtv).

This is a one-parameter subgroup of M (mt ∈ M2 if dimC ′ > 1, and mt ∈
M1 if dimC ′ = 1). We write σ1 = σv1,π/2 and define T as the one-parameter
subgroup of K consisting of the elements

ρt = σ−1
1 ◦mt ◦ σ1.

We also denote by L the subgroup of K preserving C (hence also preserv-
ing V ). Then M ⊂ L, and also T ⊂ L, since σ1 only interchanges C with
Cv1 and preserves all other Cvj .

For any v ∈ V and t ∈ R, we have ρt(1, v) = (zt, v′) for some v′ ∈ V .
Hence the orbits of L on SW all meet the plane R1+Rv1 (in points ±a1±cv1,
for unique a, c ≥ 0 with a2 + c2 = 1).

We write T ′ for the subgroup {σv1,θ}θ∈T of K.

Proposition 4.9. We have K = LT ′L and L = MTM .
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The proof is trivial from the structure of the L- and M -orbits in SW .

Corollary 4.10. The following hold:

(i) M and T generate K;
(ii) MkM = Mk−1M for every k ∈ K;
(iii) the projection of the action of L onto C is SO(C) or O(C) (1).

Proof. (i) is obvious and (ii) follows from Lemma 4.8. As to (iii), the
description of M given in Section 2 shows that M2 acts on C as SO(C ′) or
O(C ′). On the other hand, T acts on C as a torus transversal to SO(C ′).
It is well known, and easy, that SO(d− 1) is a maximal proper subgroup of
SO(d), and the conclusion follows.

Remark 1. For future reference, we observe that, given w,w′ ∈W and
writing πCw for the orthogonal projection on Cw, the ratio |πCww′′|/|w′′|
is constant for all w′′ ∈ Cw′. This constant is then the cosine of the angle
of Cw and Cw′. The proof is immediate when Cw = C. The general case
follows by Corollary 4.7.

Remark 2. Corollary 4.10(ii) implies that (K,M) is a Gelfand pair.
This and (iii) are the key facts in the discussion of harmonic analysis on
K/M in the exceptional case developed in [Ta]. Here we have proved them
without explicit use of the octonions.

5. The construction of CPW . The compact rank-one symmetric
spaces will be defined as appropriate compactifications of the vector spaces
W that we have associated to J2C-modules. In the associative case, these
compactifications can be described (as they are in the literature) as spaces
of lines: according to Theorem 3.1, we identify C with an associative divi-
sion algebra F, V with Fn, and W with Fn+1. The symmetric space is then
FPn+1 = (Fn+2 \ {0})/F∗. This construction makes use of the fact that we
can “add dimensions” to V without destroying the J2C-module structure,
something that cannot be adapted to the non-associative case.

In order to have a unified description, including both the associative and
the non-associative case, we construct the compactification by “gluing” to
W a space W∞ consisting of “points at infinity”.

We set W∞ = (W \ {0})/∼, where ∼ is the equivalence relation intro-
duced at the beginning of Section 4. It is convenient to think of W∞ as the
set of C-lines through 0 in W . We denote by π : W \{0} →W∞ the quotient
map, and we endow W∞ with the quotient topology. The element π(w) will
be denoted by [w].

We then set CPW = W ∪W∞, and define a topology on it by assigning
neighborhood bases at the various points as follows:

(1) The projection of the action of L onto C is SO(C) if d = 4, 8 and O(C) if d = 1, 2.
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(i) to a point w ∈W , we assign its Euclidean neighborhoods in W ;
(ii) to a point [w] ∈ W∞, we assign, for each neighborhood U∞[w] of [w]

in W∞ and each R > 0, the neighborhood

UR[w] = U∞[w] ∪ {w
′ ∈ π−1(U∞[w]) : |w′| > R}.

We leave the reader the verification that these neighborhood systems
actually define a second-countable topology. It is obvious that W is open
and dense in CPW .

As we have seen, a C-line not contained in V contains a unique element
(1, v). We denote the corresponding element of W∞ as [1, v], and W 1

∞ the set
of such elements. The complementary subset W 0

∞ of W∞ is the set of C-lines
contained in V . We use the notation [0, v] to denote the C-line containing
v 6= 0 (in this case, however, [0, v] depends only on the equivalence class of
v mod C∗). Clearly, W 1

∞ is open and dense in W∞.
The following facts about convergence of sequences in CPW are easily

derived from the definition:

(i) W 3 wn → [w] ∈ W∞ if and only if |wn| → ∞ and [wn] → [w] in
W∞;

(ii) (ζn, vn)→ [1, v] ∈W 1
∞ if and only if |ζn| → ∞ and ζ−1

n vn → v;
(iii) (ζn, vn) → [0, v] ∈ W 0

∞ if and only if |vn| → ∞, |ζn| = o(|vn|) and
there are λn (→ 0) in C such that λnvn → v;

(iv) W 1
∞ 3 [1, vn] → [0, v] ∈ W 0

∞ if and only if |vn| → ∞ and there are
λn (→ 0) such that λnvn → v.

We state a couple of facts that will be used later on.

Proposition 5.1. Let f ∈ GL(W,C). The induced map f∞ : W∞ →
W∞ such that f∞ ◦ π = π ◦ f is a homeomorphism and f̄ = f ∪ f∞ is a
homeomorphism of CPW . Translations in W extend to homeomorphisms of
CPW which are the identity on W∞.

Proof. That f∞ is a homeomorphism follows from standard facts about
quotient topologies. It is then sufficient to prove that f(wn) → f∞([w]) if
W 3 wn → [w] ∈W∞. Using (i) above, |f(wn)| → ∞ because f is invertible,
and [

f(wn)
]

= f∞
(
[wn]

)
→ f∞([w]).

Take now a translation τ(w) = w + w0 with w0 = (ζ0, v0), and assume
that (ηn, un)→ [w] ∈W∞. We claim that also (ηn + ζ0, un + v0)→ [w].

If [w] = [1, v] ∈ W 1
∞, by (ii) we are assuming that |ηn| → ∞ and vn =

η−1
n un → v. Then |ηn + ζ0| → ∞ and

lim
n→∞

(ηn + ζ0)−1(un + v0) = lim
n→∞

(ηn + ζ0)−1un = lim
n→∞

(ηn + ζ0)−1ηnvn

= v − lim
n→∞

(ηn + ζ0)−1ζ0vn = v.
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If [w] = [0, v] ∈ W 0
∞, by (iii) we are assuming that |un| → ∞, |ηn| =

o
(
|un|

)
and λnun → v for some sequence λn → 0. Then |un + v0| → ∞,

|ηn + ζ0| ∼ |ηn| = o
(
|un + v0|

)
, and λn(un + v0)→ v.

From now on we will use the same symbol for a C-linear or C-affine map
of W and for its continuous extension to CPW .

Proposition 5.2. If E is a linear C-subspace, the closure in CPW of
the affine C-subspace E′ = w0 + E is (w0 + E) ∪ π(E).

Proof. By Proposition 5.1, we may assume that w0 = 0. Since π(E) =
π(E ∩ SW ), π(E) is closed in W∞. By (i), if wn → [w] and wn ∈ E, then
[wn]→ [w], hence [w] ∈ π(E). Conversely, if [w] ∈ π(E), then nw → [w].

In order to introduce a differentiable structure on CPW compatible with
this topology, we first show that certain maps on CPW are homeomor-
phisms. These maps will then be used to define the coordinate patches.

Lemma 5.3. Let ϕ0 : CPW → CPW be defined as

(5.1)

ϕ0(ζ, v) = (ζ−1, ζ−1v) if ζ 6= 0,
ϕ0(0, v) = [1, v],
ϕ0[1, v] = (0, v),
ϕ0[0, v] = [0, v].

Then ϕ0 is a homeomorphism.

Proof. Since ϕ−1
0 = ϕ0, it is sufficient to prove that ϕ0 is continuous.

The following facts must be verified:

(1) (ζn, vn)→ (0, v) (with ζn 6= 0) if and only if (ζ−1
n , ζ−1

n vn)→ [1, v];
(2) if (ζn, vn)→ [0, v] (with ζn 6= 0), then (ζ−1

n , ζ−1
n vn)→ [0, v];

(3) (0, vn)→ [0, v] if and only if [1, vn]→ [0, v].

This can be easily done on the basis of (ii)–(iv).

Fix now an orthonormal C-basis {v1, . . . , vn} of V , and define, for j =
1, . . . , n and v′ ⊥ Cvj ,

ψj(ζ, ηvj + v′) = (η, ζvj + v′).

Then ψj is linear and involutive on W and maps C-lines into C-lines. There-
fore it extends to an involutive homeomorphism, also denoted by ψj , of
CPW . If ϕj = ϕ0 ◦ ψj ◦ ϕ0, then ϕj is an involutive homeomorphism of
CPW too. Explicitly, with v′ ⊥ Cvj ,
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(5.2)

ϕj(ζ, ηvj + v′) = (η−1 ·vj ζ, η−1vj + η−1v′) if η 6= 0,

ϕj(ζ, v′) =
{

[1, ζ−1(vj + v′)] if ζ 6= 0,
[0, vj + v′] if ζ = 0,

ϕj [1, ηvj + v′]l =
{

(η−1, η−1v′) if η 6= 0,
[1, v′] if η = 0,

ϕj [0, ηvj + v′] =
{

(0, η−1v′) if η 6= 0,
[0, v′] if η = 0.

For notational convenience, we set ϕn+1 = idCPW .

Proposition 5.4. The charts (ϕj(W ), ϕj) with 0 ≤ j ≤ n + 1 define a
differentiable structure on CPW .

(Since ϕj = ϕ−1
j , the coordinate maps take values in W .)

Proof. We show that W,ϕ0(W ), . . . ϕn(W ) form an open covering of
CPW . In fact, the points of W∞ that are not contained in ϕ0(W ) are those
in π(V ), whereas, for j ≥ 1, the points of W∞ not contained in ϕj(W ) are
those in π((Cvj)⊥). Since

V ∩ (Cv1)⊥ ∩ · · · ∩ (Cvn)⊥ = 0,

we conclude that
n⋃
j=0

ϕj(W ) ⊃W∞.

We see directly from (5.1) and (5.2) that each component of ϕj , 0 ≤ j ≤
n, is a rational function. The same is then true also for the transition maps
ϕj◦ϕk. In particular, they are smooth (and analytic) on W∩(ϕj◦ϕk)−1W .

When restricted to W∞, this differentiable structure coincides with the
quotient structure of (W \ {0})/∼. Restricting the quotient map π to the
unit sphere SW , we obtain the Hopf fibration

π : SW →W∞,

with fiber SC . By Proposition 5.1, K acts by diffeomorphisms of W∞ and,
by Corollary 4.7, this action is transitive. Let L be the subgroup of K
introduced in Section 4, whose elements preserve C as a set. Identifying
W∞ with K/L and the unit sphere SW with K/M , it follows that L is the
structure group of the bundle, and the fiber SC is diffeomorphic to L/M .

It may help the reader to see explicitly how CPW identifies with FPn+1

when F is an associative division algebra, C = F and V = Fn. Let Π :
(Fn+2 \ {0})→ FPn+1 be the quotient map. We think of W inside CPW as
Π(Fn+1×{1}) and of W∞ as Π(Fn+1×{0}). Then each ϕj is the projective
image of the map interchanging the jth component of (q0, q1, . . . , qn, qn+1) ∈
Fn+2 with the (n+ 1)th component.
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6. CPW as a compact symmetric space. We first introduce a metric
on W and then prove that it can be extended to all of CPW . Guided by
the non-compact case (cf. (A.1) in the Appendix), we set

(6.1) 〈X,Y 〉w+ =


〈X,Y 〉

(1 + |w|2)2
if X,Y ∈ Cw,

〈X,Y 〉
1 + |w|2

if X,Y ∈ (Cw)⊥,

0 if X ∈ Cw, Y ∈ (Cw)⊥,
if w 6= 0 and, for w = 0,

(6.2) 〈X,Y 〉0+ = 〈X,Y 〉 for every X,Y.

Notice that (6.1) and (6.2) imply that for arbitrary X ∈W ,

(6.3) |X|w+ = c|w|,ϕ|X|,
where ϕ is the angle of the C-lines Cw and CX (see Remark 1 at the end
of Section 4) and

(6.4) c|w|,ϕ =
(

cos2 ϕ

(1 + |w|2)2
+

sin2 ϕ

1 + |w|2

)1/2

.

Proposition 6.1. The geodesic γ going through the origin with tangent
vector w ∈ SW is γ(t) = (tan t)w, |t| < π/2. The group of isometries of W
fixing the origin is K.

Proof. The elements of K are isometries of W , as a direct consequence
of their property of mapping C-lines into C-lines. We may then assume
that w = (1, 0). Then γ must be invariant under M . By Kostant’s double
transitivity (Corollary 2.3), this implies that γ ⊂ R1, i.e., γ(t) = r(t)w. We
impose now that

‖ .γ(t)‖γ(t)+ =
r′(t)

1 + r2(t)
= 1.

This gives r(t) = tan t.
Finally, let f be an isometry of W with f(0) = 0, and let k = Df(0) ∈

O(W ). If w ∈ SW , the geodesic γ(t) = (tan t)w is mapped into f
(
γ(t)

)
=

(tan t)k(w) = k
(
γ(t)

)
. Therefore f = k. Then (6.1) implies that k must map

C-lines into C-lines.

We will see that the transition maps ϕj ◦ ϕk are isometric on W ∩ (ϕj ◦
ϕk)−1(W ), and this will allow us to extend the metric to CPW , defining
it locally as the pull-back of the metric in W via the coordinate maps ϕj .
Since ψj ∈ K for 1 ≤ j ≤ n, the crucial fact to be proved is that ϕ0 is an
isometry on W \ V .

This will be the first consequence of the next lemma.
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Lemma 6.2. For θ ∈ T and ζ 6= (cot θ)1, define

(6.5) bθ(ζ, v) =
(
(cos θ1− sin θζ)−1(sin θ1 + cos θζ), (cos θ1− sin θζ)−1v

)
,

where the product in the first component is in the sense of Clifford mul-
tiplication or, equivalently, with respect to any product ·v0. Then bθ is an
isometry.

Before giving the proof, we comment that the bθ must be regarded as
close analogues of the maps σv0,θ introduced in Proposition 4.3. We can
see this in the associative case, where CPW = FPn+1. In terms of the ho-
mogeneous coordinates (q0, . . . , qn+1) introduced at the end of the previous
section, and with v0 the jth basis element (1 ≤ j ≤ n), σv0,θ introduces a
rotation by θ in the pair of coordinates (q0, qj). Now bθ introduces the same
rotation in the coordinates (q0, qn+1).

We also remark the formal analogy between (6.5) and (A.3) in the Ap-
pendix.

Proof. Fix w = (ζ, v) and a tangent vector (η, u) at w. Set bθ(w) = wθ =
(ζθ, vθ). We compute

(bθ)∗,w(η, u)

=
d

dε

∣∣∣∣
ε=0

(
(c1− s(ζ + εη))−1(s1 + c(ζ + εη)), (c1− s(ζ + εη))−1(v + εu)

)
,

where ε ∈ R, c = cos θ, s = sin θ, and prove that ‖(bθ)∗,w(η, u)‖2wθ+ does not
depend on θ as long as ζ 6= (cot θ)1. It is convenient to restrict ourselves to
ζ 6∈ R1, v 6= 0, the general case following by continuity.

We take the first-order expansion of each component in ε. The expansion
of the first component takes place in the subalgebra of (C, ·v0) (for some v0)
generated by ζ and η, which is associative. By standard computations, we
find that

(6.6) (bθ)∗,w(η, u) def= (ηθ, uθ)

=
(
(c1− sζ)−1η(c1− sζ)−1, (c1− sζ)−1u+ s(c1− sζ)−1η(c1− sζ)−1v

)
.

Notice that, according to Remark 2 in Section 1, the expression defining ηθ
is independent of the choice of v0.

The subspace C +Cw and its orthogonal complement (C +Cw)⊥ (with
respect to the product inner product on W ) are clearly invariant under
(bθ)∗,w. Notice that, since wθ is in C+Cw, then C+Cw is also the direct sum
of Cwθ and its orthogonal complement. By (6.1), C + Cw and (C + Cw)⊥

are also orthogonal with respect to the inner product 〈 , 〉wθ+. It is then
sufficient to prove that ‖(ηθ, uθ)‖2wθ+ does not depend on θ when (η, u)
belongs to either of the two subspaces.
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Take (0, u) ∈ (C + Cw)⊥, i.e., with u ⊥ Cv in V . Then ηθ = 0 and
uθ = (−sζ + c1)−1u. Then

‖(0, uθ)‖2wθ+ =
|uθ|2

1 + |wθ|2
=

|u|2

(1 + |wθ|2)| − sζ + c1|2
.

Observing that

(6.7) 1 + |wθ|2 =
1 + |w|2

|c1− sζ|2
yields the conclusion.

Take now ξ = (η, λζ−1v) ∈ C + Cw. Observe that ξ ∈ Cw if and only
if λ = η and ξ ⊥ Cw if and only if λ = −(|ζ|2/|v|2)η. It follows that the
orthogonal decomposition of ξ, for general η, λ, into a term in Cw and one
orthogonal to it is

(η, λζ−1v) = (α, αζ−1v) +
(
β,−|ζ|

2

|v|2
βζ−1v

)
with

α =
|ζ|2

|w|2
η +
|v|2

|w|2
λ, β =

|v|2

|w|2
(η − λ).

Therefore, skipping the straightforward computations,

‖(η, λζ−1v)‖2w+ =
|α|2(1 + |v|2/|ζ|2)

(1 + |w|2)2
+
|β|2(1 + |ζ|2/|v|2)

1 + |w|2
(6.8)

=
1

(1 + |w|2)2
(|η|2 + |λζ−1v|2 + |η − λ|2|v|2).

Obviously, the same formula holds with w, v, ζ replaced by wθ, vθ, ζθ. We
then apply (6.8) for a given θ, with η = ηθ as in (6.6) and λ = λθ such that
(ηθ, λθζ−1

θ vθ) = (bθ)∗,w(η, λζ−1v), i.e.,

(6.9) λθζ
−1
θ vθ = (c1− sζ)−1

(
λζ−1 + sη(c1− sζ)−1

)
v.

By (6.7),
|ηθ|2

(1 + |wθ|2)2
=

|η|2

(1 + |w|2)2
,

which does not depend on θ. The next term is

|λθζ−1
θ vθ|2

(1 + |wθ|2)2
=
|c1− sζ|2|(λζ−1 + sη(c1− sζ)−1)v|2

(1 + |w|2)2
.

For the last term, we use the identity

|ηθ − λθ|2|vθ|2 = |ζθ|2|ηθ − λθ|2|ζ−1
θ vθ|2 = |ζθ|2|(ηθ − λθ)ζ−1

θ vθ|2.
Simple calculations and the identity (s1+cζ)−1−s1 = c(c1−sζ)(s1+cζ)−1

give that

(ηθ − λθ)ζ−1
θ vθ = (c1− sζ)−1(cη(s1 + cζ)−1 − λζ−1)v.
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Hence
|ηθ − λθ|2|vθ|2

(1 + |wθ|2)2
=
|s1 + cζ|2|(cη(s1 + cζ)−1 − λζ−1)v|2

(1 + |w|2)2
.

We must then prove that

|c1− sζ|2|(λζ−1 + sη(c1− sζ)−1)v|2 + |s1 + cζ|2|(cη(s1 + cζ)−1 − λζ−1)v|2

does not depend on θ. Expanding the right-hand factor in each summand
shows that this quantity is equal to

(|c1− sζ|2 + |s1 + cζ|2)|λζ−1v|2 + (s2 + c2)|η|2|v|2

− 2|c1− sζ|2s〈λζ−1v, η(c1− sζ)−1v〉
− 2|s1 + cζ|2c〈λζ−1, vη(s1 + cζ)−1v〉

= (1 + |ζ|2)|λζ−1v|2 + |η|2|v|2

+ 2s〈λζ−1v, η(c1− sζ̄)v〉 − 2c〈λζ−1, vη(s1 + cζ̄)v〉
= (1 + |ζ|2)|λζ−1v|2 + |η|2|v|2 − 2〈λζ−1v, ηζ̄v〉,

a quantity that does not depend on θ.

Corollary 6.3. The transition maps ϕj ◦ ϕk are isometries on W ∩
(ϕj ◦ ϕk)−1W .

Proof. Since ϕ0 = (−id) ◦ bπ/2 and −id ∈ K, ϕ0 is an isometry on
W \ V . Since ψj ∈ K for 1 ≤ j ≤ n, ϕj is an isometry on W \ (Cvj)⊥.
Compositions are then isometries on appropriate open dense subsets of W
and, by continuity, they remain isometric on W ∩ (ϕj ◦ ϕk)−1(W ).

We can then extend the metric to CPW by imposing that the ϕj , 0 ≤
j ≤ n, are isometries of the whole space. Observe that

(i) by Proposition 6.1, W∞ is the geodesic sphere centered at the origin
of W and radius π/2;

(ii) the bθ extend uniquely to isometries of CPW ; for θ = 0, π, bθ ∈ K,
so that its extension is obvious; for θ 6= 0, π we have

bθ((cot θ)1, v) = [1, (sin θ)v],

bθ([1, v]) = (−(cot θ)1,−(sin θ)−1v),(6.10)
bθ([0, v]) = [0, v];

(iii) γ(θ) = bθ(0) is the geodesic through 0 with tangent vector (1, 0)
there, and its length is π.

Theorem 6.4. CPW is a compact symmetric space of rank one.

Proof. We show that CPW is homogeneous by proving that the origin
can be mapped to any other point by isometries. If w ∈ W , take θ =
arctan |w|, so that bθ(0) = (|w|, 0). By Corollary 4.4, there is now k ∈ K
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such that k(|w|, 0) = w. Take now p = π(Cw) ∈ W∞, and let k ∈ K be
such that kC = Cw. Then the extension k̄ of k to CPW maps [1, 0] into p.
By (5.1), k̄ ◦ ϕ0 maps 0 into p.

The geodesic symmetry around 0 is − id, which is in K, hence CPW is
symmetric. Since the action of K on the unit sphere in the tangent space
at 0 is transitive, the rank of CPW is one.

Let U be the isometry group of CPW and B = {bθ : θ ∈ T}.

Corollary 6.5. U = KBK. The centralizer of B in K is M .

Proof. The proof of Theorem 6.4 shows that any isometry of CPW can
be decomposed as k1bθk2 with k1, k2 ∈ K. Let k ∈ K be such that bθk = kbθ
for every θ. Then

((tan θ)1, 0) = bθk(0, 0) = kbθ(0, 0) = k((tan θ)1, 0),

i.e., k fixes the points in (1, 0). By Proposition 4.1, k ∈M . Conversely, take
m ∈ M . Then m = (ϕ,ψ), where ϕ,ψ satisfy (2.1). Given (ζ, v) ∈ W , let
(ζ ′, v′) = (ϕ(ζ), ψ(v)). Set c = cos θ, s = sin θ. Hence

bθ(ζ ′, v′) = ((c1− sζ ′)−1(s1 + cζ ′), (c1− sζ ′)−1v′).

It follows from (2.1) that

ϕ(η ·v λ) = ϕ(η) ·ψ(v) ϕ(λ).

By Remark 1 in Section 1, if η and λ are rational expressions in ζ, the value
of the product does not depend on v. We can then say that

(c1− sζ ′)−1(s1 + cζ ′) = ϕ((c1− sζ)−1(s1 + cζ)),

and
(c1− sζ ′)−1v′ = ϕ((c1− sζ)−1)ψ(v) = ψ((c1− sζ)−1v),

i.e., bθ(ζ ′, v′) = mbθ(ζ, v).

7. Some applications. The purpose of this section is to use our setup
to prove a few (known) fundamental facts about compact symmetric spaces
of rank one. In the usual approach these things are easy to prove for spheres
and classical projective spaces, but quite difficult for the octonionic case (cf.
[Be, Ch. 3].

Throughout this section we consider a J2C-module (C, V ) and the asso-
ciated W = C ⊕ V , together with CPW . If V has a C-basis of n elements,
we say that dimCW = n+ 1.

Theorem 7.1. If d = dimRC and m = dimCW , we have

vol(CPW ) =
Γ (d/2)

Γ ((m+ 1)d/2)
πmd/2.
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Proof. Since W is open dense in CPW , by (6.1) we have

vol(CPW ) =
�

W

(1 + |w|2)−2d−(m−1)d dw,

where dw is Lebesgue measure. Polar coordinates and the substitution x =
|w|2 reduce this to

1
2
|Smd−1|

∞�

0

(1 + x)−(m+1)d/2xmd/2−1 dx,

which is a classical Beta-integral.

Theorem 7.2. Let E be a plane in the tangent space to CPW at (0, 0)
(identified with W as usual), and suppose that X,Y ∈W form an orthonor-
mal basis of E. Then the sectional curvature σ(E) of E is

(7.1) σ(E) = 1 + 3|πCXY |2 = 1 + 3 cos2 ϕ,

where πCX denotes the orthogonal projection onto CX and ϕ is the angle of
CX and CY .

Proof. We use the classical formula

(7.2) σ(E) = lim
r→0

3
π

2πr − Lr
r3

,

where Lr is the arc length of the exponential of a circle of radius r in E. By
Proposition 6.1, this curve can be written as

γr(θ) = (tan r)((cos θ)X + (sin θ)Y ) (0 ≤ θ ≤ 2π).

Since γr(θ) and
.
γr(θ) = tan r(−(sin θ)X+(cos θ)Y ) are images of γr(0) =

(tan r)X and
.
γr(0) = (tan r)Y respectively under a real rotation, the angle ϕ

of Cγ(θ) and C
.
γr(θ) is independent of θ and cosϕ = |πCXY | (cf. Remark 1

at the end of Section 4). Using the abbreviation p = |πCXY | and (6.3), (6.4),
it follows that

Lr = 2π
tan r

1 + tan2 r
(1 + (1− p2) tan2 r)1/2 ∼ 2π

(
r −

(
1
6

+
p2

2

)
r3

)
,

and (7.2) gives the result.

Remark. The C-lines of W now have the following geometric charac-
terization: two linearly independent elements X,Y in W are in the same
C-line through 0 if and only if σ(E) = 4 for the plane E spanned by them.
Similarly, CX ⊥ CY if and only if σ(E) = 1.

Next, we describe the totally geodesic submanifolds of CPW . We fix an
orthonormal C-basis {v1, . . . , vn} of V and take a number n0, 0 ≤ n0 ≤ n.
If n0 = 0, let C0 be any real subspace of C. If n0 ≥ 1, let C0 be any division



RANK-ONE SYMMETRIC SPACES 67

subalgebra of (C, ·v1). In either case we set

(7.3) W0 = C0 ⊕
n0∑
j=1

C0vj = C0 ⊕ V0.

We note that (C0, V0) is a J2C-module. If n > 1, this follows from Proposi-
tion 1.4 and Corollary 1.5. If n = 1, it is trivial.

Theorem 7.3. The closure of W0 in CPW is totally geodesic. All totally
geodesic submanifolds of CPW arise as U -images of these.

Proof. It is well known and obvious that the fixed point set of an isome-
try in a Riemannian manifold is totally geodesic. The linear map which is the
identity on W1 = C ⊕

∑n0
j=1Cvj and minus the identity on

∑n
j=n0+1Cvj

is in M , so it is an isometry. Therefore W1 is totally geodesic. It is then
sufficient to prove that W0 is totally geodesic in W1.

If n0 = 0, there is not much to say. In this case W1 = C. If C0 is
any subspace of C, the reflection with respect to C0 is an isometry, and
this implies that C0 is totally geodesic. The closure of C in CPW is a
d-dimensional sphere, and the closure of C0 is a lower-dimensional geodesic
sphere.

Assume therefore that n0 ≥ 1. Given a division subalgebra C0 of C,
there is a chain of division subalgebras between C0 and C, each of index 2
in the next. So it is enough to consider the case where C0 has index 2 in C.
In this case we have the orthogonal direct sum C = C0 ⊕ C0z, where z is
an arbitrary unit element orthogonal to C0 (the product being understood
as ·v1).

Define α : C → C by α(ζ1 + ζ2z) = ζ1 − ζ2z, for ζ1, ζ2 ∈ C0. Observe
that left multiplication by a unit element η ∈ C is orthogonal on C, which
preserves the decomposition C0 ⊕ C0z if η ∈ C0, and interchanges the two
summands if η ∈ C0z. Using this, it follows that α is an automorphism of C.

We extend α to W1 by α(ζ,
∑
ζjvj) =

(
α(ζ),

∑
α(ζj)vj

)
. This is an or-

thogonal transformation and it preserves C-lines through the origin. In fact,
if ζ−1ζjvj = ζ ′−1ζ ′jvj for every j, then also α(ζ)−1α(ζj)vj = α(ζ ′)−1α(ζ ′j)vj ,
in the associative case obviously, and in the non-associative case because
there is only one j.

Since W0 is the fixed point set of α, this proves that W0 is totally geodesic
in W1, hence in W . Because the metric induced on W0 from W is the same
metric constructed starting from the J2C-module (C0, V0), the embedding
of W0 in CPW extends to an isometric embedding of C0PW0, whose image
is the closure of W0. This proves the first statement.

To prove the converse, let N ⊂ CPW be totally geodesic. N is a sym-
metric space and clearly it has rank one. Translating by an element of U ,
we may assume that 0 ∈ N . The tangent space to N at 0 is a subspace
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W0 of W . Because geodesics through the origin are straight lines, N is the
closure of W0 in CPW .

By Theorem 8.4, whose proof is independent of the present theorem,
there is a J2C-module (C0, V0) such that N is isometric (up to a constant
factor) to C0PW0. Because C0 has constant curvature equal to 4, it follows
from the Remark above that dimC0 ≤ dimC. Acting by K, we may assume
that C0 ⊂ C. Similar considerations based on the same Remark imply that
V0 ⊂ V . Along the same lines, if {v1, . . . , vn0} is an orthonormal C0-basis
of V0, the subspaces C0vj are contained in different, hence orthogonal, C-
lines in V . Therefore {v1, . . . , vn0} can be completed to an orthonormal
C-basis {v1, . . . , vn} of V , and W0 has the form (7.3).

We call projective C-line in CPW a maximal totally geodesic submani-
fold of constant curvature equal to 4. If no sectional curvature in CPW is
equal to 4 (i.e., if dimC = 1), we call projective C-lines the geodesics.

Corollary 7.4. U acts transitively on projective C-lines. The projec-
tive C-lines intersecting W are the closures in CPW of affine C-lines in W .
The projective C-lines contained in W∞ are the images π(E) of linear C-
subspaces E of W of C-dimension two.

Proof. The first statement follows immediately from Theorem 7.3.
Observe now that, for 0 6= v ∈ V , the affine C-line (tan θ, 0) + Cv in W

is the image of Cv under the isometry bθ in (6.5). Therefore it is a geodesic
in W , and the same is true for its closure in CPW . By Corollary 6.5, this
gives the description of all projective C-lines intersecting W .

One projective C-line entirely contained in W∞ is obtained as the image
under ϕ0 of the projective C-line Cv ∪ {[0, v]} for a fixed v 6= 0. This gives
{[1, ζv] : ζ ∈ C} ∪ {[0, v]}, equal to π(C ⊕ Cv). If we act on this line by an
element u = k1bθk2 of U , the image will remain inside W∞ if and only if
bθπ(k2(C ⊕Cv)) ⊂W∞. By (6.10), if E is a C-subspace of dimension 2 and
bθ maps π(E) into W∞, then necessarily θ ∈ {0, π}, so that u ∈ K.

It follows that all the projective C-lines in W∞ are the images of C⊕Cv
under the action of K, and the conclusion follows from Corollary 4.7.

It is clear that any two distinct points of CPW determine a unique
projective C-line. We also note that the projective C-lines are the “Helgason
spheres” which, by [Hel2], are present in any compact symmetric space.

Generalizing the notion of projective C-line, we call projective C-subspace
a subset E of CPW such that for any pair of distinct points of E, the whole
projective C-line joining them is contained in E. If a projective C-subspace
E intersects W , it is easy to see that E ∩W is an affine C-subspace of W .
Since we may always put ourselves in this situation applying an element of U ,
it follows that E is a submanifold of real dimension equal to a multiple kd
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of d. We then say that E has C-dimension equal to k. By Theorem 7.3, the
projective C-subspaces are the U -images of W0∪π(W0), with W0 as in (7.3)
and C0 = C. We also have the following analogue of Corollary 7.4.

Corollary 7.5. U acts transitively on k-dimensional projective C-sub-
spaces. The k-dimensional projective C-subspaces intersecting W are the
closures in CPW of affine C-subspaces in W . The k-dimensional projective
C-subspaces contained in W∞ are the images π(E) of linear C-subspaces E
of W of C-dimension k + 1.

A number of further geometric facts follow very easily. For instance, the
Jacobi fields along a geodesic can be determined by reduction to the geodesic
γ(t) = (tan t, 0). For z ∈ C ′ and v ∈ V , let z(t) and v(t) be their parallel
displacements along γ. Because C is totally geodesic in W , z(t) is the same
as parallel displacement in C of z along γ. Since C has constant curvature 4,
it follows (cf. [KN, Vol. I, p. 71]) that (sin 2t)z(t) and (cos 2t)z(t) are Jacobi
fields. Similarly, v(t) is the same as parallel displacement in R1 ⊕ Rv of v
along γ. Therefore (sin t)v(t) and (cos t)v(t) are Jacobi fields. By a dimension
count, all Jacobi fields along γ are linear combinations of these and of

.
γ(t)

and t
.
γ(t).

Another fact concerns the cut locus and conjugate points of a given point
p ∈ CPW . We may assume that p = 0. As we have already observed, two
geodesics, exp0(tX) and exp0(tY ), meet only at 0 if X and Y are not in the
same C-line, and in the two points 0 and [X] = [Y ] if X and Y belong to
the same C-line. It is then clear that the cut locus of 0 is W∞, or, in other
words, the set of points q such that d(0, q) = π/2. In the latter formulation,
the statement is true for any p in place of 0.

It also follows that the conjugate locus of any point p is {p} when d =
dimC = 1 (the real projective space), and coincides with the cut locus
otherwise. In the latter case the multiplicity of the first conjugate point
along any geodesic is d− 1.

Finally, we note that CPW has a natural cell decomposition

CPW = Cd(n+1) ∪ Cdn ∪ · · · ∪ C0,

where Ck denotes a cell of dimension k. In fact, we may take Cd(n+1) = W . Its
complement W∞ is isometric, under either of the maps ϕj in (5.2), with the
closure of C ⊕ (Cvj)⊥ = Wj . This closure is CPWj , with one C-dimension
less. So the statement follows by induction.

8. Every compact rank-one symmetric space is a CPW . The
reader who is willing to accept the classification list of symmetric spaces
existing in the literature, e.g. [Be, Hel1, W], can compare that list with
the list in Section 3 of J2C-modules and the corresponding CPW ’s, and
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convince himself that we have obtained all compact rank-one symmetric
spaces. However, in this section we will give a classification-free proof of this
fact, clarifying at the same time the duality relations between compact and
non-compact spaces.

Lemma 8.1. CPW is simply connected if and only if d = dimC > 1.

Proof. If d = 1, then CPW is RPn+1 if n = dimV > 1 and S1 if V = 0.
Therefore CPW is not simply connected.

Suppose now that d > 1, and observe that if dimW > 1 and W∞ is
simply connected, so is CPW . This depends on the fact that W∞ is a de-
formation retract of CPW \ p, where p ∈W .

If V is non-trivial and v1 is a unit vector in V , set V ′ = (Cv1)⊥. The
map ϕ1 in (5.2) establishes a diffeomorphism between W∞ and CPW ′ (cf.
end of Section 7), with W ′ = C ⊕ V ′. By induction, matters are reduced to
V = 0. In this case CPW is the sphere Sd, which is simply connected.

It is well known (cf. [W]) that the duality between compact and non-
compact orthogonal semisimple Lie algebras induces a (bijective) duality
between simply connected compact symmetric spaces and symmetric spaces
of the non-compact type. Duality respects the rank, and the balls BW de-
scribed in the Appendix, with the metric defined in (A.1), give us models
of all the rank-one symmetric spaces of non-compact type. In fact, we may
restrict ourselves to those W = C ⊕ V with d = dimC > 1.

Proposition 8.2. Let W = C ⊕ V with d > 1. The simply connected
compact dual of the unit ball BW is CPW .

Proof. Assume that d > 1. The non-compact dual of CPW must be
a ball BW ] for some W ] = C] ⊕ V ] with the same dimension as W . Take
the origin in W as base point in CPW and the origin in W ] as base point
in BW ] .

By [W, Cor. 8.4.3], the two tangent spaces can be identified in such a way
that sectional curvatures of corresponding planes have opposite values, pos-
sibly up to a constant factor. It follows from Theorem 7.2 and the comments
following Lemma A.1 in the Appendix that C and C] must have the same
dimension. Then W ] = W .

It follows that the CPW with d > 1 are all the simply connected compact
symmetric spaces of rank one. Setting aside the trivial one-dimensional case
(C = R, V = 0), every other compact symmetric spaces of rank one must
have a CPW with d > 1 as its simply connected covering. We are so led to
discuss the existence of locally isometric symmetric quotients of the CPW .

Lemma 8.3. Suppose that CPW is a non-trivial covering of a symmetric
space X. Then V = 0 and CPW is a two-fold covering of X.
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Proof. Let π : CPW → X be the covering map. Since X has rank one,
its geodesics are circles and they all have the same length. Let E be the set
of points p ∈ CPW , different from 0, that are mapped to π(0). Then E is
non-empty and finite. Take p0 ∈ E of minimal distance from 0 and let γ be
a full geodesic circle in CPW going through 0 and p. Then π(γ) is a geodesic
circle in X and its length is δ = d(0, p0), strictly smaller than the length
of γ. It follows that every geodesic circle in CPW containing 0 is mapped
by π onto a geodesic circle of length δ, hence it must contain a point in E
at distance δ from 0.

Since E is finite, we surely have two distinct geodesics through 0 inter-
secting at a point p ∈ E. By Proposition 5.2, geodesics through zero have
the form Rw ∪ [w] with w ∈ W . Therefore two distinct geodesics can have
a common point different from 0 only if they lie in the same C-line Cw,
and in this case the common point is [w]. This implies that δ = π/2 and
hence [w] ∈ E for every w ∈W . So W∞ is finite. But this is only possible if
W = C, and then E = W∞ consists of one single point.

Theorem 8.4. The CPW are all the distinct compact symmetric spaces
of rank one, including the circle S1.

Proof. It remains to verify that if d = 1 and W = R ⊕ V with V 6= 0,
then CPW is isometric, up to a factor, to the quotient of CPW̃ modulo the
antipodal map, with C̃ = W and Ṽ = 0. To see this, consider the map π
from W̃ to W given by

π(w) =
2w

1− |w|2
(|w| 6= 1).

This is an isometry up to a factor 2, and it extends continuously to the unit
sphere and to the point at infinity, identifying the pairs of antipodal points,
w and −w/|w|2.

9. The group GL(W,C). We study GL(C,W ) in some detail and, to
avoid trivialities, we assume that V 6= 0.

GL(W,C) is closed under adjoints. To see this, note that for any R-
subspace W1, w ⊥ gW1 if and only if g∗w ⊥W1. Hence g∗

(
(gW1)⊥

)
= W⊥1 .

Now let Cw be a C-line and let W1 = g−1
(
(Cw)⊥

)
. By Lemma 4.5, (Cw)⊥

is a C-subspace, and by Proposition 4.6 so is W1. By Lemma 4.5 again,
g∗(Cw) is a C-line.

It follows that GL(W,C) is a reductive Lie group, since it is fixed under
the Cartan involution g 7→ g∗−1 of GL(W,R) (cf. [W]). What follows is a
useful characterization of the elements of GL(W,C).

Theorem 9.1. Assume that V 6= 0. The elements of GL(W,C) are the
homeomorphisms of W onto itself fixing the origin and mapping parallel
C-lines into parallel C-lines.
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Proof. One implication is obvious. So let g be a homeomorphism fixing
0 and mapping parallel C-lines into parallel C-lines. We need to prove that
g is R-linear. Since g is continuous, it suffices to prove that it is additive.

If w,w′ are points in W belonging to different C-lines through 0, it is
easily verified that w + w′ is the only point in the intersection of w + Cw′

with w′ + Cw.
Let w,w′ be as above. By assumption, g(Cw) = Cg(w) and g(w′+Cw) =

g(w′)+Cg(w). Similarly, g(Cw′) = Cg(w′) and g(w+Cw′) = g(w)+Cg(w′).
By injectivity, Cg(w) and Cg(w′) are different C-lines. Therefore

g(w + w′) ∈ (g(w′) + Cg(w)
)
∩
(
g(w) + Cg(w′)).

By the previous remark, g(w + w′) = g(w) + g(w′).
If w,w′ belong to the same C-line through 0, the same identity follows

by continuity, using the existence of other C-lines.

By Corollary 4.7, every g ∈ GL(W,C) can be decomposed as g = k ◦ h
with k ∈ K and h ∈ GL(W,C) such that h(V ) = V .

Lemma 9.2. Assume that h ∈ GL(W,C) maps V into itself and is rep-
resented by the matrix

(9.1) h =

(
α 0

α(·)v0 ϕ

)
in the decomposition W = C ⊕ V . Then

(i) α : C → C is a scalar multiple of an orthogonal transformation,
(ii) ϕ : V → V is invertible and satisfies ϕ(ζv) = α(ζ)α(1)−1ϕ(v),
(iii) v0 ∈ V .

Conversely, every triple (α,ϕ, v0) satisfying (i)–(iii) defines, through (9.1),
an element of GL(W,C) mapping V into itself.

Proof. Any h mapping V into itself is represented by a matrix

h =

(
α 0
σ ϕ

)
.

The condition h(C) equal to a C-line implies that

α(ζ)−1σ(ζ) = α(1)−1σ(1) = v0,

i.e., σ(ζ) = α(ζ)v0.
For v ∈ V , impose now that h(0, ζv) ∼ h(0, v). This gives ϕ(ζv) =

β(ζ, v)ϕ(v), with β(ζ, v) ∈ C and β(1, v) = 1.
Imposing now that

ψ(ζ, ζv) = (α(ζ), α(ζ)v0 + β(ζ, v)ϕ(v)) ∼ ψ(1, v) = (α(1), α(1)v0 + ϕ(v)),
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we obtain
v0 + α(ζ)−1β(ζ, v)ϕ(v) = v0 + α(1)−1ϕ(v),

i.e., β(ζ, v) = α(ζ)α(1)−1.
If z ∈ C ′ and |z| = 1, then z2 = −1, and

ϕ(v) = −ϕ(z2v) = −(α(z)α(1)−1)2ϕ(v).

We then have |α(z)| = |α(1)| and α(z) ·ϕ(v) α(1)−1 ∈ C ′. In particular
α(z) ⊥ α(1) for z ∈ C ′. It follows that |α(ζ)| = |α(1)| for every ζ ∈ C.

To proof of the converse is easy and we leave it to the reader.

An immediate consequence of this lemma is the following statement,
which will be used in Section 10.

Corollary 9.3. Let g ∈ GL(W,C). The restriction of g to any C-line
Cw through the origin is a scalar multiple of an orthogonal map.

Proof. Decompose g = kh with k ∈ K and h as in Lemma 9.2. It is
then sufficient to assume that g = h. By density, we may also assume that
w = (1, v). Take w′ = (ζ, ζv) ∈ Cw. Then |w′| = |ζ| |w| and

|h(w′)|2 = |α(ζ)|2 + |α(ζ)v0 + α(ζ)α(1)−1ϕ(v)|2

= |α(ζ)|2|α(1)|−2(|α(1)|2 + |α(1)v0 + ϕ(v)|2)2 = |ζ|2|h(w)|2.

Hence the quantity |h(w′)|/|w′| is constant on Cw.

We now fix an ordered orthonormal C-basis {w0, . . . , wr} of W with
w0 = (1, 0) and the other wj = (0, uj) in V . Then any element w of W can
be written as

w =
r∑
j=0

ζjwj ,

with the same abuse of notation as in Proposition 4.2. This basis induces a
flag {Wj} of linear C-subspaces in W , with

(9.2) Wj = span{wj , . . . , wr}.

Let P be the subgroup of GL(W,C) consisting of the elements h that
preserve the flag, i.e., such that h(Wj) = Wj for every j.

We introduce three subgroups of P . The first group is MP = P ∩K =
P ∩L. By Corollary 4.7, MP acts transitively on the product of unit spheres
in the various Cwj . The second group A ∼= Rr+1 acts as scalar multiplication
by tj > 0 on each Cwj . The third is the group N of those h ∈ P such that
h|Cwj

= id (mod Wj+1) for each j.
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It is easy to verify that the elements of N are in one-to-one correspon-
dence with the lower-triangular matrices with entries λij ∈ C,

(9.3) Λ =



1 0 . . . . . . 0
λ10 1 0 0

λ20 λ21 1
. . .

...
...

...
. . . . . .

...
λr0 λr1 . . . . . . 1


,

in the sense that to each Λ as above we associate n ∈ N whose action on W
is given by

n
( r∑
j=0

ζjwj) =
r∑
j=0

(∑
k<j

ζk ·vj λjk + ζj

)
wj .

The product n1n2 in N corresponds to the matrix product t( tΛ2
tΛ1) (the

double transposition is a consequence of the fact that we write the action of
C on V as a left action). Notice that, if C is associative, multiplication in
C is unambiguously defined, whereas, if C is non-associative, the matrices
Λ are 2× 2 and their product only involves the sum of their (1, 0)-entries.

We then have the following Langlands decomposition of P and Iwasawa
decomposition of GL(W,C).

Proposition 9.4. P is the semidirect product MPAN . MP and A com-
mute, and MPA normalizes N . Moreover, GL(W,C) = KAN .

Proof. It is clear that MP and A commute, and that MPA normalizes N .
Given h ∈ P , let α, ϕ, v0 be as in Lemma 9.2.
For j ≥ 1, h(wj) =

(
0, ϕ(uj)

)
∈ Wj . Invertibility of ϕ implies that the

(Cuj)-component of ϕ(uj) must be different from zero. We can then set

(9.4) ϕ(uj) = ηj(uj + λj+1,juj+1 + · · ·+ λrjur) (∀j ≥ 1),

with ηj 6= 0. If

(9.5)
w′0 =

(
1, v0),

w′j = (0, uj + λj+1,juj+1 + · · ·+ λrjur) (∀j ≥ 1),

then h maps each C-line Cwj onto Cw′j . Let

(9.6) v0 = λ10u1 + · · ·+ λr0ur,

and let Λ be the lower-triangular matrix with all 1’s along the diagonal and
the λij defined in (9.4) and (9.6). The corresponding element n ∈ N also
maps each C-line Cwj onto Cw′j . Therefore n−1h maps Cwj into itself for
every j.
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Precisely, one verifies that

n−1h(ζ, 0) = (α(ζ), 0),

n−1h(0, ζuj) = (0, α(ζ)α(1)−1ηjuj) (∀j ≥ 1).

It follows that n−1h is a scalar multiple of an orthogonal transformation
on each C-line Cwj , hence n−1h = ma ∈ MPA. So h = nma, and since
MPA normalizes N , h = man′ for some n′ ∈ N .

To show uniqueness, it suffices to observe that MP ∩A and (MPA)∩N
are trivial.

We have already pointed out that any element of GL(W,C) is the prod-
uct of an element of K and an element of P . Therefore g ∈ GL(W,C) can
be decomposed as kan with k ∈ K, a ∈ A, n ∈ N . If kan = k′a′n′, then
k−1k′ = an(a′n′)−1 is the identity on each Cwj , hence k = k′. Then a = a′

and n = n′, by the previous part of the proof.

Finally, we easily obtain the Cartan decomposition of GL(W,C).

Theorem 9.5. GL(W,C) = KAK.

Proof. Given g ∈ GL(W,C), g∗g is C-linear, self-adjoint and positive. Its
eigenspaces are C-subspaces, so there is an orthonormal C-basis {e0, . . . , er}
of W such that g∗g = t2j id on Cej for every j. Take k ∈ K such that
kej = wj , with wj as above, and let a ∈ A be such that a|Cwj = tj id for
every j. Then a−1kg∗gk−1a−1 = id, i.e., gk−1a−1 ∈ K.

10. The group of collineations. We consider here a group of trans-
formations of CPW larger than the isometry group U , namely the group of
homeomorphisms that preserve the class of projective C-lines. These trans-
formations are called collineations in projective geometry. Clearly, this def-
inition makes sense only if CPW is not reduced to one single C-line, i.e., if
V 6= 0. As we will see in Corollary 10.4, the restriction of a collineation to a
single C-line turns out to be a conformal map. For this reason, when V = 0
the conformal group is the natural substitute of the collineation group. In
the following we will assume that V is non-trivial.

The elements of U are obviously collineations and such are translations
by Corollary 7.4. We remark in the Appendix that the group of collineations
also includes the isometry group of the non-compact dual BW of CPW .
Collineations obviously map projective C-subspaces into projective C-sub-
spaces of the same dimension.

Denote by G the collineation group. If g is a collineation, there exist
u ∈ U such that u(W∞) = g(W∞). Then there is a translation τ such that

(10.1) g = ug̃τ,



76 A. KORÁNYI AND F. RICCI

with g̃ a collineation fixing 0 and stabilizingW∞. It follows from Theorem 9.1
that g̃ is the continuous extension of an element of GL(W,C). More gener-
ally, we may say that the collineations stabilizing W∞ are the extensions of
C-affine invertible transformations of W .

It follows from (10.1) that collineations map projective C-subspaces into
projective C-subspaces of the same dimension.

Let {Wj} be the flag (9.2) of linear C-subspaces of W , and consider the
chain of projective C-subspaces of CPW

π(Wr) ⊂ · · · ⊂ π(W0) = W∞.

Let PG be the subgroup of G whose elements preserve each π(Wj). Then
(up to extension to CPW ) PG is the semidirect product of P , introduced
in Section 5, with the translation group W ∼= W . Let NG be the nilpotent
group given by the semidirect product of N ⊂ P with W. We then have the
following decomposition of G.

Theorem 10.1. Any g ∈ G can be uniquely decomposed as g = uan with
u ∈ U , a ∈ A and n ∈ NG.

Proof. Let g = ug̃τ as in (10.1). By Proposition 9.4, g̃ = kan0 with
k ∈ K, a ∈ A, n0 ∈ N . Then g = (uk)a(n0τ) ∈ UANG .

If now uan = u′a′n′, with u, u′ ∈ U , a, a′ ∈ A, n, n′ ∈ NG , then u−1u′ =
an(a′n′)−1 ∈ PG . Writing n = n0τ , n′ = n′0τ

′, with n0, n
′
0 ∈ N , τ, τ ′ ∈ W,

the fact that an(a′n′)−1 ∈ GL(W,C) implies that τ = τ ′. Therefore u−1u′ =
an0(a′n′0)−1 ∈ P . Hence u−1u′ ∈ K ∩ P and u = u′. Finally, an0 = a′n′0
implies that a = a′, n0 = n′0.

We now introduce an involution on G. As observed in Section 7, W∞ is
the set of points at distance π/2 from the origin of W , also characterized
as the cut locus of 0. By U -invariance, it follows that the cut locus p∗ of
any point p ∈ CPW is a projective C-hyperplane, and that every projective
C-hyperplane is the cut locus of some point. The correspondence p 7→ p∗ is
a bijection between points and projective C-hyperplanes.

Lemma 10.2. The correspondence p 7→ p∗ is such that

(10.2)

0∗ = W∞,

w∗ ∩W = (Cw)⊥ − 1
|w|2

w (∀w ∈W \ {0}),

[w]∗ ∩W = (Cw)⊥ (∀[w] ∈W∞).

To each collineation g we can associate the map θg : CPW → CPW defined
by

(θg(p))∗ = g(p∗).
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Then

(i) θg = (g∗)−1 if g ∈ GL(W,C),
(ii) for every g, θg is a collineation,
(iii) θ is an involutive automorphism of G,
(iv) θg = g if and only if g ∈ U .

Proof. For g ∈ U , we trivially have g(p∗) = (g(p))∗ (i.e., θg = g). Modulo
the action of K, it is then sufficient to identify (t1, 0)∗ for t ∈ R and [1, 0]∗

in order to obtain (10.2). Let bs, s ∈ T, be the maps defined in (6.5). Since
bs(0) = ((tan s)1, 0) for s 6= ±π/2 and b±π/2(0) = [1, 0], the problem reduces
to determining bs(W∞). By (6.10),

bs(W 1
∞) =

{(
−(cot s)1,− 1

sin s
v

)
: v ∈ V

}
= −((cot s)1) + V,

and (t1, 0)∗ is its closure. Taking s = π/2, this gives [1, 0]∗.
The map θg is well defined for g ∈ G. If g ∈ U , then g(p∗) = (g(p))∗, i.e.,

θg = g. Moreover, for every g, h ∈ G,

((θg)(θh)(p))∗ = g((θh(p))∗) = gh(p∗) = (θ(gh)(p))∗,

i.e., (θg)(θh) = θ(gh).
To prove (i), fix w ∈ W , w 6= 0, and take k ∈ K such that kw =

(t1, 0) with t > 0. Writing g = g′k, we have θg(w) = (θg′)kw = θg′(t1, 0).
Decompose g′ as k′h with k′ ∈ K and h as in (9.1). Then θg′(t1, 0) =
k′θh(t1, 0).

By (10.2),

h((t1, 0)∗) = h(V − (t−11, 0)) = V − (t−1α(1), 0),

i.e., θh(t1, 0) = (tα(1)|α(1)|−2, 0) = (h∗)−1(t1, 0). Finally,

θg(w) = θ(k′hk)(w) = k′(θh)k(w) = k′(h∗)−1k(w) = (g∗)−1(w).

To prove (ii), by (10.1) it suffices to prove that, for any translation
τw0(w) = w + w0, θτw0 is a collineation. Since for w ∈W , w 6= 0,

τw0(w∗) = (Cw)⊥ − 1
|w|2

w + w0 = (Cw)⊥ − 1
|w|2

w + PCww0,

with P denoting orthogonal projection, θτw0(w) is the element w′ ∈ Cw
such that

1
|w′|2

w′ =
1
|w|2

w − PCww0.

Take k ∈ K such that kw0 = (t1, 0) with t > 0. Then τw0 = k−1τkw0k
and θτw0 = k−1(θτkw0)kw. We can then restrict ourselves to w0 = (t1, 0).

We compute PCw(1, 0) for w = (η, u), assuming that η 6= 0 (for η = 0
the projection is 0, and w′ = w). We impose that

(1− λ,−λη−1u) ⊥ (α, αη−1u) (∀α ∈ C)
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and obtain
PCw(1, 0) =

1
|w|2

(|η|2, η̄u).

With standard simplifications, this gives

(10.3) θτw0(η, u) = ((1− tη)−1η, (1− tη)−1u).

To prove that this is a collineation, we observe that (10.3) admits a contin-
uous bijective extension to CPW . By continuity, we can limit ourselves to
verifying that the image of an affine C-line in W that is not parallel to V is
contained in a projective C-line. Therefore we take

w = ωζ = (ζ0 + ζ, v0 + ζv1)

with ζ varying in C and ζ0, v0, v1 fixed. We show that the points

θτw0(ωζ)− θτw0(ω0) = (λζ , uζ)

with
λζ = (1− t(ζ0 + ζ))−1(ζ0 + ζ)− (1− tζ0)−1ζ0,

uζ = (1− t(ζ0 + ζ))−1(v0 + ζv1)− (1− tζ0)−1v0

lie on the same C-line through 0. A straightforward computation shows that
λ−1
ζ uζ is independent of ζ.

Concerning (iii), we have already observed in the course of this proof that
θ is multiplicative. By (10.1), (i) and (ii), θ maps G into itself. The identity
θ2g = g holds for g ∈ U obviously and for g ∈ GL(W,C) by (i). Computing
θ2τw0 from (10.3), we conclude that it also holds for translations.

Finally, assume that θg = g. Modulo U , we may assume that g(0) = 0.
Therefore, g(W∞) = (θg(0))∗ = W∞. Therefore g ∈ GL(W,C) and g =
(g∗)−1, i.e., g ∈ K.

Theorem 10.3. G is a simple Lie group with restricted root system of
type An+1 and the differential of θ (also denoted by θ) is a Cartan involu-
tion on its Lie algebra. The corresponding Cartan decomposition of the Lie
algebra g of G is g = u + p, with u the Lie algebra of U. The Lie algebra a
of A is maximal abelian in p and the decomposition in Theorem 10.1 is the
associated Iwasawa decomposition.

Proof. We sketch two proofs of the fact that G is a Lie group. The
first one makes use of the theorem of Montgomery–Zippin–Gleason. Since G
with the topology of uniform convergence on CPW is clearly a topological
transformation group, it suffices to prove that G is locally Euclidean.

The stabilizer in G of W∞ as a set is the semidirect product GL(W,C)
×sW. Hence the stabilizer of 0 is its θ-image B = GL(W,C)×s θW. Since
θ is easily seen to be a homeomorphism of G, B is locally Euclidean with
the topology induced from G. Since W · 0 = W , it follows that WB is a
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neighborhood of the identity in G. If UW and UB are small neighborhoods of
the identity in W and B respectively, then UWUB is a neighborhood of the
identity in G and is homeomorphic to UW × UB, showing that G is locally
Euclidean.

The second proof consists in introducing local coordinates near the iden-
tity coming from the decomposition W · GL(W,C) · θW of an open dense
subset of G. The map g 7→ θg−1 is clearly smooth on this set, and one needs
to verify smoothness of the group operations. The key point is then to verify,
with the aid of the formulas defining θ, that the map (w0, w) 7→ θτw0(w) of
W ×W into W is rational, and therefore smooth where meaningful. From
this one deduces that θ and the inversion are both smooth on a neighbor-
hood of the identity. With appropriate use of left translations, one finishes
the proof.

The existence of the Cartan involution θ implies that g is reductive. In
order to prove that it is semisimple, we must show that its center is trivial.
The previous part of the proof shows that

(10.4) g = gl + w + θw,

where gl the Lie algebra of GL(W,C) and w ∼W that of W.
Let Z = X + tw + θtw′ be a central element. For every Y ∈ gl, we must

have

0 = [Z, Y ] = [X,Y ] + [tw, Y ] + θ[tw′ , θY ]

= [X,Y ] + [tw, Y ]− θ[tw′ , Y ∗].

Since the decomposition (10.4) is respected, each term on the right-hand
side must be zero. In particular, [Y, tw] = 0 for every Y . Since [Y, tw] = tY w,
this implies that w is fixed by all elements of GL(W,C) in the connected
component of the identity. Therefore w = 0. Similarly, w′ = 0 so that Z = X.
But then [X, tw′′ ] = 0 for every w′′, and the action of gl on W is effective.
Therefore X = 0.

By (10.4), p = p ∩ gl + (id − θ)w and, by Proposition 9.4, p ∩ gl =
a + (id− θ)n, where n is the Lie algebra of N .

The argument preceding Proposition 9.4 shows that, given a=(a0, . . . , an)
∈ A, aνa−1 = (ai/aj)ν when ν ∈ N is as in (9.3) with λij being the only
non-zero entry. Moreover, aτwa−1 = τaiw for τw ∈ W with w ∈Wi.

If hi is the linear functional on a projecting onto the ith component, this
shows that a acts on n+w = nG (the Lie algebra of NG) with weights hi−hj
(0 ≤ j < i ≤ n) and hi (0 ≤ i ≤ n). None of these weights being trivial, it
follows that a is maximal abelian in p and the weights just obtained form a
system of positive restricted roots of a.
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Under the isomorphism

(10.5)
a = {(t0, . . . , tn)} →

{
(t̃0, . . . , t̃n+1) :

∑
t̃i = 0

}
,

(t0, . . . , tn) 7→
(
t0−

1
n+ 2

∑
ti, . . . , tn−

1
n+ 2

∑
ti,−

1
n+ 2

∑
ti

)
,

all the roots take the typical form h̃i − h̃j (0 ≤ i, j ≤ n + 1, i 6= j) of
the An+1-system. The fact that this system is irreducible implies that g is
simple.

The last part of the statement is now obvious.

We recall that a smooth map between two Riemannian manifolds is called
conformal if its differential at any point is a scalar multiple of an orthogonal
transformation.

Theorem 10.4. The action of collineations on projective C-lines is con-
formal.

Proof. The elements of U are obviously conformal. Composing with el-
ements of U , we see that it suffices to prove the statement at points in W .

Suppose that g is a translation inW. Let w0+Cw be a tangent C-line at a
point w0. By (6.3), if ϕ is the angle of Cw and Cw0, then |X|w0+ = c|w0|,ϕ|X|
for all tangent vectors X ∈ Cw. Similarly, |g∗X|g(w0)+ = |X|g(w0)+ =
c|g(w0)|,ψ|X|, where ψ is the angle of Cg(w0) and Cw. This implies the state-
ment for g ∈ W.

If g ∈ GL(W,C), Corollary 9.3 implies conformality on lines through 0.
Composing with translations, it follows that g is conformal on all lines in W .
By the decomposition (10.1), this finishes the proof.

Since projective C-lines are spheres of dimension one less than the di-
mension of C (that we are assuming strictly greater than one), by Liouville’s
theorem conformal transformations are expressed by fractional linear trans-
formations. For C = R, Theorem 10.4 can be reformulated by replacing the
word “conformal” with “fractional linear”. This also suggests that, when V
is trivial, the group G that naturally replaces the collineation group is the
conformal group when C 6= R, and the group of fractional linear transfor-
mations when C = R.

Finally, the collineation group is the group of “basic transformations” of
[Te], characterized (when CPW is not a sphere) by the property of mapping
Helgason spheres into Helgason spheres.

11. Compact rank-one spaces and symmetric cones. We show
that the groups G are exactly the groups such that G ×R+ is the automor-
phism group of an irreducible symmetric cone [FK]. In particular, G/U can
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be imbedded as a domain in real projective space in such a way that G acts
by projective maps.

Taking into account Theorem 10.3, our statement will follow from the
following theorem, whose proof is based on representation theory.

Theorem 11.1. Let g be a real simple non-compact Lie algebra whose
restricted root system is of type A`, and let G be the adjoint group. Then
G̃ = G× R+ is the automorphism group of an irreducible symmetric cone.

The converse is well known: see e.g. [FK, p. 108].

Proof. We write g = k+p for the Cartan decomposition and denote by θ
the Cartan involution. We choose a ⊂ p maximal abelian, and we complete
its complexification aC to a θ-invariant Cartan subalgebra hC of gC. We
identify hC with its own dual under the Killing form ( · | · ) and write h for
the real span of the roots. We also consider g̃ = g + R, ã = a + R, etc., and
extend ( · | · ) to an inner product on h̃ so that R is orthogonal to h. The
theory of roots, restricted roots, weights, etc. still applies to the reductive
algebra g̃. If µ is a weight on h̃, we denote by µ̄ its restriction to ã.

We choose an orthonormal basis {ε1, . . . , ε`+1} of ã ⊂ h̃ so that the
restricted roots of g̃ are ε̄i − ε̄j (i 6= j). Since the Weyl group is transitive
on the roots, the corresponding root spaces gε̄i−ε̄j have the same dimension,
to be denoted by d. The R-part of ã is spanned by

∑
εi. We fix ε̄i− ε̄j with

i < j as the positive roots.
Let (ρ, V ) be the irreducible representation of g̃ with highest weight 2ε1.

By Theorem 4.12 in [Hel3], such a representation exists and it is a spherical
representation, i.e., V has a K-fixed vector. Indeed, 2ε1 is in ã and it satisfies
the integrality condition

(2ε1 | εi − εj)
(εi − εj | εi − εj)

∈ Z (∀i 6= j).

We claim that dimC V = dimR G̃/K. To see this, we compute the di-
mensions of the a-weight spaces V̄µ̄ = {v ∈ V : ρ(H)v = µ̄(H)v, ∀H ∈ a}.
Each V̄µ̄ is the sum of the h-weight spaces Vµ′ = {v ∈ V : ρ(H)v = µ′(H)v,
∀H ∈ h}, for those h-weights µ′ whose restriction to a is µ̄.

By the general theory (cf. [Hum, p. 108, 114]), the h-weights µ of ρ have
the form 2ε1 − α, where α is a positive h-root and (α | 2ε1) > 0. It follows
that the only h-weight of ρ which restricts to 2ε̄1 is 2ε1. Hence V̄2ε̄1 = V2ε1

is one-dimensional.
By action of the Weyl group, V̄2ε̄j is one-dimensional for 1 ≤ j ≤ `+ 1.

The other a-weights are contained in the convex hull of the 2ε̄j and equal
to 2ε̄j minus a sum of simple restricted roots. Therefore the other a-weights
can only be ε̄i + ε̄j with i < j. By invariance under the Weyl group again,



82 A. KORÁNYI AND F. RICCI

they must have the same multiplicity, so that we may restrict our attention
to the weight ε̄1 + ε̄2.

It is clear that V̄ε̄1+ε̄2 is the direct sum of all V2ε1−α with ᾱ = ε̄1 − ε̄2.
We will prove that each such V2ε1−α is equal to ρ(g−α)V2ε1 with g−α the
h-root space relative to −α, hence is one-dimensional. This will then show
that dim V̄ε̄1+ε̄2 = d.

By [Hum, p. 108], V2ε1−α is spanned by the vectors

(11.1) v = ρ(X−αk) · · · ρ(X−α1)v+,

where v+ is a fixed non-zero element in V2ε1 , the αj are positive h-roots,∑k
i=1 αi = α and X−αi spans the h-root space g−αi . We may assume that

v 6= 0.
Since each ᾱi is a positive restricted root or zero, there is one i0 for

which ᾱi0 = ε̄1 − ε̄2, while ᾱi = 0 for i 6= i0. If ᾱ1 = 0, then 2ε1 − α1 is not
a weight for ρ, hence ρ(X−α1)v+ = 0, a contradiction. So i0 = 1. Now we
prove that, if k > 1, the number of factors in (11.1) can be reduced by one.
Indeed, since ρ(X−α2)v+ = 0,

ρ(X−α2)ρ(X−α1)v+ = ρ
(
[X−α2 , X−α1 ]

)
v+ = ρ(X−α′1)v+

with some X−α′1 ∈ g−α′1 , α′1 = α1 + α2.
Repeating this argument we find that v is in ρ(g−α)V2ε1 .
By invariance under the Weyl group, dimC V̄ε̄i+ε̄j = d for all i < j, and

adding up the dimensions, we find that dimC V = ` + 1 + `(`+ 1)d/2. In
g̃ = k + p̃ we have p̃ = ã +

∑
i<j(id− θ)gε̄i−ε̄j . Counting the dimensions, we

find that dimC V = dimR G̃/K.
We imbed G̃/K into V by choosing a K-invariant vector e and defining

the map gK 7→ ρ(g)e. Then V 0 = ρ(p̃)e is the tangent space of Ω = ρ(G̃)e
at e (under the usual identification). V 0 is a real form of V and it is ρ(K)-
invariant. If we introduce an inner product invariant under the compact form
of GC, ρ(p̃) consists of Hermitian linear transformations. Then ρ(ã), ρ(exp ã)
are simultaneously diagonalizable and real. It follows that Ω = ρ(K)ρ(Ã)e is
in V 0. Since its tangent space at e is all of V 0, it is open. Since the R+-part
of G̃ acts by positive scalar transformations, Ω is a cone in V 0.

To see that Ω is symmetric in the sense of [FK], i.e., self-dual, we ob-
serve that our choice of inner product guarantees that ρ(G̃) is closed under
taking adjoints. This is enough to prove that Ω is self-dual (cf. [FK, p. 20,
Exercise 8]).

One can also describe Ω in more detail. By the Cartan decomposition,
V 0 = ρ(K)V rad, where V rad is the subspace ρ(ã)e. If we properly normalize
the inner product, the vectors ei = ρ(εi)e form an orthonormal basis of V rad.
Then Ωrad = Ω ∩ V rad is just the positive quadrant in V rad, and Ω =
ρ(K)Ωrad.
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We also note that the symmetric space G/K can be realized as

ρ(K)ρ(expG a)e,

where ρ(expG a)e is the hyperboloid {
∑`+1

i=1 tiei : t1 · · · t`+1 = 1} in V rad.
Being a dual cone, Ω is convex. Its extremal generators can only be

the ρ(K)-images of the edges in Ωrad and K acts transitively on these. So
E1, the intersection of the set of extremal generators with the unit sphere,
is just K · e1. The stabilizer of e1 in K is the same as the centralizer of
ε1 in K, and this is the M ′-part of the Langlands decomposition of the
parabolic subgroup P = M ′A′N ′ determined by the simple roots εi − εi+1

with 2 ≤ i ≤ `.
We identify e1 and E1 with their images ẽ1, Ẽ1 in the projective space

PV 0, and write ρ̃ for the action of G on PV 0 induced by ρ. We claim that
ρ̃(G)ẽ1 = Ẽ1 and the stabilizer of ẽ1 is P . For this, we consider ρ(exp tε1)e =
ete1 +e2 + · · ·+e`+1, which is fixed under the conjugate Kexp tε1 of K. If we
pass to PV 0 and let t→∞, ẽ1 is fixed under the limit of Kexp tε1 , which is
M ′N ′, and also under A′, which acts on e1 by scalars. This shows that Ẽ1 is
one of the Satake–Fürstenberg boundaries of G/K.

It is a result of U. Hirzebruch (cf. [FK, p. 78, Exercise 5]) that, for
any irreducible symmetric cone, E1 is a compact symmetric space of rank
one, and (by classification) every such space arises in this way. We can now
reprove this result, and a little more, if we show that, starting with any
compact rank-one symmetric space, realizing it as in Section 5, then using
Theorem 11.1 to construct the corresponding cone and its E1, we get back
to the initial space.

For this, it is enough to check that when we apply Theorem 11.1 with
G and U in place of G and K, the group M ′ will be the same as the group
K of Sections 4–10. Now, in the Lie algebra of it, we can take h̃n+1 as
the element corresponding to ε1. After the coordinate change (10.5), this
is a scalar multiple of h0 + · · · + hn, which generates the group of scalar
transformations of W . The stabilizer of this in U is indeed K, by Corol-
lary 6.5.

Appendix. The non-compact symmetric spaces. What follows is
redoing [CDKR2] from a different starting point, to make it more compatible
with the approach to compact spaces that we have taken.

Let BW be the open unit ball in W . The tangent space TwBW at a point
in w ∈ BW is naturally identified with W itself. We introduce a Riemannian
metric on BW by defining, on the tangent space TwBW at w ∈ BW , the
scalar product 〈 , 〉w− such that
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(A.1) 〈X,Y 〉w− =



〈X,Y 〉
(1− |w|2)2

if X,Y ∈ Cw,

〈X,Y 〉
1− |w|2

if X,Y ∈ (Cw)⊥,

0 if X ∈ Cw, Y ∈ (Cw)⊥,

for w 6= 0 and, passing to the limit for w → 0,

(A.2) 〈X,Y 〉0− = 〈X,Y 〉 for every X,Y.

In [CDKR2] these formulas are obtained towards the end, in Section 7;
here they are definitions. Note that in [CDKR2] this metric is multiplied by
a factor 4. This multiplies by a constant the arc lengths and curvatures, but
does not change anything essential such as isometries or geodesic submani-
folds.

It is immediate that the same K of Section 4 consists of isometries fixing
the origin. Adapting the proofs in Section 6, one easily obtains the following
properties.

Lemma A.1. The geodesic γ going through the origin with tangent vec-
tor w ∈ SW is the diameter in the direction of w, parametrized as γ(t) =
(tanh t)w. The group of isometries of BW fixing the origin is K.

The maps at defined by

(A.3) at(ζ, v)

= ((sinh t ζ + cosh t1)−1(cosh t ζ + sinh t1), (sinh t ζ + cosh t1)−1v)

form a one-parameter group A of isometries of BW . This can be proved by
a computation very similar to the proof of Lemma 6.2.

Since the orbit of (0, 0) underA consists of the points at(0, 0)=(tanh t, 0),
it follows that the group G of isometries of BW is transitive on BW . We also
see that G = KAK. Since the isometry w 7→ −w has a single fixed point, it
also follows that BW is a symmetric space. Transitivity of K on SW implies
that the rank of BW is one.

Simple modifications to the proof of Theorem 7.2 give that the sectional
curvature of a plane element E spanned by X,Y ∈W in the tangent space
to BW at the origin is the negative of σ(E) in (7.1).

The unit balls B1 in W1 = C1⊕V1 and B2 in W2 = C2⊕V2 are isometric
if and only if (C1, V1) ∼ (C2, V2) as C-modules. However, the degenerate
cases (R, V ) and (R ⊕ V, 0) give different models of the same space. The
map

(t+ v, 0) 7→
(

2t
1 + t2 + |v|2

,
2v

1 + t2 + |v|2

)
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from the second to the first is an isometry up to a factor 2. For V 6= 0, these
are respectively the Klein model and the Poincaré model of real hyperbolic
space. For V = 0, they trivially become models of the real line. [CDKR2]
contains a classification-independent proof of the fact that the metrics (A.1)
give all the rank-one symmetric spaces of the non-compact type (together
with R, the irreducible Euclidean non-compact symmetric space).

The maps at in (A.3) extend to homeomorphisms of CPW . The exten-
sion to W \

{
(ζ, v) : ζ 6= − coth t

}
is obvious, and the extension to the rest

of CPW is, in analogy with (6.10),

at(− coth t, v) = [1,−(sinh t)v],

at([1, v]) = (coth t, (sinh t)−1v),
at([0, v]) = [0, v].

Therefore, all isometries of BW extend to homeomorphisms of CPW . In
analogy with Corollary 7.4, it follows that these extensions are collineations.

To tie up with [CDKR2], we use the Cayley transform c (cf. [CDKR2,
p. 208]), which in our notation is

(ζ ′, v′) = c(ζ, v) =
(
(1− ζ)−1(1 + ζ), 2(1− ζ)−1v

)
.

Clearly,

Re ζ ′ − 1
4
|v′|2 =

1− |ζ|2 − |v|2

|1− ζ|2
,

which shows that c maps BW onto

D =
{

(ζ ′, v′) : Re ζ ′ − 1
4
|v′|2 > 0

}
.

Define B : V × V → C by

〈B(v, v′), ζ〉 = 〈ζv, v′〉.

Among the isometries of D with the metric induced by c, one has the “trans-
lation” group Ñ = {ν̃(z,u) : z ∈ C ′, u ∈ V }, with

ν̃(z,u)(ζ, v) =
(
ζ + z +

1
2
B(v, u) +

1
4
|u|2, v + u

)
,

acting simply transitively on the level sets of the height function h(ζ, v) =
Re ζ − 1

4 |v|
2.

The Lie algebra n of Ñ is an H-type Lie algebra satisfying the J2-
condition. The discussion in Section 3 shows that all such algebras show
up in this way.

If ãt = catc
−1, then

ãt(ζ, v) = (e2tζ, etv),
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the group Ã = cAc−1 normalizes Ñ , and ÑÃ acts simply transitively on D.
This is the starting point in [CDKR2].

We note that c is almost the same as bπ/4 defined in Lemma 6.2, except
that the factor 2 in c is replaced by

√
2 in bπ/4. One can in fact replace c

by bπ/4 and D by D′ =
{

(ζ ′, v′) : Re ζ ′ − 1
2 |v
′|2 > 0

}
, a choice that may be

preferable in some ways.
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