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Abstract. Let G be a real Lie group and H a lattice or, more generally, a closed
subgroup of finite covolume in G. We show that the unitary representation λG/H of G on
L2(G/H) has a spectral gap, that is, the restriction of λG/H to the orthogonal complement
of the constants in L2(G/H) does not have almost invariant vectors. This answers a ques-
tion of G. Margulis. We give an application to the spectral geometry of locally symmetric
Riemannian spaces of infinite volume.

1. Introduction. Let G be a locally compact group. Recall that a uni-
tary representation (π,H) of G has almost invariant vectors if, for every
compact subset Q of G and every ε > 0, there exists a unit vector ξ ∈ H
such that supx∈Q ‖π(x)ξ − ξ‖ < ε. If this holds, we also say that the trivial
representation 1G is weakly contained in π and write 1G ≺ π.

Let H be a closed subgroup of G for which there exists a non-zero G-
invariant regular Borel measure µ on G/H (see [BHV, Appendix B] for
a criterion of the existence of such a measure). Denote by λG/H the uni-
tary representation of G given by left translations on the Hilbert space
L2(G/H,µ) of square integrable measurable functions on the homogeneous
space G/H. If µ is finite, we say that H has finite covolume in G. In this case,
the space C1G/H of constant functions on G/H is contained in L2(G/H,µ)
and is G-invariant, as also is its orthogonal complement

L2
0(G/H,µ) =

{
ξ ∈ L2(G/H,µ) :

�

G/H

ξ(x) dµ(x) = 0
}
.

In case µ is infinite, we set L2
0(G/H,µ) = L2(G/H,µ).

Denote by λ0
G/H the restriction of λG/H to L2

0(G/H,µ) (in case µ is
infinite, λ0

G/H = λG/H). We say that λG/H (or L2(G/H,µ)) has a spectral
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gap if λ0
G/H has no almost invariant vectors. In the terminology of [Marg91,

Chapter III, (1.8)], H is called weakly cocompact.
By a Lie group we mean a locally compact group G whose connected

component of the identity G0 is open in G and is a real Lie group. We prove
the following result which has been conjectured in [Marg91, Chapter III,
Remark (1.12)].

Theorem 1. Let G be a Lie group and H a closed subgroup with finite
covolume in G. Then the unitary representation λG/H on L2(G/H) has a
spectral gap.

It is a standard fact that L2(G/H) has a spectral gap when H is co-
compact in G (see [Marg91, Chapter III, Corollary (1.10)]). When G is a
semisimple Lie group, the conclusion of Theorem 1 is an easy consequence of
Lemma 3 in [Bekk98]. Our proof is by reduction to these two cases. The cru-
cial tool for this reduction is Proposition (1.11) from Chapter III in [Marg91]
(see Proposition 5 below). From Theorem 1 and again from that proposition,
we obtain the following corollary.

Corollary 2. Let G be a second countable Lie group, H a closed sub-
group with finite covolume in G, and σ a unitary representation of H. Let
π = IndGH σ be the representation of G induced from σ. If 1H is not weakly
contained in σ, then 1G is not weakly contained in π.

Observe that, by continuity of induction, the converse is also true: if
1H ≺ σ, then 1G ≺ π.

From the previous corollary we deduce a spectral gap result for some
subgroups of G with infinite covolume.

Recall that a subgroup H of a topological group G is called co-amenable
in G if there is a G-invariant mean on the space Cb(G/H) of bounded con-
tinuous functions on G/H. When G is locally compact, this is equivalent to
1G ≺ λG/H ; this property has been extensively studied by Eymard [Eyma72]
who calls it the amenability of the homogeneous space G/H. Observe that
a normal subgroup H in G is co-amenable in G if and only if the quotient
group G/H is amenable.

Corollary 3. Let G be a second countable Lie group and H a closed
subgroup with finite covolume in G. Let L be a closed subgroup of H. Assume
that L is not co-amenable in H. Then λG/L (which is defined as IndGL1L in
case G/L has no G-invariant measure) does not weakly contain 1G.

Corollary 3 is a direct consequence of Corollary 2, since the representa-
tion λG/L on L2(G/L) is equivalent to the induced representation IndGH λH/L.

Here is a reformulation of the previous corollary. Let G be a Lie group
and H a closed subgroup with finite covolume in G. If a subgroup L of H is
co-amenable in G, then L is co-amenable in H. Observe that the finiteness
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of the covolume of H is essential, as examples in [MoPo03] and [Pest03]
show. Observe also that the converse (if L is co-amenable in H, then L
is co-amenable in G) is true for any topological group G and any closed
subgroup H which is co-amenable in G (see [Eyma72, p. 16]).

Using methods from [Leuz03] (see also [Broo86]), we obtain the follow-
ing consequence for the spectral geometry of infinite coverings of locally
symmetric Riemannian spaces of finite volume. Recall that a lattice in the
locally compact group G is a discrete subgroup of G with finite covolume.

Corollary 4. Let G be a semisimple Lie group with finite centre and
maximal compact subgroup K and let Γ be a torsion-free lattice in G. Let Ṽ
be a covering of the locally symmetric space V = K\G/Γ . Assume that the
fundamental group of Ṽ is not co-amenable in Γ.

(i) We have h(Ṽ ) > 0 for the Cheeger constant h(Ṽ ) of Ṽ .
(ii) We have λ0(Ṽ ) > 0, where λ0(Ṽ ) is the bottom of the L2-spectrum

of the Laplace–Beltrami operator on Ṽ .

There is in general no uniform bound for h(Ṽ ) or λ0(Ṽ ) for all cover-
ings Ṽ . However, it was shown in [Leuz03] that, whenG has Kazhdan’s Prop-
erty (T), such a bound exists for every locally symmetric space V = K\G/Γ .
Observe also that if, in the previous corollary, the fundamental group of Ṽ
is co-amenable in Γ and has infinite covolume, then h(Ṽ ) = λ0(Ṽ ) = 0, as
shown in [Broo81].

2. Proofs of Theorem 1 and Corollary 4. The following result of
Margulis (Proposition (1.11) in Chapter III of [Marg91]) will be crucial.

Proposition 5 ([Marg91]). Let G be a second countable locally compact
group, H a closed subgroup of G such that G/H has a G-invariant measure,
and σ a unitary representation of H. Assume that λG/H has a spectral gap
and that 1H is not weakly contained in σ. Then 1G is not weakly contained
in IndGH σ.

In order to reduce the proof of Theorem 1 to the semisimple case, we
will use the following proposition several times.

Proposition 6. Let G be a separable locally compact group, and H1

and H2 be closed subgroups of G with H1 ⊂ H2 and such that G/H2 and
H2/H1 have non-zero G-invariant and H2-invariant regular Borel measures,
respectively. Assume that the H2-representation λH2/H1

on L2(H2/H1) and
the G-representation λG/H2

on L2(G/H2) both have spectral gaps. Then the
G-representation λG/H1

on L2(G/H1) has a spectral gap.

Proof. Recall that, for any closed subgroup H of G, the representation
λG/H is equivalent to the representation IndGH 1H induced by the identity
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representation 1H of H. Hence, by transitivity of induction,

λG/H1
= IndGH1

1H1 = IndGH2
(IndH2

H1
1H1) = IndGH2

λH2/H1
.

We have to consider three cases:

• First case: H1 has finite covolume in G, that is, H1 has finite covolume
in H2, and H2 has finite covolume in G. Then

λ0
G/H1

= λ0
G/H2

⊕ IndGH2
λ0
H2/H1

.

By assumption, λ0
H2/H1

and λ0
G/H2

do not weakly contain 1H2 and 1G, re-
spectively. It follows from Proposition 5 that IndGH2

λ0
H2/H1

does not weakly
contain 1G. Hence, λ0

G/H1
does not weakly contain 1G.

• Second case: H1 has finite covolume inH2, andH2 has infinite covolume
in G. Then

λG/H1
= λG/H2

⊕ IndGH2
λ0
H2/H1

.

By assumption, λ0
H2/H1

and λG/H2
do not weakly contain 1H2 and 1G. As

above, using Proposition 5, we see that λG/H1
does not weakly contain 1G.

• Third case: H1 has infinite covolume in H2. By assumption, λH2/H1

does not weakly contain 1H2 . By Proposition 5 again, it follows that λG/H1
=

IndGH2
λH2/H1

does not weakly contain 1G.

For the reduction of the proof of Theorem 1 to the case where G is second
countable, we will need the following lemma.

Lemma 7. Let G be a locally compact group and H a closed subgroup
with finite covolume. The homogeneous space G/H is σ-compact.

Proof. Let µ be the G-invariant regular probability measure on the Borel
subsets of G/H. Choose an increasing sequence of compact subsets Kn of
G/H with limn µ(Kn) = 1. The set K =

⋃
nKn has µ-measure 1 and is

therefore dense in G/H. Let U be a compact neighbourhood of e in G. Then
UK = G/H and UK =

⋃
n UKn is σ-compact.

Proof of Theorem 1. Through several steps the proof will be reduced to
the case where H is a lattice in G, and G is a connected semisimple Lie
group with trivial centre and without compact factors.

• First step: we can assume that G is σ-compact and hence second-
countable. Indeed, let p : G → G/H be the canonical projection. Since
every compact subset of G/H is the image under p of some compact subset
of G (see [BHV, Lemma B.1.1]), it follows from Lemma 7 that there exists
a σ-compact subset K of G such that p(K) = G/H. Let L be the subgroup
of G generated by K ∪ U for a neighbourhood U of e in G. Then L is a
σ-compact open subgroup of G. We show that L ∩H has a finite covolume
in L, and that λG/H has a spectral gap if λL/L∩H has a spectral gap.
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Since LH is open in G, the homogeneous space L/L∩H can be identified
as an L-space with LH/H. Therefore L∩H has finite covolume in L. On the
other hand, the restriction of λG/H to L is equivalent to the L-representation
λL/L∩H , since LH/H = p(L) = G/H. Hence, if λL/L∩H has a spectral gap,
then λG/H has a spectral gap.

• Second step: we can assume that G is connected. Indeed, let G0 be
the connected component of the identity of G. We show that G0 ∩H has a
finite covolume in G0, and that λG/H has a spectral gap if λG0/G0∩H has a
spectral gap.

The subgroup G0H is open in G and has finite covolume in G as it con-
tains H. It follows that G0H has finite index in G since G/G0H is discrete.
Hence λG/G0H has a spectral gap.

On the other hand, since G0H is closed in G, the homogeneous space
G0/G0 ∩H can be identified as a G0-space with G0H/H. Therefore G0 ∩H
has finite covolume in G0. The restriction of λG0H/H to G0 is equivalent to
the G0-representation λG0/G0∩H .

Suppose now that λG0/G0∩H has a spectral gap. Then theG0H-represent-
ation λG0H/H has a spectral gap, since L2

0(G0H/H) ∼= L2
0(G0/G0 ∩ H) as

G0-representations. An application of Proposition 6 with H1 = H and H2 =
G0H shows that λG/H has a spectral gap. Hence, we can assume that G is
connected.

• Third step: we can assume that H is a lattice in G. Indeed, let H0

be the connected component of the identity of H and let NG(H0) be the
normalizer of H0 in G. Observe that NG(H0) contains H. By [Wang76,
Theorem 3.8], NG(H0) is cocompact in G. Hence, λG/NG(H0) has a spectral
gap. It follows from the previous proposition that λG/H has a spectral gap
if λNG(H0)/H has a spectral gap.

On the other hand, since H0 is a normal subgroup of H, we have

L2
0(NG(H0)/H) ∼= L2

0((NG(H0)/H0)/(H/H0))

as NG(H0)-representations. Hence, λNG(H0)/H has a spectral gap if and only
if λN/H has a spectral gap, where N = NG(H0)/H0 and H = H/H0.

The second step applied to the Lie group N/H shows that λN/H has

a spectral gap if λ
N

0
/N

0∩H has a spectral gap. Observe that N0 ∩ H is a

lattice in the connected Lie group N
0
, since H is discrete and H has finite

covolume in NG(H0).
This shows that we can assume that H is a lattice in the connected Lie

group G.
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• Fourth step: we can assume that G is a connected semisimple Lie group
with no compact factors. Indeed, let G = SR be a Levi decomposition of G,
with R the solvable radical of G, and S a semisimple subgroup. Let C
be the maximal compact normal subgroup of S. It is proved in [Wang70,
Theorem B, p. 21] that HCR is closed in G and that HCR/H is compact.
Hence, by the previous proposition, λG/H has a spectral gap if λG/HCR has
a spectral gap.

The quotient G = G/CR is a connected semisimple Lie group with no
compact factors. Moreover, H = HCR/CR is a lattice in G since HCR/CR
∼= H/H ∩CR is discrete and since HCR has finite covolume in G. Observe
that λG/HCR is equivalent to λG/H as a G-representation.

• Fifth step: we can assume that G has trivial centre. Indeed, let Z be the
centre of G. It is known that ZH is discrete (and hence closed) in G (see
[Ragh72, Chapter V, Corollary 5.17]). Hence, ZH/H is finite and λZH/H
has a spectral gap.

By the previous proposition, λG/H has a spectral gap if λG/ZH has a
spectral gap. Now, G = G/Z is a connected semisimple Lie group with no
compact factors and with trivial centre, H = ZH/Z is a lattice in G, and
λG/ZH is equivalent to λG/H .

• Sixth step: by the previous steps, we can assume that H is a lattice
in a connected semisimple Lie group G with no compact factors and with
trivial centre. In this case, the claim was proved in Lemma 3 of [Bekk98].
This completes the proof of Theorem 1.

Proof of Corollary 4. The proof is identical with the proof of Theorems 3
and 4 in [Leuz03]; we give a brief outline of the arguments. Let Λ be the
fundamental group of Ṽ . First, it suffices to prove claims (i) and (ii) for
G/Γ instead of K\G/Γ (see Section 4 in [Leuz03]). So we assume that
Ṽ = G/Λ.

Equip G with a right invariant Riemannian metric and G/Λ with the
induced Riemannian metric. Observe that G/Λ has infinite volume, since
Λ is of infinite index in Γ . Claim (ii) is a consequence of (i), by Cheeger’s
inequality 1

4h(G/Λ)2 ≤ λ0(G/Λ). Recall that the Cheeger constant h(G/Λ)
of G/Λ is the infimum over all numbers A(∂Ω)/V (Ω), where Ω is an open
submanifold of G/Λ with compact closure and smooth boundary ∂Ω, and
where V (Ω) and A(∂Ω) are the Lebesgue measures of Ω and ∂Ω.

To prove claim (i), we proceed exactly as in [Leuz03]. By Corollary 3,
there exists a compact neighbourhood H of the identity in G and a constant
ε > 0 such that

(∗) ε‖ξ‖ ≤ sup
h∈H
‖λG/Λ(h)ξ − ξ‖ for all ξ ∈ L2(G/Λ).
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Let Ω be an open submanifold of G/Λ with compact closure and smooth
boundary ∂Ω. By [Leuz03, Proposition 1], we can find an open subset Ω̃ of
G/Λ with compact closure and smooth boundary such that, for all h ∈ H,

(∗∗) V (U|h|(∂Ω)) ≤ CV (Ω̃)
A(∂Ω)
V (Ω)

,

where the constant C > 0 only depends on H. Here, |h| denotes the distance
dG(e, g) of h to the group unit and, for a subset S of G/Λ, Ur(S) is the
tubular neighbourhood

Ur(S) = {x ∈ G/Λ : dG/Λ(x, S) ≤ r}.

Inequality (∗) applied to the characteristic function χ eΩ of Ω̃ shows that
there exists h ∈ H such that

ε2V (Ω̃) ≤ ‖λG/Λ(h)χ eΩ − χ eΩ‖2 = V (X),

where

X = {x ∈ G/Λ : x ∈ Ω̃, hx /∈ ∂Ω̃} ∪ {x ∈ G/Λ : x /∈ Ω̃, hx ∈ ∂Ω̃}.
One checks that X ⊂ U|h|(∂Ω). It follows from (∗) and (∗∗) that

ε2

C
≤ A(∂Ω)

V (Ω)
.

Hence, 0 < ε2/C ≤ h(G/Λ).
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