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Abstract. Let G be a real Lie group and H a lattice or, more generally, a closed
subgroup of finite covolume in G. We show that the unitary representation Ag,g of G on
L2(G/H) has a spectral gap, that is, the restriction of Ag,y to the orthogonal complement
of the constants in L?(G/H) does not have almost invariant vectors. This answers a ques-
tion of G. Margulis. We give an application to the spectral geometry of locally symmetric
Riemannian spaces of infinite volume.

1. Introduction. Let G be a locally compact group. Recall that a uni-
tary representation (m,H) of G has almost invariant vectors if, for every
compact subset @@ of G and every € > 0, there exists a unit vector £ € H
such that sup,cq [|[7(2)§ — §|| < e. If this holds, we also say that the trivial
representation 1g is weakly contained in w and write 1g < .

Let H be a closed subgroup of G for which there exists a non-zero G-
invariant regular Borel measure p on G/H (see [BHV, Appendix B] for
a criterion of the existence of such a measure). Denote by Ag g the uni-
tary representation of G given by left translations on the Hilbert space
L*(G/H, 1) of square integrable measurable functions on the homogeneous
space G/H. If 11 is finite, we say that H has finite covolume in G. In this case,
the space Clg, of constant functions on G/H is contained in L*(G/H, 1)
and is G-invariant, as also is its orthogonal complement

L3(G/H, i) = {¢ € LAG/H,p): | () dp(a) = 0}.
G/H
In case u is infinite, we set L3(G/H,p) = L*(G/H, ).
Denote by Aog/H the restriction of Ag/py to L§(G/H,u) (in case p is
infinite, )\OG/H = Ag/u)- We say that Mg,y (or L*(G/H, p)) has a spectral
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gap if )\% JH has no almost invariant vectors. In the terminology of [Marg91],
Chapter III, (1.8)], H is called weakly cocompact.

By a Lie group we mean a locally compact group G whose connected
component of the identity G is open in G and is a real Lie group. We prove
the following result which has been conjectured in [Marg91, Chapter III,
Remark (1.12)].

THEOREM 1. Let G be a Lie group and H a closed subgroup with finite
covolume in G. Then the unitary representation A g on L*(G/H) has a
spectral gap.

It is a standard fact that L?(G/H) has a spectral gap when H is co-
compact in G (see [Marg91, Chapter III, Corollary (1.10)]). When G is a
semisimple Lie group, the conclusion of Theorem [I]is an easy consequence of
Lemma 3 in [Bekk98§]. Our proof is by reduction to these two cases. The cru-
cial tool for this reduction is Proposition (1.11) from Chapter IIT in [Marg91]
(see Proposition |5| below). From Theorem [l|and again from that proposition,
we obtain the following corollary.

COROLLARY 2. Let G be a second countable Lie group, H a closed sub-
group with finite covolume in G, and o a unitary representation of H. Let
= Indf] o be the representation of G induced from o. If 1 is not weakly
contained in o, then 1g is not weakly contained in .

Observe that, by continuity of induction, the converse is also true: if
1g < o, then 15 < 7.

From the previous corollary we deduce a spectral gap result for some
subgroups of G with infinite covolume.

Recall that a subgroup H of a topological group G is called co-amenable
in G if there is a G-invariant mean on the space C*(G/H) of bounded con-
tinuous functions on G/H. When G is locally compact, this is equivalent to
lg < Ag/m; this property has been extensively studied by Eymard [Eyma72]
who calls it the amenability of the homogeneous space G/H. Observe that
a normal subgroup H in G is co-amenable in G if and only if the quotient
group G/H is amenable.

COROLLARY 3. Let G be a second countable Lie group and H a closed
subgroup with finite covolume in G. Let L be a closed subgroup of H. Assume
that L is not co-amenable in H. Then \g/r, (which is defined as Ind%1;, in
case G/L has no G-invariant measure) does not weakly contain 1¢.

Corollary (3] is a direct consequence of Corollary [2 since the representa-
tion Ag/r, on L?(G/ L) is equivalent to the induced representation Ind$ A5 /L
Here is a reformulation of the previous corollary. Let G be a Lie group
and H a closed subgroup with finite covolume in G. If a subgroup L of H is
co-amenable in GG, then L is co-amenable in H. Observe that the finiteness
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of the covolume of H is essential, as examples in [MoPo03] and [Pest03]
show. Observe also that the converse (if L is co-amenable in H, then L
is co-amenable in @) is true for any topological group G and any closed
subgroup H which is co-amenable in G (see [EymaT72] p. 16]).

Using methods from [Leuz03] (see also [Broo86]), we obtain the follow-
ing consequence for the spectral geometry of infinite coverings of locally
symmetric Riemannian spaces of finite volume. Recall that a lattice in the
locally compact group G is a discrete subgroup of G with finite covolume.

COROLLARY 4. Let G be a semisimple Lie group with finite centre and
mazximal compact subgroup K and let I' be a torsion-free lattice in G. Let V
be a covering of the locally symmetric space V.= K\G/I'. Assume that the
fundamental group 0f‘7 is mot co-amenable in I

(i) We have h(V) > 0 for the Cheeger constant h(V) of V.
(i) We have \g(V) > 0, where A\o(V) is the bottom of the L?-spectrum
of the Laplace—Beltrami operator on V.

There is in general no uniform bound for (V) or A\o(V) for all cover-
ings V. However, it was shown in [Leuz03] that, when G has Kazhdan’s Prop-
erty (T), such a bound exists for every locally symmetric space V.= K\G/I".
Observe also that if, in the previous corollary, the fundamental group of 1%
is co-amenable in I" and has infinite covolume, then h(V) = A\o(V) = 0, as
shown in [Broo81].

2. Proofs of Theorem [1] and Corollary [4. The following result of
Margulis (Proposition (1.11) in Chapter III of [Marg91]) will be crucial.

PROPOSITION 5 ([Marg91]). Let G be a second countable locally compact
group, H a closed subgroup of G such that G/H has a G-invariant measure,
and o a unitary representation of H. Assume that A\q g has a spectral gap
and that 1y is not weakly contained in o. Then 1g is not weakly contained
in Ind% o.

In order to reduce the proof of Theorem [l to the semisimple case, we
will use the following proposition several times.

PROPOSITION 6. Let G be a separable locally compact group, and Hy
and Hj be closed subgroups of G with Hy C Hs and such that G/Hy and
Hs/Hy have non-zero G-invariant and Ha-invariant regular Borel measures,
respectively. Assume that the Ha-representation A, p, on L?(Hy/Hy) and
the G-representation A g, on L?(G/Hs) both have spectral gaps. Then the
G-representation \g /g, on L?*(G/Hy) has a spectral gap.

Proof. Recall that, for any closed subgroup H of GG, the representation
Ag/m 1s equivalent to the representation Indg 1y induced by the identity
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representation 1y of H. Hence, by transitivity of induction,
G G H G
/\G/H1 = IndHl 1H1 = IndHQ(IndHf 1H1) = IndH2 /\HQ/Hl'
We have to consider three cases:

e First case: Hy has finite covolume in G, that is, H; has finite covolume
in Ho, and Hs has finite covolume in G. Then

0 0 G 0
MGy, = Ac/m, © I, Ay, -
By assumption, )\9{2 i, and )\% /Hs do not weakly contain 1p, and 1g, re-
spectively. It follows from Proposition |5|that Indg,2 )\[}12 i, does not weakly

contain 1. Hence, )\% i does not weakly contain 1.

e Second case: Hq has finite covolume in Ho, and H» has infinite covolume
in G. Then

G
A/, = A/, ® Indf, Ay, JH, -
By assumption, )‘(I]iz i and Ag/p, do not weakly contain 1y, and 1g. As
above, using Proposition [, we see that Ag g, does not weakly contain 1¢.

e Third case: Hy has infinite covolume in Hy. By assumption, Ay, m,
does not weakly contain 1z,. By Propositionagain, it follows that g/, =

Indg2 Am, /i, does not weakly contain 1. =

For the reduction of the proof of Theorem [I]to the case where G is second
countable, we will need the following lemma.

LEMMA 7. Let G be a locally compact group and H a closed subgroup
with finite covolume. The homogeneous space G/H is o-compact.

Proof. Let u be the G-invariant regular probability measure on the Borel
subsets of G/H. Choose an increasing sequence of compact subsets K, of
G/H with lim, u(K,) = 1. The set K = |J,, K, has p-measure 1 and is
therefore dense in G/H. Let U be a compact neighbourhood of e in G. Then
UK =G/H and UK = |J,, UK, is o-compact. =

Proof of Theorem[1. Through several steps the proof will be reduced to
the case where H is a lattice in GG, and G is a connected semisimple Lie
group with trivial centre and without compact factors.

o First step: we can assume that G is o-compact and hence second-
countable. Indeed, let p : G — G/H be the canonical projection. Since
every compact subset of G/H is the image under p of some compact subset
of G (see [BHV] Lemma B.1.1]), it follows from Lemma [7] that there exists
a o-compact subset K of G such that p(K) = G/H. Let L be the subgroup
of G generated by K UU for a neighbourhood U of e in G. Then L is a
o-compact open subgroup of G. We show that L N H has a finite covolume
in L, and that A,y has a spectral gap if A, ng has a spectral gap.
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Since LH is open in G, the homogeneous space L/LNH can be identified
as an L-space with LH/H. Therefore LN H has finite covolume in L. On the
other hand, the restriction of A, to L is equivalent to the L-representation
AL/nms since LH/H = p(L) = G/H. Hence, if Af 1~y has a spectral gap,
then Ag,p has a spectral gap.

e Second step: we can assume that G is connected. Indeed, let G° be
the connected component of the identity of G. We show that G® N H has a
finite covolume in G, and that \g /1 has a spectral gap if Ago/gong has a
spectral gap.

The subgroup G°H is open in G and has finite covolume in G as it con-
tains H. It follows that G°H has finite index in G since G/GH is discrete.
Hence Ag/gog has a spectral gap.

On the other hand, since G°H is closed in G, the homogeneous space
GY/GN H can be identified as a G°-space with GYH/H. Therefore G° N H
has finite covolume in G°. The restriction of Ago H/H to GY is equivalent to
the GY-representation \go JGONH -

Suppose now that Ago,gony has a spectral gap. Then the GO H-represent-
ation Agoy/y has a spectral gap, since L§(G'H/H) = L§(G°/G° N H) as
Go-representations. An application of Proposition [6| with H; = H and Hy =
GH shows that \g /i has a spectral gap. Hence, we can assume that G is
connected.

e Third step: we can assume that H is a lattice in G. Indeed, let H°
be the connected component of the identity of H and let Ng(H") be the
normalizer of H° in G. Observe that Ng(H°) contains H. By [Wang76,
Theorem 3.8], Ng(H?) is cocompact in G. Hence, AG/Ng(H0) has a spectral
gap. It follows from the previous proposition that Ag,y has a spectral gap
if Ay (moy i has a spectral gap.

On the other hand, since H is a normal subgroup of H, we have
L§(Ng(H®)/H) = L§((Ng(H®)/H®)/(H/H"))

as Ng(H")-representations. Hence, A Ne(HY)/H has a spectral gap if and only
if Ay g7 has a spectral gap, where N = Ng(H®)/H® and H = H/HP.
The second step applied to the Lie group N/H shows that AN JH has

a spectral gap if A has a spectral gap. Observe that N NnHis a

N /N°nH
lattice in the connected Lie group NO, since H is discrete and H has finite
covolume in Ng(H?).

This shows that we can assume that H is a lattice in the connected Lie
group G.
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e Fourth step: we can assume that G is a connected semisimple Lie group
with no compact factors. Indeed, let G = SR be a Levi decomposition of G,
with R the solvable radical of GG, and S a semisimple subgroup. Let C
be the maximal compact normal subgroup of S. It is proved in [Wang70]
Theorem B, p. 21] that HCR is closed in G and that HCR/H is compact.
Hence, by the previous proposition, A,y has a spectral gap if A gcr has
a spectral gap.

The quotient G = G/CR is a connected semisimple Lie group with no
compact factors. Moreover, H = HCR/CR is a lattice in G since HCR/CR
= H/H N CR is discrete and since HCR has finite covolume in G. Observe
that Aq/por is equivalent to Az /I As a G-representation.

o Fifth step: we can assume that G has trivial centre. Indeed, let Z be the
centre of G. It is known that ZH is discrete (and hence closed) in G (see
[Ragh72, Chapter V, Corollary 5.17]). Hence, ZH/H is finite and Azp /g
has a spectral gap.

By the previous proposition, Ag,y has a spectral gap if A\g/zy has a
spectral gap. Now, G = G/Z is a connected semisimple Lie group with no
compact factors and with trivial centre, H = ZH/Z is a lattice in G, and
AG/ZH is equivalent to Aé/ﬁ

o Sizth step: by the previous steps, we can assume that H is a lattice
in a connected semisimple Lie group G with no compact factors and with
trivial centre. In this case, the claim was proved in Lemma 3 of [Bekk98].
This completes the proof of Theorem [1} =

Proof of Corollary[j The proof is identical with the proof of Theorems 3
and 4 in [Leuz03]; we give a brief outline of the arguments. Let A be the
fundamental group of V. First, it suffices to prove claims (i) and (ii) for
G/I' instead of K\G/I" (see Section 4 in [Leuz03]). So we assume that
V =G/A.

Equip G with a right invariant Riemannian metric and G/A with the
induced Riemannian metric. Observe that G/A has infinite volume, since
A is of infinite index in I'. Claim (ii) is a consequence of (i), by Cheeger’s
inequality Th(G/A)? < A\g(G/A). Recall that the Cheeger constant h(G/A)
of G/A is the infimum over all numbers A(0£2)/V (§2), where {2 is an open
submanifold of G/A with compact closure and smooth boundary 942, and
where V(£2) and A(9f2) are the Lebesgue measures of {2 and 912.

To prove claim (i), we proceed exactly as in [Leuz03]. By Corollary
there exists a compact neighbourhood H of the identity in G and a constant
€ > 0 such that

(%) ell¢l < sup Ag/a(h)é — €| for all £ € L*(G/A).
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Let {2 be an open submanifold of G/A with compact closure and smooth
boundary 92. By [Leuz03l, Proposition 1], we can find an open subset {2 of
G /A with compact closure and smooth boundary such that, for all h € H,

(+5) VU (02) < CVIR) Y

where the constant C' > 0 only depends on H. Here, |h| denotes the distance
dg(e,g) of h to the group unit and, for a subset S of G/A, U,(S) is the
tubular neighbourhood

Ur(S)={r € G/A:dg/a(z,S) < r}.

Inequality (*) applied to the characteristic function x5 of 2 shows that
there exists h € H such that

V(D) < aath)xg — xgl? = VIX),
where
X={zeG/A:zc 2, haddyU{zcG/A:x¢ 2, hx € 902}.
Onme checks that X C U}, (992). It follows from (x) and () that
A(012)
V()

<

Ql %

Hence, 0 < £2/C < h(G/A). =
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