VOL. 118

2010

NO. 1

A SPECTRAL GAP PROPERTY FOR SUBGROUPS OF FINITE COVOLUME IN LIE GROUPS

ΒY

BACHIR BEKKA and YVES CORNULIER (Rennes)

Dedicated to the memory of Andrzej Hulanicki

Abstract. Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation $\lambda_{G/H}$ of G on $L^2(G/H)$ has a spectral gap, that is, the restriction of $\lambda_{G/H}$ to the orthogonal complement of the constants in $L^2(G/H)$ does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

1. Introduction. Let G be a locally compact group. Recall that a unitary representation (π, \mathcal{H}) of G has almost invariant vectors if, for every compact subset Q of G and every $\varepsilon > 0$, there exists a unit vector $\xi \in \mathcal{H}$ such that $\sup_{x \in Q} ||\pi(x)\xi - \xi|| < \varepsilon$. If this holds, we also say that the trivial representation 1_G is weakly contained in π and write $1_G \prec \pi$.

Let H be a closed subgroup of G for which there exists a non-zero Ginvariant regular Borel measure μ on G/H (see [BHV, Appendix B] for a criterion of the existence of such a measure). Denote by $\lambda_{G/H}$ the unitary representation of G given by left translations on the Hilbert space $L^2(G/H, \mu)$ of square integrable measurable functions on the homogeneous space G/H. If μ is finite, we say that H has finite covolume in G. In this case, the space $\mathbb{C}1_{G/H}$ of constant functions on G/H is contained in $L^2(G/H, \mu)$ and is G-invariant, as also is its orthogonal complement

$$L_0^2(G/H,\mu) = \Big\{ \xi \in L^2(G/H,\mu) : \int_{G/H} \xi(x) \, d\mu(x) = 0 \Big\}.$$

In case μ is infinite, we set $L_0^2(G/H, \mu) = L^2(G/H, \mu)$.

Denote by $\lambda_{G/H}^0$ the restriction of $\lambda_{G/H}$ to $L_0^2(G/H,\mu)$ (in case μ is infinite, $\lambda_{G/H}^0 = \lambda_{G/H}$). We say that $\lambda_{G/H}$ (or $L^2(G/H,\mu)$) has a spectral

²⁰¹⁰ Mathematics Subject Classification: 22E40, 37A30, 43A85.

Key words and phrases: lattices in Lie groups, spectral gap property, spectral geometry of locally symmetric Riemannian manifolds.

gap if $\lambda_{G/H}^0$ has no almost invariant vectors. In the terminology of [Marg91, Chapter III, (1.8)], H is called *weakly cocompact*.

By a *Lie group* we mean a locally compact group G whose connected component of the identity G^0 is open in G and is a real Lie group. We prove the following result which has been conjectured in [Marg91, Chapter III, Remark (1.12)].

THEOREM 1. Let G be a Lie group and H a closed subgroup with finite covolume in G. Then the unitary representation $\lambda_{G/H}$ on $L^2(G/H)$ has a spectral gap.

It is a standard fact that $L^2(G/H)$ has a spectral gap when H is cocompact in G (see [Marg91, Chapter III, Corollary (1.10)]). When G is a semisimple Lie group, the conclusion of Theorem 1 is an easy consequence of Lemma 3 in [Bekk98]. Our proof is by reduction to these two cases. The crucial tool for this reduction is Proposition (1.11) from Chapter III in [Marg91] (see Proposition 5 below). From Theorem 1 and again from that proposition, we obtain the following corollary.

COROLLARY 2. Let G be a second countable Lie group, H a closed subgroup with finite covolume in G, and σ a unitary representation of H. Let $\pi = \operatorname{Ind}_{H}^{G} \sigma$ be the representation of G induced from σ . If 1_{H} is not weakly contained in σ , then 1_{G} is not weakly contained in π .

Observe that, by continuity of induction, the converse is also true: if $1_H \prec \sigma$, then $1_G \prec \pi$.

From the previous corollary we deduce a spectral gap result for some subgroups of G with infinite covolume.

Recall that a subgroup H of a topological group G is called *co-amenable* in G if there is a G-invariant mean on the space $C^b(G/H)$ of bounded continuous functions on G/H. When G is locally compact, this is equivalent to $1_G \prec \lambda_{G/H}$; this property has been extensively studied by Eymard [Eyma72] who calls it the amenability of the homogeneous space G/H. Observe that a normal subgroup H in G is co-amenable in G if and only if the quotient group G/H is amenable.

COROLLARY 3. Let G be a second countable Lie group and H a closed subgroup with finite covolume in G. Let L be a closed subgroup of H. Assume that L is not co-amenable in H. Then $\lambda_{G/L}$ (which is defined as $\operatorname{Ind}_{L}^{G} 1_{L}$ in case G/L has no G-invariant measure) does not weakly contain 1_{G} .

Corollary 3 is a direct consequence of Corollary 2, since the representation $\lambda_{G/L}$ on $L^2(G/L)$ is equivalent to the induced representation $\operatorname{Ind}_H^G \lambda_{H/L}$.

Here is a reformulation of the previous corollary. Let G be a Lie group and H a closed subgroup with finite covolume in G. If a subgroup L of H is co-amenable in G, then L is co-amenable in H. Observe that the finiteness of the covolume of H is essential, as examples in [MoPo03] and [Pest03] show. Observe also that the converse (if L is co-amenable in H, then L is co-amenable in G) is true for any topological group G and any closed subgroup H which is co-amenable in G (see [Eyma72, p. 16]).

Using methods from [Leuz03] (see also [Broo86]), we obtain the following consequence for the spectral geometry of infinite coverings of locally symmetric Riemannian spaces of finite volume. Recall that a *lattice* in the locally compact group G is a discrete subgroup of G with finite covolume.

COROLLARY 4. Let G be a semisimple Lie group with finite centre and maximal compact subgroup K and let Γ be a torsion-free lattice in G. Let \widetilde{V} be a covering of the locally symmetric space $V = K \setminus G/\Gamma$. Assume that the fundamental group of \widetilde{V} is not co-amenable in Γ .

- (i) We have $h(\widetilde{V}) > 0$ for the Cheeger constant $h(\widetilde{V})$ of \widetilde{V} .
- (ii) We have $\lambda_0(\widetilde{V}) > 0$, where $\lambda_0(\widetilde{V})$ is the bottom of the L²-spectrum of the Laplace-Beltrami operator on \widetilde{V} .

There is in general no uniform bound for $h(\tilde{V})$ or $\lambda_0(\tilde{V})$ for all coverings \tilde{V} . However, it was shown in [Leuz03] that, when G has Kazhdan's Property (T), such a bound exists for *every* locally symmetric space $V = K \setminus G/\Gamma$. Observe also that if, in the previous corollary, the fundamental group of \tilde{V} is co-amenable in Γ and has infinite covolume, then $h(\tilde{V}) = \lambda_0(\tilde{V}) = 0$, as shown in [Broo81].

2. Proofs of Theorem 1 and Corollary 4. The following result of Margulis (Proposition (1.11) in Chapter III of [Marg91]) will be crucial.

PROPOSITION 5 ([Marg91]). Let G be a second countable locally compact group, H a closed subgroup of G such that G/H has a G-invariant measure, and σ a unitary representation of H. Assume that $\lambda_{G/H}$ has a spectral gap and that 1_H is not weakly contained in σ . Then 1_G is not weakly contained in $\operatorname{Ind}_H^G \sigma$.

In order to reduce the proof of Theorem 1 to the semisimple case, we will use the following proposition several times.

PROPOSITION 6. Let G be a separable locally compact group, and H_1 and H_2 be closed subgroups of G with $H_1 \subset H_2$ and such that G/H_2 and H_2/H_1 have non-zero G-invariant and H_2 -invariant regular Borel measures, respectively. Assume that the H_2 -representation λ_{H_2/H_1} on $L^2(H_2/H_1)$ and the G-representation λ_{G/H_2} on $L^2(G/H_2)$ both have spectral gaps. Then the G-representation λ_{G/H_1} on $L^2(G/H_1)$ has a spectral gap.

Proof. Recall that, for any closed subgroup H of G, the representation $\lambda_{G/H}$ is equivalent to the representation $\operatorname{Ind}_{H}^{G} 1_{H}$ induced by the identity

representation 1_H of H. Hence, by transitivity of induction,

$$\lambda_{G/H_1} = \operatorname{Ind}_{H_1}^G 1_{H_1} = \operatorname{Ind}_{H_2}^G (\operatorname{Ind}_{H_1}^{H_2} 1_{H_1}) = \operatorname{Ind}_{H_2}^G \lambda_{H_2/H_1}.$$

We have to consider three cases:

• First case: H_1 has finite covolume in G, that is, H_1 has finite covolume in H_2 , and H_2 has finite covolume in G. Then

$$\lambda^0_{G/H_1} = \lambda^0_{G/H_2} \oplus \operatorname{Ind}_{H_2}^G \lambda^0_{H_2/H_1}$$

By assumption, λ_{H_2/H_1}^0 and λ_{G/H_2}^0 do not weakly contain 1_{H_2} and 1_G , respectively. It follows from Proposition 5 that $\operatorname{Ind}_{H_2}^G \lambda_{H_2/H_1}^0$ does not weakly contain 1_G . Hence, λ_{G/H_1}^0 does not weakly contain 1_G .

• Second case: H_1 has finite covolume in H_2 , and H_2 has infinite covolume in G. Then

$$\lambda_{G/H_1} = \lambda_{G/H_2} \oplus \operatorname{Ind}_{H_2}^G \lambda_{H_2/H_1}^0.$$

By assumption, λ_{H_2/H_1}^0 and λ_{G/H_2} do not weakly contain 1_{H_2} and 1_G . As above, using Proposition 5, we see that λ_{G/H_1} does not weakly contain 1_G .

• Third case: H_1 has infinite covolume in H_2 . By assumption, λ_{H_2/H_1} does not weakly contain 1_{H_2} . By Proposition 5 again, it follows that $\lambda_{G/H_1} = \text{Ind}_{H_2}^G \lambda_{H_2/H_1}$ does not weakly contain 1_G .

For the reduction of the proof of Theorem 1 to the case where G is second countable, we will need the following lemma.

LEMMA 7. Let G be a locally compact group and H a closed subgroup with finite covolume. The homogeneous space G/H is σ -compact.

Proof. Let μ be the *G*-invariant regular probability measure on the Borel subsets of G/H. Choose an increasing sequence of compact subsets K_n of G/H with $\lim_n \mu(K_n) = 1$. The set $K = \bigcup_n K_n$ has μ -measure 1 and is therefore dense in G/H. Let U be a compact neighbourhood of e in G. Then UK = G/H and $UK = \bigcup_n UK_n$ is σ -compact.

Proof of Theorem 1. Through several steps the proof will be reduced to the case where H is a lattice in G, and G is a connected semisimple Lie group with trivial centre and without compact factors.

• First step: we can assume that G is σ -compact and hence secondcountable. Indeed, let $p : G \to G/H$ be the canonical projection. Since every compact subset of G/H is the image under p of some compact subset of G (see [BHV, Lemma B.1.1]), it follows from Lemma 7 that there exists a σ -compact subset K of G such that p(K) = G/H. Let L be the subgroup of G generated by $K \cup U$ for a neighbourhood U of e in G. Then L is a σ -compact open subgroup of G. We show that $L \cap H$ has a finite covolume in L, and that $\lambda_{G/H}$ has a spectral gap if $\lambda_{L/L \cap H}$ has a spectral gap. Since LH is open in G, the homogeneous space $L/L \cap H$ can be identified as an L-space with LH/H. Therefore $L \cap H$ has finite covolume in L. On the other hand, the restriction of $\lambda_{G/H}$ to L is equivalent to the L-representation $\lambda_{L/L\cap H}$, since LH/H = p(L) = G/H. Hence, if $\lambda_{L/L\cap H}$ has a spectral gap, then $\lambda_{G/H}$ has a spectral gap.

• Second step: we can assume that G is connected. Indeed, let G^0 be the connected component of the identity of G. We show that $G^0 \cap H$ has a finite covolume in G^0 , and that $\lambda_{G/H}$ has a spectral gap if $\lambda_{G^0/G^0 \cap H}$ has a spectral gap.

The subgroup G^0H is open in G and has finite covolume in G as it contains H. It follows that G^0H has finite index in G since G/G^0H is discrete. Hence λ_{G/G^0H} has a spectral gap.

On the other hand, since G^0H is closed in G, the homogeneous space $G^0/G^0 \cap H$ can be identified as a G^0 -space with G^0H/H . Therefore $G^0 \cap H$ has finite covolume in G^0 . The restriction of $\lambda_{G^0H/H}$ to G^0 is equivalent to the G^0 -representation $\lambda_{G^0/G^0 \cap H}$.

Suppose now that $\lambda_{G^0/G^0\cap H}$ has a spectral gap. Then the G^0H -representation $\lambda_{G^0H/H}$ has a spectral gap, since $L^2_0(G^0H/H) \cong L^2_0(G^0/G^0\cap H)$ as G_0 -representations. An application of Proposition 6 with $H_1 = H$ and $H_2 = G^0H$ shows that $\lambda_{G/H}$ has a spectral gap. Hence, we can assume that G is connected.

• Third step: we can assume that H is a lattice in G. Indeed, let H^0 be the connected component of the identity of H and let $N_G(H^0)$ be the normalizer of H^0 in G. Observe that $N_G(H^0)$ contains H. By [Wang76, Theorem 3.8], $N_G(H^0)$ is cocompact in G. Hence, $\lambda_{G/N_G(H^0)}$ has a spectral gap. It follows from the previous proposition that $\lambda_{G/H}$ has a spectral gap if $\lambda_{N_G(H^0)/H}$ has a spectral gap.

On the other hand, since H^0 is a normal subgroup of H, we have

$$L_0^2(N_G(H^0)/H) \cong L_0^2((N_G(H^0)/H^0)/(H/H^0))$$

as $N_G(H^0)$ -representations. Hence, $\lambda_{N_G(H^0)/H}$ has a spectral gap if and only if $\lambda_{\overline{N}/\overline{H}}$ has a spectral gap, where $\overline{N} = N_G(H^0)/H^0$ and $\overline{H} = H/H^0$.

The second step applied to the Lie group $\overline{N}/\overline{H}$ shows that $\lambda_{\overline{N}/\overline{H}}$ has a spectral gap if $\lambda_{\overline{N}^0/\overline{N}^0\cap\overline{H}}$ has a spectral gap. Observe that $\overline{N}^0\cap\overline{H}$ is a lattice in the connected Lie group \overline{N}^0 , since \overline{H} is discrete and H has finite covolume in $N_G(H^0)$.

This shows that we can assume that H is a lattice in the connected Lie group G.

• Fourth step: we can assume that G is a connected semisimple Lie group with no compact factors. Indeed, let G = SR be a Levi decomposition of G, with R the solvable radical of G, and S a semisimple subgroup. Let C be the maximal compact normal subgroup of S. It is proved in [Wang70, Theorem B, p. 21] that HCR is closed in G and that HCR/H is compact. Hence, by the previous proposition, $\lambda_{G/H}$ has a spectral gap if $\lambda_{G/HCR}$ has a spectral gap.

The quotient $\overline{G} = G/CR$ is a connected semisimple Lie group with no compact factors. Moreover, $\overline{H} = HCR/CR$ is a lattice in \overline{G} since $HCR/CR \cong H/H \cap CR$ is discrete and since HCR has finite covolume in G. Observe that $\lambda_{G/HCR}$ is equivalent to $\lambda_{\overline{G}/\overline{H}}$ as a G-representation.

• *Fifth step:* we can assume that G has trivial centre. Indeed, let Z be the centre of G. It is known that ZH is discrete (and hence closed) in G (see [Ragh72, Chapter V, Corollary 5.17]). Hence, ZH/H is finite and $\lambda_{ZH/H}$ has a spectral gap.

By the previous proposition, $\lambda_{G/H}$ has a spectral gap if $\lambda_{G/ZH}$ has a spectral gap. Now, $\overline{G} = G/Z$ is a connected semisimple Lie group with no compact factors and with trivial centre, $\overline{H} = ZH/Z$ is a lattice in \overline{G} , and $\lambda_{G/ZH}$ is equivalent to $\lambda_{\overline{G}/\overline{H}}$.

• Sixth step: by the previous steps, we can assume that H is a lattice in a connected semisimple Lie group G with no compact factors and with trivial centre. In this case, the claim was proved in Lemma 3 of [Bekk98]. This completes the proof of Theorem 1.

Proof of Corollary 4. The proof is identical with the proof of Theorems 3 and 4 in [Leuz03]; we give a brief outline of the arguments. Let Λ be the fundamental group of \tilde{V} . First, it suffices to prove claims (i) and (ii) for G/Γ instead of $K\backslash G/\Gamma$ (see Section 4 in [Leuz03]). So we assume that $\tilde{V} = G/\Lambda$.

Equip G with a right invariant Riemannian metric and G/Λ with the induced Riemannian metric. Observe that G/Λ has infinite volume, since Λ is of infinite index in Γ . Claim (ii) is a consequence of (i), by Cheeger's inequality $\frac{1}{4}h(G/\Lambda)^2 \leq \lambda_0(G/\Lambda)$. Recall that the *Cheeger constant* $h(G/\Lambda)$ of G/Λ is the infimum over all numbers $A(\partial \Omega)/V(\Omega)$, where Ω is an open submanifold of G/Λ with compact closure and smooth boundary $\partial\Omega$, and where $V(\Omega)$ and $A(\partial\Omega)$ are the Lebesgue measures of Ω and $\partial\Omega$.

To prove claim (i), we proceed exactly as in [Leuz03]. By Corollary 3, there exists a compact neighbourhood H of the identity in G and a constant $\varepsilon > 0$ such that

(*)
$$\varepsilon \|\xi\| \le \sup_{h \in H} \|\lambda_{G/\Lambda}(h)\xi - \xi\|$$
 for all $\xi \in L^2(G/\Lambda)$.

Let Ω be an open submanifold of G/Λ with compact closure and smooth boundary $\partial \Omega$. By [Leuz03, Proposition 1], we can find an open subset $\widetilde{\Omega}$ of G/Λ with compact closure and smooth boundary such that, for all $h \in H$,

(**)
$$V(U_{|h|}(\partial \Omega)) \le CV(\widetilde{\Omega}) \frac{A(\partial \Omega)}{V(\Omega)}.$$

where the constant C > 0 only depends on H. Here, |h| denotes the distance $d_G(e,g)$ of h to the group unit and, for a subset S of G/Λ , $U_r(S)$ is the tubular neighbourhood

$$U_r(S) = \{ x \in G/\Lambda : d_{G/\Lambda}(x, S) \le r \}.$$

Inequality (*) applied to the characteristic function $\chi_{\widetilde{\Omega}}$ of $\widetilde{\Omega}$ shows that there exists $h \in H$ such that

$$\varepsilon^2 V(\widetilde{\Omega}) \le \|\lambda_{G/\Lambda}(h)\chi_{\widetilde{\Omega}} - \chi_{\widetilde{\Omega}}\|^2 = V(X),$$

where

$$X = \{ x \in G/\Lambda : x \in \widetilde{\Omega}, \, hx \notin \partial \widetilde{\Omega} \} \cup \{ x \in G/\Lambda : x \notin \widetilde{\Omega}, \, hx \in \partial \widetilde{\Omega} \}.$$

One checks that $X \subset U_{|h|}(\partial \Omega)$. It follows from (*) and (**) that

$$\frac{\varepsilon^2}{C} \le \frac{A(\partial \Omega)}{V(\Omega)}.$$

Hence, $0 < \varepsilon^2/C \le h(G/\Lambda)$.

REFERENCES

- [Bekk98] B. Bekka, On uniqueness of invariant means, Proc. Amer. Math. Soc. 126 (1998), 507–514.
- [BHV] B. Bekka, P. de la Harpe and A. Valette, *Kazhdan's Property (T)*, Cambridge Univ. Press, 2008.
- [Broo81] R. Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), 581–598.
- [Broo86] —, The spectral geometry of a tower of coverings, J. Differential Geom. 23 (1986), 97–107.
- [Eyma72] P. Eymard, Moyennes invariantes et représentations unitaires, Lecture Notes in Math. 300, Springer, 1972.
- [Leuz03] E. Leuzinger, Kazhdan's property (T), L²-spectrum and isoperimetric inequalities for locally symmetric spaces, Comment. Math. Helv. 78 (2003), 116–133.
- [Marg91] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, 1991.
- [MoPo03] N. Monod and S. Popa, On co-amenability for groups and von Neumann algebras, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 82–87.
- [Pest03] V. Pestov, On some questions of Eymard and Bekka concerning amenability of homogeneous spaces and induced representations, ibid. 25 (2003), 76–81.
- [Ragh72] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972.
- [Wang70] H. C. Wang, On the the deformation of a lattice in a Lie group, Amer. J. Math. 85 (1963), 189–212.

[Wang76] S. P. Wang, Homogeneous spaces with finite invariant measure, ibid. 98 (1976), 311–324.

Bachir Bekka, Yves Cornulier IRMAR, UMR 6625 du CNRS Université de Rennes 1 Campus Beaulieu F-35042 Rennes Cedex, France E-mail: bachir.bekka@univ-rennes1.fr yves.decornulier@univ-rennes1.fr

Received 27 March 2009

(5198)

182