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SOME THOUGHTS ABOUT SEGAL’S ERGODIC THEOREM

BY

DANIEL W. STROOCK (Cambridge, MA)

Abstract. Over fifty years ago, Irving Segal proved a theorem which leads to a char-
acterization of those orthogonal transformations on a Hilbert space which induce ergodic
transformations. Because Segal did not present his result in a way which made it readily
accessible to specialists in ergodic theory, it was difficult for them to appreciate what he
had done. The purpose of this note is to state and prove Segal’s result in a way which,
I hope, will win it the recognition which it deserves.

1. Background. Unless a separable, real Hilbert space H is finite-di-
mensional, there is no standard Gauss measure for H. That is, there is no
Borel probability measure µ on H whose Fourier transform µ̂ is given by

µ̂(h) ≡
�

H

e
√
−1(h,g)H µ(dg) = e−‖h‖

2
H/2, h ∈ H.

Indeed, if H is infinite-dimensional and such a µ were to exist, then, for
any orthonormal basis {ek : k ≥ 0} in H, the random variables g ∈ H 7→
Xm(g) = (ek, g)H would be independent, Gaussian random variables with
mean 0 and variance 1. In particular, the strong law of large numbers would
imply that

lim
n→∞

1
n

n−1∑
m=0

X2
m = 1 µ-almost surely,

and we would have ‖g‖2H =
∑∞

m=0Xm(g)2 = ∞ for µ-almost every g ∈ H.
In other words, H is just too small to accommodate µ.

In order to get around the problem described above, L. Gross [1] in-
troduced the notion of an abstract Wiener space. To describe Gross’s idea,
suppose that Θ is a separable, real Banach space in which H is continuously
embedded as a dense subspace. Then, for each λ ∈ Θ∗, there is a unique
hλ ∈ H such that (1) (g, hλ)H = 〈g, λ〉 for all g ∈ H. Indeed, λ hλ is con-
tinuous from the weak∗ topology on Θ∗ into the weak topology on H, and
{hλ : λ ∈ Θ∗} is dense in H. What Gross showed is that for each H there
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exists such a Banach space Θ on which there is a unique Borel probability
measure WH with the property that

(1) ŴH(λ) ≡
�

Θ

e
√
−1 〈θ,λ〉WH(dθ) = e−‖hλ‖

2
H/2, λ ∈ Θ∗.

Further, in recognition of the fact that N. Wiener was the first to carry out
this sort of construction, he called the triple (H,Θ,WH) an abstract Wiener
space.

There are various ways to prove Gross’s theorem (cf. [4]). For our pur-
poses here, the best way is to base the proof on the following theorem,
a derivation of which can be found in [4]. In its statement, γ is the standard
Gaussian measure on R, that is, γ(dx) = (2π)−1/2e−x

2/2dx.

Theorem 1. Suppose that H is continuously embedded as a dense sub-
space of Θ. Then there exists aWH on Θ for which (H,Θ,WH) is an abstract
Wiener space if and only if, for each orthonormal basis {ek : k ≥ 0}, the
series

∞∑
k=0

xkek converges in Θ

for γN-almost every x ∈ RN, in which case WH is the γN-distribution of the
series.

Knowing Theorem 1, it is an easy matter to give a crude proof of Gross’s
theorem. Namely, given an orthonormal basis {ek : k ≥ 0} in H, take Θ to
be the completion of H with respect to the Hilbert norm

‖g‖Θ =

√√√√ ∞∑
m=0

(m+ 1)−2(g, em)2
H ,

and note that
∞∑
m=0

x2
m

(m+ 1)2
<∞ γN-almost surely.

Of course, as Wiener showed, in particular cases there are far better choices
of Θ. Indeed, if Wiener had made this choice, he would have ended up
with Brownian paths which are no better than locally square integrable.
To recover Wiener’s famous result that Brownian paths are continuous, one
needs to use more sophisticated reasoning (cf. [4]).

Given an abstract Wiener space (H,Θ,WH), there is an isometry, known
as the Paley–Wiener map, h ∈ H 7→ I(h) ∈ L2(WH ; R) such that I(hλ)(θ)
= 〈θ, λ〉 for all λ ∈ Θ∗. Indeed, for each λ ∈ Θ∗, θ  〈θ, λ〉 under WH is
a Gaussian random variable with mean 0 and variance ‖hλ‖2H . Thus, since
{hλ : λ ∈ Θ∗} is dense in H, the existence of I is obvious. Furthermore,
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since limits of Gaussian random variables are again Gaussian, for all h ∈ H,
I(h) under WH is Gaussian with mean 0 and variance ‖h‖2H .

From our point of view, the importance of the Paley–Wiener map is that
I(h) provides an extension of the inner product (·, h)H to Θ. With this in
mind, we can understand in what sense an abstract Wiener space represents
a resolution of the problem posed at the outset. Namely,

EWH [e
√
−1 I(g)] = e−‖g‖

2
H/2, g ∈ H,

which, if I(g) were really (·, g)H , is exactly what we wanted.
In the same sense, the Paley–Wiener map explains the origin of the

following corollary to Theorem 1. Again, a proof is given in [4].

Corollary 2. Let (H,Θ,WH) be an abstract Wiener space. Then for
each orthogonal transformation O in H, there is aWH-almost surely unique,
Borel measurable map TO : Θ → Θ such that I(h) ◦ TO = I(O>h) WH-
almost surely for each h ∈ H. Moreover, TO is WH-measure preserving.

Remark. Say that D ⊆ Θ∗ is determining if θ = θ′ whenever 〈θ, λ〉 =
〈θ′, λ〉 for all λ ∈ D. Next, suppose that O is an orthogonal transformation
on H and that F : Θ → Θ has the properties that F �H = O and that
θ  〈F (θ), λ〉 is continuous for all λ’s from a determining set D. Then TOθ =
F (θ) for WH -almost every θ ∈ Θ. In particular, if O admits a continuous
extension to Θ, then TO can be taken to be that extension.

We can now formulate the problem to which the rest of this article is
dedicated. Given an abstract Wiener space (H,Θ,WH) and an orthogo-
nal transformation O on H, it is natural to ask when, if ever, the asso-
ciated, WH -measure preserving map TO is ergodic. Clearly, if H is finite-
dimensional, in which case H = Θ, the answer is never, since every function
f on H which depends only on ‖h‖H is TO-invariant. More generally, if O
admits a non-trivial, finite-dimensional subspace L and if {ek : 1 ≤ k ≤ l}
is an orthonormal basis for L, then the same argument applied to a func-
tion of

∑l
k=1 I(ek)2 shows that TO cannot be ergodic. On the other hand,

reasoning as we did when we showed that there is no standard Gauss mea-
sure on an infinite-dimensional H, one might suspect that TO is ergodic if
O admits no non-trivial, finite-dimensional subspace. In fact, I. E. Segal [3]
proved such a result in a general, abstract setting. However, because Segal
strove for maximal generality, both the statement of his result as well as his
reasoning look a little obscure to probabilists. As a consequence, his result
is not well known. The central goal of this note is to translate Segal’s ideas
into the language of abstract Wiener space, where, I hope, they will be more
palatable to a wider audience. If nothing else, I hope to convince my read-
ers that Segal’s Theorem deserves recognition as a profound contribution to
Gaussian analysis.
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2. Segal’s Theorem. Given an orthogonal transformation O on a sep-
arable, real Hilbert space H, say that O is atomic if there is an O-invariant
subspace L with dim(L) ∈ Z+. Equivalently, if Hc is the complexification
of H and Oc is the unitary operator on Hc determined by O, then O is
atomic if and only if Oc admits a non-trivial eigenvector. Thus, in order for
O to be atomic, it must admit an invariant subspace L of dimension either
1 or 2. Orthogonal transformations which are not atomic will be said to be
non-atomic.

Theorem 3 (Segal). Let (H,Θ,WH) be an abstract Wiener space. If O
is an orthogonal transformation and TO is the associated measure preserving
transformation on (Θ,BΘ,WH), then TO is ergodic if and only if O is non-
atomic.

Since we have already seen that TO cannot be ergodic if O is atomic, all
that we have to show is that O must be atomic if TO is not ergodic. That is,
we need to show that if F ∈ L2(WH ; R) is non-constant and F = F ◦TO WH -
almost surely, then O admits an invariant subspace L with dim(L) ∈ Z+.
For this purpose, we will make use of the following simple lemma.

Lemma 4. Let O be an orthogonal transformation on the real Hilbert
space H. Then O is atomic if and only if there is a real Hilbert space H̃,
an orthogonal transformation Õ on H̃, and a non-zero, compact, linear map
K : H → H̃ such that K ◦ O> = Õ ◦K.

Proof. First suppose that H̃, Õ, and K exist, and set B = K>K. Then
B is a non-zero, compact, non-negative definite operator on H, and so B
admits an eigenvalue λ ∈ (0,∞) whose eigenspace L = {h ∈ H : Bh = λh}
has dim(L) ∈ Z+. Moreover, because B commutes with O, if h ∈ L, then
B ◦ Oh = O ◦ Bh = λOh, and so Oh ∈ L. Hence, L is a non-trivial,
finite-dimensional, O-invariant subspace.

Conversely, suppose that O admits a non-trivial, finite-dimensional in-
variant subspace L. Then there exist (ξ1, ξ2) ∈ R2 with ξ2

1 + ξ2
2 = 1 and

(g1, g2) ∈ H2 with ‖g1‖2H + ‖gg‖2H = 1 such that Og1 = ξ1g1 − ξ2g2 and
Og2 = ξ2g1 + ξ1g2. Moreover, if ξ2 = 0, then we may and will assume that
g2 = 0, and if ξ2 6= 0, then neither g1 nor g2 is 0 and (g1, g2)H = 0. Now
define K : H → H by

Kh =
{

(h, g1)Hg1 if ξ2 = 0,
(h, g2)Hg1 + (h, g1)Hg2 if ξ2 6= 0.

Then K is a non-zero, compact, linear map, and K ◦ O> = O ◦K. Hence,
we can take H̃ = H and Õ = O.

Our goal is to use Lemma 4 to prove the following slight strengthening
of Segal’s Theorem.
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Theorem 5. Suppose that H is a separable, real Hilbert space and that
(H,Θ,WH) is an abstract Wiener space. Given an orthogonal transforma-
tion O on H, O is atomic if and only if there is a finite-dimensional, TO-
invariant subspace of L2(WH ; R) containing non-constant functions. Thus,
the following are equivalent:

(1) O is non-atomic.
(2) TO is weakly mixing in the sense that for any f ∈ L2(WH ; R) with

f having mean-value 0,

lim
n→∞

1
n

n−1∑
m=0

|(f ◦ TnO, g)L2(WH ;R)| = 0

for all g ∈ L2(WH ; R).
(3) TO is WH-ergodic.

That the non-existence of a finite-dimensional, TO-invariant subspace
with non-constant elements implies weak mixing is a familiar fact in classical
ergodic theory. See, for example, page 39 of [2]. Thus, everything comes down
to proving the first assertion.

If O admits a non-trivial, finite-dimensional subspace L, set L̃ = {I(h) :
h ∈ L}. Then L̃ has the same dimension as L and L contains non-constant el-
ements. In addition, because L is also O>-invariant and I(h)◦TO = I(O>h),
it is clear that L̃ is TO-invariant. Hence, what remains to be shown is that
O is atomic whenever TO admits a finite-dimensional subspace containing
non-constant functions, and it is in the proof of this part that we will employ
Lemma 4.

In order to construct the quantities required to apply Lemma 4, we
will need to recall Wiener’s decomposition of L2(W; R) into subspaces Z(n),
n ∈ N, of homogeneous chaos. Namely, set

Hn(x) = (−1)nex
2/2∂nxe

−x2/2, n ∈ N and x ∈ R,

and define Hµ : RN → R for µ ∈ NN with ‖µ‖ ≡
∑∞

k=0 µk <∞ so that

Hµ(x) =
∞∏
k=0

Hµk(xk) for x = (x0, . . . , xk, . . . ) ∈ RN.

Given an orthonormal basis E = {ek : k ≥ 0} for H, define IE : Θ → RN

so that IE(θ)k = I(ek)(θ), k ∈ N, and set HEµ = Hµ ◦ IE . Then Z(n) is the
closure in L2(W; R) of span({HEµ : ‖µ‖ = n}). The basic facts about the
Z(n)’s are that they are independent of the choice of orthonormal basis E,
they are mutually orthogonal, and their span Z is dense in L2(W; R). All
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these properties are elementary applications of the generating function

eαx−α
2/2 =

∞∑
m=0

αm

m!
Hm(x), α ∈ C.

In particular, each Z(n) is TO-invariant.
Now suppose that L is a finite-dimensional, TO-invariant subspace of

L2(WH ; R) containing non-constant elements. By the preceding, we may and
will assume that L ⊆ Z(m) for some m ∈ Z+. In addition, because L is finite-
dimensional, we know that there exist ξ1, ξ2 ∈ R2 and G1, G2 ∈ L2(WH ; R)
such that ξ2

1+ξ2
2 = 1 = ‖G1‖2L2(WH ;R)+‖G2‖2L2(WH ;R),

(
G1, G2

)
L2(WH ;R)

= 0,
and (

G1 ◦ TO
G2 ◦ TO

)
= R

(
G1

G2

)
,

where R : L2(WH ; R2)→ L2(WH ; R2) is given by

R

(
F1

F2

)
=

(
ξ1F1 − ξ2F2

ξ2F1 + ξ1F2

)
.

Now set H̃ = L2(WH ; R2), and define Õ on H̃ by

Õ

(
F1

F2

)
= R−1

(
F1 ◦ TO
F2 ◦ TO

)
=

(
ξ1F1 + ξ2F2

−ξ2F1 + ξ1F2

)
◦ TO.

Clearly, Õ is an orthogonal transformation on H̃, and

(2) Õ

(
G1

G2

)
=

(
G1

G2

)
.

Before introducing the operator K : H → H̃, we need to discuss the
gradient operator D : Z → L2(WH ;H), which is determined by

DHEµ =
∞∑
k=1

µEkHEµkek,

where (µk)l ≡ (µl − δk,l)+. Because ‖HEµ ‖2L2(WH ;R) = µ!, it is easy to check
that

(3) (DΦ1, DΦ2)2
L2(WH ;H) = n(Φ1, Φ2)2

L2(WH ;R) for Φ1, Φ2 ∈ Z(n).

In addition, the definition of D as an operator is independent of the choice
of orthonormal basis E. In particular, by taking {λk : k ≥ 0} ⊆ Θ∗ so that
{hλk : k ≥ 0} is an orthonormal basis in H, one can show that

(h,DΦ(θ))H =
d

dt
Φ(θ + th)

∣∣∣∣
t=0



SEGAL’S ERGODIC THEOREM 95

when Φ(θ) is a polynomial function of {〈θ, λk〉 : k ≥ 0}. Starting with
such Φ’s and using the preceding together with the obvious estimate coming
from (3), one arrives at

(4) (h,D(Φ ◦ TO))H = (Oh,DΦ)H ◦ TO for Φ ∈ Z.
We now define K : H → H̃ so that

Kh =

(
DhG1

DhG2

)
,

where we have introduced the notation DhF ≡
(
h,DF

)
H

for F ∈ Z. We
will show that K satisfies the hypotheses in Lemma 4 relative to O on H
and Õ on H̃.

We begin by checking that K is a non-zero, compact operator. For this
purpose, choose an orthonormal basis {ek : k ≥ 0} for H, and observe that,
by (3),

∞∑
k=0

‖Kek‖2H̃ = m,

which means that K is a non-zero, Hilbert–Schmidt, and therefore compact,
operator. Thus, all that remains is to check that K ◦ O> = Õ ◦ K, or
equivalently, that K = Õ ◦K ◦O. To this end, use (2) and (4) to check that

Kh = R−1

(
Dh(G1 ◦ TO)
Dh(G2 ◦ TO)

)
= R−1

(
(DOhG1) ◦ TO
(DOhG2) ◦ TO

)
= ÕKOh.

Before moving on, it should be observed that there is an easier result
which, in most practical situations, is not only sufficient to check ergodicity
but also opens the possibility of giving quantitative information.

Theorem 6. Let (H,Θ,WH) be an abstract Wiener space. If O is an or-
thogonal transformation on H with the property that, for every (g, h) ∈ H2,
limn→∞(Ong, h)H = 0, then TO admits no finite-dimensional, invariant sub-
space containing non-constant elements.

If one wants to use Theorem 5, this result is obvious. Indeed, if O satis-
fies the stated condition, then it certainly cannot have a non-trivial, finite-
dimensional invariant subspace. However, there is a more quantitative way
to prove it. Namely, the non-existence assertion follows immediately from
the mixing property

lim
n→∞

|EWH [(Φ ◦ TnO)Φ]| = 0

for all Φ ∈ L2(WH ; R) with mean value 0. In fact, if {ek : k ≥ 1} is an
orthonormal basis for H, then it suffices to check this mixing property when

Φ(θ) = f([I(e1)](θ), . . . , [I(eN )](θ))
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for some N ∈ Z+ and bounded, Borel measurable f : RN → R. The reason
why it is sufficient to check it for such Φ’s is that, because TO isWH -measure
preserving, the set of Φ’s for which the desired property holds is closed in
L2(WH ; R). Hence, if we start with any Φ ∈ L2(WH ; R) with mean value 0,
we can first approximate it in L2(WH ; R) by bounded functions with mean
value 0 and then condition these bounded approximates with respect to
σ
(
{I(e1), . . . , I(eN )}

)
to give them the required form.

Now suppose that Φ = f
(
I(e1), . . . , I(eN )

)
for some N and bounded,

measurable f . Then

EWH [Φ ◦ TnOΦ] =
� �

RN×RN
f(x)f(y) γ0,Cn(dx× dy),

where γ0,Cn is the Gauss measure on RN ×RN with mean 0 and covariance

Cn =

(
I Bn

B>n I

)
with Bn = (((ek,Onel)H))1≤k,l≤N ,

where the block structure corresponds to RN×RN . Finally, by our hypothesis
about O, we can find a subsequence {nm : m ≥ 0} such that limm→∞Bnm

= 0, from which it is clear that γ0,Cnm
tends to γ0,I × γ0,I in variation and

therefore
lim
m→∞

EWH [(Φ ◦ TnmO )Φ] = EWH [Φ]2 = 0.

As the preceding makes clear, the more one knows about the rate at
which (Ong, h)H tends to 0, the more one will know about the strength of
the mixing property for TO; and from this one can get estimates on the
L2(WH ; R) rate at which ergodic sums are converging.

3. Wiener isomorphisms. Given a pair of abstract Wiener spaces
(H,Θ,WH) and (H ′, Θ′,WH′), we will say that a map Φ : Θ → Θ′ is a
Wiener isomorphism if

(a) Φ is Borel measurable and WH′ = Φ∗WH .
(b) Φ is almost surely invertible in the sense that there is a Borel mea-

surable Φ−1 : Θ′ → Θ such that Φ−1 ◦Φ(θ) = θ and Φ ◦Φ−1(θ′) = θ′

for, respectively, WH -almost all θ ∈ Θ and WH′-almost all θ′ ∈ Θ′.
(c) For W2

H -almost every (θ1, θ2) ∈ Θ2,

Φ

(
θ1 + θ2√

2

)
=
Φ(θ1) + Φ(θ2)√

2
.

Notice that if Ψ ′ : Θ → Θ′ is Borel measurable and Ψ is WH -almost surely
equal to a Borel measurable Φ : Θ → Θ′ which satisfies the additivity con-
dition in (c), then Ψ also satisfies that condition. Indeed, Ψ(2−1/2(θ1 + θ2))
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= 2−1/2(Ψ(θ1)+Ψ(θ2)) for (θ1, θ2) ∈ (A×A)∩B∩C, where A = {θ : Φ(θ) =
Ψ(θ)} and

B = {(θ1, θ2) : Ψ(2−1/2(θ1 + θ2)) = 21/2(Ψ(θ1) + Ψ(θ2))},
C = {(θ1, θ2) : Ψ(2−1/2(θ1 + θ2)) = Φ(2−1/2(θ1 + θ2))}.

Obviously, A×A and B have W2
H -measure 1, and because WH is the WH2-

distribution of (θ1, θ2) 2−1/2(θ1 + θ2), so does C. Hence, if Φ is a Wiener
isomorphism, then Ψ is also. Similarly, if Φ : Θ → Θ′ is a Wiener isomor-
phism and Φ−1 is an almost sure inverse of Φ, then Φ−1 is also a Wiener
isomorphism. Since Φ−1 is certainly measure preserving, to check this it suf-
fices to show that Φ−1 has the additivity property. For this purpose, take
A = {θ ∈ Θ : Φ−1 ◦ Φ(θ) = θ}, A′ = {θ′ ∈ Θ′ : Φ ◦ Φ−1(θ′) = θ′} and

B = {(θ1, θ2) ∈ Θ2 : Φ(2−1/2(θ1 + θ2)) = 2−1/2(Φ(θ1) + Φ(θ2))},
C = {(θ′1θ′2) ∈ A′ ×A′ : (Φ−1(θ′1), Φ−1(θ′2)) ∈ (A×A) ∩B}.

Then W2
H′(C) = 1 and, for (θ′1, θ

′
2) ∈ C,

Φ−1(θ′1) + Φ−1(θ′2)√
2

= Φ−1 ◦ Φ
(
Φ−1(θ′1) + Φ−1(θ′2)√

2

)
= Φ−1

(
θ′1 + θ′2√

2

)
.

The goal here is to prove the following theorem.

Theorem 7. Suppose that O and O′ are orthogonal transformations on,
respectively, H and H ′. Then there exists a Wiener isomorphism Φ : Θ → Θ′

such that Φ ◦ TO = TO′ ◦ Φ WH-almost surely if and only if there is a
unitary, linear map U : H → H ′ such that UO = O′U . In particular,
Φ : Θ → Θ is a Wiener isomorphism if and only if Φ = TO for some
orthogonal transformation O on H.

There are two steps in the proof of Theorem 7, the first of which is taken
in the following lemma.

Lemma 8. Suppose that U : H → H ′ is a linear, unitary map. Then
there exists a WH-almost surely unique, Borel measurable TU : Θ → Θ′ such
that I(h′) ◦ TU = I(U>h′) WH-almost surely for all h′ ∈ H ′. Moreover, TU
is a Wiener isomorphism and TU> is an almost sure inverse of TU . Finally,
TU ◦ TO = TO′ ◦ TU WH-almost surely if and only if UO = O′U .

Proof. Since, for any Borel measurable maps Φ and Ψ from Θ to Θ′,
Φ = Ψ WH -almost surely if and only if I(h′) ◦ Φ = I(h′) ◦ Ψ WH -almost
surely for each h′ ∈ H ′, uniqueness of TU is clear. To prove existence,
choose an orthonormal basis (e1, . . . , en, . . . ) for H. Then {I(en) : n ≥ 0}
is a sequence of independent, standard normal random variables under
WH , (Ue1, . . . , Uen, . . . ) is an orthonormal basis for H ′, and so (cf. §2
in [4]) the series

∑∞
n=0 I(en)Uen is WH -almost surely convergent in Θ.
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Thus, we can define a Borel measurable TU : Θ → Θ′ so that, for WH -
almost all θ ∈ Θ, TU (θ) =

∑∞
n=0 I(en)(θ)Uen, where the series converges

in Θ′. To check that this choice of TU has the right property, first ob-
serve that WH′ is the WH -distribution of

∑∞
n=0 I(en)(θ)Uen and therefore

that (TU )∗WH = WH′ . Hence, h′ ∈ H ′ 7→ I(h′) ◦ TU ∈ L2(WH ; R) and
h′ ∈ H ′ 7→ I(U>h′) ∈ L2(WH ; R) are both isometric, and they are therefore
equal if they agree on {h′λ′ : λ′ ∈ (Θ′)∗}. But, for WH -almost all θ,

I(h′λ′) ◦ TU (θ) = 〈TU (θ), λ′〉 =
∞∑
n=0

I(en)〈Uen, λ′〉

=
∞∑
n=0

I(en)(θ)(U>h′λ′ , en)H = I(h′λ′)(θ).

To see that TU is a Wiener isomorphism, we must still check that it is
almost surely invertible and that it has the additivity property in (c). But

I(h′)◦TU ◦TU> = I(U>h′)◦TU> = I(UU>h′) = I(h′) WH -almost surely,

and so not only is TU almost surely invertible but TU> is an almost sure
inverse. As for the additivity property, note that we can choose the en’s
entering the preceding definition of TU so that en = hλn with λn ∈ Θ∗ for
each n ∈ N. Now let A be the set of θ for which S(θ) ≡

∑
n=0〈θ, λn〉Uen

converges, and take S(θ) = 0 for θ /∈ A. Then S is a legitimate choice
for TU , and we know that 2−1/2(θ1 + θ2) ∈ A and S(2−1/2(θ1 + θ2)) =
2−1/2(S(θ1) + S(θ2)) for (θ1, θ2) ∈ A × A. Hence, since A × A has W2

H -
measure 1, we have completed the proof that TU is a Wiener isomorphism
and that TU> is an almost sure inverse.

Finally, O′U = UO if and only if for each h′ ∈ H ′,

I(h′) ◦ TU ◦ TO = I(U>h′) ◦ TO = I((UO)>h′)

= I((O′U)>h′) = I((O′)>h′) ◦ TU = I(h′) ◦ TO′ ◦ TU
WH -almost surely. Hence O′U = UO ⇔ TO′ ◦ TU = TU ◦ TO WH -almost
surely.

The second step in the proof of Theorem 7 is to show that if Φ : Θ → Θ′ is
a Wiener isomorphism, then there exists a unique unitary, linear U : H → H ′

such that Φ = TU WH -almost surely. Again the uniqueness is essentially
trivial, and so we will concentrate on existence.

Lemma 9. If f ∈ L2(WH ; R), then f = I(h) for some h ∈ H if and only
if (2−1/2(θ1 + θ2)) = 2−1/2(f(θ1) + f(θ2)) W2

H-almost surely.

Proof. The “if” assertion is easy. Indeed, again using the fact that WH

is theW2
H -distribution of (θ1, θ2) 2−1/2(θ1 +θ2), one can easily check that
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it suffices to check the additivity property for I(h) when h = hλ for some
λ ∈ Θ∗, in which case it is trivial.

To prove the converse, what we have to check is that the additivity
property implies that f ∈ Z(1). Thus, let fn denote the projection of f onto
Z(n). We want to show that fn = 0 when n 6= 1, and the key to doing so is to
show that each fn inherits the additivity property from f . For this purpose,
set F (θ1, θ2) = f(2−1/2(θ1 + θ2)). Then F ∈ L2(W2

H ; R) and F =
∑∞

n=0 Fn
in L2(W2

H ; R), where Fn(θ1, θ2) = fn(2−1/2(θ1 + θ2)). At the same time, we
know that

F (θ1, θ2) = 2−1/2
∞∑
n=0

(fn(θ1) + fn(θ2))

in L2(W2
H ; R), and clearly each summand in the preceding is an element of

Z(n)(H2), the space of nth order homogeneous chaos for the abstract Wiener
space (H2, Θ2,W2

H). Hence, we will know that the additivity property holds
for fn once we show that Fn ∈ Z(n)(H2). That is, we must check that
if g ∈ Z(n) and G(θ1, θ2) = g(2−1/2(θ1 + θ2)), then G ∈ Z(n)(H2). After
a little thought, one realizes that checking this last statement reduces to
showing that if Hn is the nth Hermite polynomial described following the
statement of Theorem 5, then Hn(2−1/2(x1 + x2)) is a linear combination
of Hm(x1)Hn−m(x2), 0 ≤ m ≤ n. Finally, using the generating function for
the Hn’s, it is easy to check that

Hn(2−1/2(x1 + x2)) = 2−n/2
n∑

m=0

Hm(x1)Hn−m(x2).

In view of the preceding, we will be done once we show that if f ∈ Z(n)

has the additivity property, then f = 0 unless n = 1. This is obvious when
n = 0. Thus, assume that n ≥ 2. Define F from f as in the preceding
paragraph, and observe that ((h,−h), DF )H2 = 0 W2

H -almost surely for
each h ∈ H. At the same time, by the additivity property,

0 = 21/2((h,−h), DF (θ1, θ2))H2 = (h,Df(θ1))H − (h,Df(θ2))H
for W2

H -almost all (θ1, θ2). Hence, since the terms on the right are inde-
pendent under W2

H , the only way that this could hold is if each of them is
W2
H -almost surely constant. Hence, we now know Df is WH -almost surely

constant, which, because n ≥ 2, is possible only if f = 0.

The following completes the proof of Theorem 7.

Theorem 10. Φ : Θ → Θ′ is a Wiener isomorphism if and only if there
is a unitary, linear U : H → H ′ such that Φ = TU WH-almost surely.

Proof. We need only address the “only if” part. To this end, let λ′ ∈ Θ∗
be given, and set f = I(h′λ′) ◦Φ. Then f satisfies the additivity property in
Lemma 11, and therefore, by that lemma, there exists a unique F ′h ∈ H ′
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such that I(h′λ′)◦Φ = I(F ′h′λ′). Moreover, F ′ is linear and isometric. Hence
F ′ admits a unique extension as an isometry from H ′ into H, and it is easy
to check that I(h′) ◦ Φ = I(F ′h′) WH -almost surely continues to hold for
all h′ ∈ H ′. Next, apply the same argument to Φ−1 and thereby produce
a linear isometry F : H → H ′ such that I(h) ◦ Φ−1 = I(Fh) WH′-almost
surely for each h ∈ H. Finally, note that

I(h) = I(h) ◦ Φ−1 ◦ Φ = I(Fh) ◦ Φ = I(F ′Fh)
WH -almost surely for each h ∈ H,

and similarly, I(h′) = I(FF ′h′) WH′-almost surely for each h′ ∈ H ′, and
from these conclude that F is unitary. Thus, we can take U = F .

Remark. It should be emphasized that Theorem 7 does not solve the
problem of determining when TO on Θ is measure theoretically isomorphic
to TO′ on Θ′. That is, when there is an almost surely invertible, measure
preserving Φ : Θ → Θ′ such that TO′ ◦ Φ = Φ ◦ Φ almost surely. It only
determines when there is such a Φ which is a Wiener isomorphism.

4. Some examples. The Hilbert space for Wiener’s own abstract
Wiener space, the one corresponding to Brownian motion, is the space
H1(RN ) of absolutely continuous paths h : [0,∞)→ RN with h(0) = 0 and
square integrable derivative ḣ, the norm ‖h‖H1(RN ) being ‖ḣ‖L2([0,∞);RN ).
Wiener’s renowned theorem shows that in this case the Banach space can be
taken to be the space Θ(RN ) of continuous θ : [0,∞)→ RN with θ(0) = 0 =
limt→∞ t

−1|θ(t)| endowed with the norm ‖θ‖Θ(RN ) = supt≥0(1 + t)−1|θ(t)|.
Among the orthogonal transformations on H1(RN ), perhaps the most

important to Brownian motion aficionados are the natural rescaling maps.
That is, given α ∈ (0,∞), consider the transformation Oα on H1(RN ) de-
termined by Oαh(t) = α−1/2h(αt). Obviously, Oα is an orthogonal transfor-
mation on H1(RN ). In addition, it extends trivially as a continuous map Sα
on Θ(RN ) into itself, known to probabilists as the Brownian scaling trans-
formation. Thus, by the Remark following Corollary 2, we may and will
take TOα = Sα. Finally, for each α ∈ (0,∞) \ {1}, Snαg tends weakly to 0 in
H1(RN ) for all g ∈ H(RN ). Perhaps the easiest way to see this is to first
note that it suffices to prove it for a dense set of g’s. Thus, suppose that
ġ ∈ C∞c ((0,∞); RN ) and observe that, for all h ∈ H1(RN ),

(Onαg, h)H =
�

(0,∞)

α1/2ġ(αt)ḣ(t) dt→ 0

as α tends to either 0 or ∞. Since Onα = Oαn , there is nothing more to do.
As a consequence, we can now apply Birkhoff’s individual ergodic the-

orem to see that, for any α ∈ (0,∞) \ {1} and any WH1(RN )-integrable
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F : Θ(RN )→ R,

1
n

n−1∑
m=0

F ◦ Sαm →
�

Θ(RN )

F dWH1(RN )

both WH1(RN )-almost surely and in L1(WH1(RN ); R). Alternatively, by tak-
ing advantage of the obvious fact that {Set : t ∈ [0,∞)} is a semigroup, one
can use the continuous time version of Birkhoff’s theorem to show that

1
log t

t�

1

τ−1F ◦ Sτ dτ →
�

Θ(RN )

F dWH1(RN )

bothWH1(RN )-almost surely and in L1(WH1(RN ); R). Unfortunately, at least
from the standpoint of Segal’s theory, the conclusion just drawn can be seen
(cf. §5) as an application of a more familiar, and far better understood,
ergodic theorem.

Here is a second example in the same setting, one which I do not know
how to handle by any other approach. Assume that N is even and therefore
that there exist non-singular, skew-symmetric transformations A on RN .
Given such an A, define OA on H1(RN ) so that

OAh(t) =
t�

0

eτAḣ(τ) dτ, t ∈ [0,∞).

Again it is obvious that OA is an orthogonal transformation. Further, Rie-
mann–Stieltjes integration provides a continuous extension of OA. Namely,
because τ  eτA is smooth and θ ∈ Θ(RN ) is continuous, τ  eτA is locally
Riemann–Stieltjes integrable with respect to every θ ∈ Θ(RN ), and it is an
elementary exercise to show that the map IA given by

IAθ(t) =
t�

0

eτA dθ(τ), t ∈ [0,∞),

is a continuous on Θ(RN ) into itself. Finally, because InA = InA and there are
orthonormal coordinates in which the matrix representation of eτA consists
of N/2 2× 2 blocks along the diagonal, each of which has the form(

cos τα − sin τα
sin τα cos τα

)
for some α 6= 0, it follows that (OnAg, h)H1(RN ) → 0 by the Riemann–
Lebesgue Lemma. Hence, just as before, if F ∈ L1(WH1(RN ); R), then

1
n

n−1∑
m=0

F ◦ ImA →
�

Θ(RN )

F dWH1(RN )
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and

1
t

t�

0

F ◦ IτA dτ →
�

Θ(RN )

F dWH1(RN ),

both WH1(RN )-almost surely and in L1(WH1(RN ); R).

5. A large deviations result. As I said in §4, the Brownian scaling
example there can be understood as an application of a more familiar re-
sult. Namely, define Ψ : Θ(RN ) → C(R; RN ) so that [Ψ(θ)](t) = e−t/2θ(et),
set ΘU (RN ) = Ψ(Θ(RN )), and define the norm ‖ · ‖ΘU (RN ) so that Ψ be-
comes an isometry. Then the pushforward of WH1(RN ) under Ψ is the dis-
tribution U (N) of the stationary Ornstein–Uhlenbeck process. To be precise,
(HU (RN ), ΘU (RN ),U (N)) is an abstract Wiener space when HU (RN ) is the
space of absolutely continuous h ∈ L2(R; RN ) with

‖h‖HU (RN ) ≡
√
‖ḣ‖2

L2(R;RN )
+ 1

4‖h‖
2
L2(R;RN )

<∞.

Furthermore, it is easy to check that Ψ ◦ Seτ = Στ ◦ Π, where Στ is the
natural time-shift transformation on C(R; RN ). Hence, the distribution of{

1
n

n−1∑
m=0

F ◦ Snα : n ≥ 1
}

under WH1(RN ) is the same as that of{
1
n

n−1∑
m=0

(F ◦ Ψ−1) ◦Σn logα : n ≥ 1
}

under U (N), and the same line of reasoning applies in the continuous time
setting.

Since, for each τ 6= 0, the time-shift transformation Στ is ergodic for
U (N), the ergodic result proved in §4 for the Brownian scaling transforma-
tions follows immediately. In addition, a lot is known about the ergodic
properties of the time-shift transformation group under U (N). For example,
consider the associated empirical measure given by

RUT (·, θU ) ≡ 1
2T

T�

−T
δΣτ θU dτ, (T, θU ) ∈ (0,∞)×ΘU (RN ).

Then, as a consequence of ergodicity and the Individual Ergodic Theorem,
one knows that, as T →∞, RUT (·, θU ) tends weakly to U (N) for U (N)-almost
every θU ∈ ΘU (RN ). Moreover, one has (cf. §5.4 and Exercise 6.2.47 in [5])
estimates on the rate at which this convergence is taking place. To be precise,
given an interval I ⊆ R, let BUI be the σ-algebra over ΘU (RN ) generated
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by the maps θU  θU (t) as t runs over I, and given a P ∈ M1(ΘU (RN )),
define HU

I (P) to be the entropy of P�BUI relative to U (N)�BUI . That is, if
P�BUI � U (N)�BUI and FI is its Radon–Nikodym derivative, then

HU
I (P) =

�
FI logFI dU (N) =

�
logFI dP,

and HU
I (P) =∞ otherwise. If P is time-shift invariant, then the limit

lim
T→∞

HU
[−T,T ](P)

2T

exists in [0,∞]. Thus, we can define the specific entropy HU (P) of P rela-
tive to U (N) to be this limit when P is time-shift invariant and to be +∞
otherwise, and if we adopt this definition, one can show that the large devi-
ations of {RT : T > 0} are governed by HU in the sense that, for any Borel
measurable A ⊆M1(ΘU (RN )),

− inf
P∈Å

HU (P) ≤ lim
1

2T
log(U (N)(RUT ∈ A))

≤ lim
1

2T
log(U (N)(RUT ∈ A)) ≤ − inf

P∈A
HU (P),

where Å and A are, respectively, the interior and closure of A with respect
to the weak topology.

To transfer this large deviations estimate back to the setting of the Brow-
nian scaling transformations, define the empirical process {RT : T > 0} by

RT (·, θ) ≡ 1
T

T�

0

δSeτ θ dτ for (T, θ) ∈ (0,∞)×Θ(RN ).

Then the preceding result says that the large deviations of {RT : T > 0}
under W(N) are governed by HU ◦ Ψ∗. That is, for any Borel measurable
A ⊆M1(Θ(RN )),

− inf
P∈Å

HU (Ψ∗P) ≤ lim
1

2T
log(W(N)(RT ∈ A))

≤ lim
1

2T
log(W(N)(RT ∈ A)) ≤ − inf

P∈A
HU (Ψ∗P).

Further, because, for any P ∈M1(Θ(RN )) and T > 0,

Ψ∗(P�B[e−T ,eT ]) = (Ψ∗P)�BU[−T,T ],

where BI is the σ-algebra over Θ(RN ) generated by the maps θ  θ(t) for
t ∈ I ⊆ [0,∞), it is easy to see that P�B[e−T ,eT ] � W(N)�B[e−T ,eT ] if and
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only if (Ψ∗P)�BU[−T,T ] � U
(N)�BU[−T,T ] and that

HU
[−T,T ](Ψ∗P) =

�
FT logFT dW(N) =

�
logFT dP

if d(P�B[e−T ,eT ]) = FTd(W(N)�B[e−T ,eT ]).

Hence, if we define HW(P) for P ∈M1(Θ(RN )) so that

HW(P) = lim
T→∞

1
2T

�
log
(

d(P�B[e−T ,eT ])

d(W(N)�B[e−T ,eT ])

)
dP

when P is invariant under the Brownian scaling transformations {Sα : α ∈
[0,∞)} and P�B[e−T ,eT ] � W(N)�B[e−T ,eT ] for all T > 0 and HW (P) = +∞
otherwise, then

− inf
P∈Å

HW (P) ≤ lim
1

2T
log(W(N)(RT ∈ A))(5)

≤ lim
1

2T
log(W(N)(RT ∈ A)) ≤ − inf

P∈A
HW (P).

It is instructive to calculate HW (P) in a simple case. Thus, let N = 1,
and consider perturbations of Brownian motion by a deterministic path ψ.
That is, take P to be the distribution of θ  θ + ψ under W = W(1). In
order for P to be invariant under Brownian scaling, it is clear that ψ must
be homogeneous of order 1/2. Thus, consider ψ(t) = t1/2. Because ψ̇ is not
square integrable at 0, P�B[0,T ] fails to be absolutely continuous with respect
to W�B[0,T ] for any T > 0. Nonetheless, for each T > 0, P�B[e−T ,eT ] �
W�B[e−T ,eT ]. In fact, the corresponding Radon–Nikodym derivative is given
by

FT (θ) = exp
(∞�

0

ḣT (t) dθ(t)− 1
2
‖hT ‖2H1(R)

)
,

where

hT (t) =
{
eT/2t if t ∈ [0, e−T ],√
t ∧ eT if t ≥ e−T

and the integral is taken in the sense of Riemann–Stieltjes. To see this, one
need only note that θ(t) + t1/2 = θ(t) + hT (t) for e−T ≤ t ≤ eT and that FT
is B[e−T ,eT ]-measurable, and apply the Cameron–Martin formula (cf. [4]) to
check that FT is the Radon–Nikodym derivative with respect to W of the
translate of W by hT . Furthermore,

�
logFT dP =

�
logFT (θ + hT ) dW =

‖hT ‖2H1(R)

2
=

1
2

+
T

8
.

Hence, HW (P) = 1/16 for this P.
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