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ESTIMATES FOR THE POISSON KERNEL ON
HIGHER RANK NA GROUPS
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Abstract. We obtain an estimate for the Poisson kernel for the class of second order
left-invariant differential operators on higher rank NA groups.

The authors would like to dedicate this paper to the memory of Andrzej
Hulanicki. As is clear from the bibliography, this work owes much to the
influence of him and his co-workers. Indeed, this whole area of exploration
was initiated by this group. The current work could not have been done
without the foundation they laid.

However, our debt goes far beyond this. The second author was a stu-
dent of Andrzej’s student, Ewa Damek. The first author came to Poland
for the first time in 1976 at Andrzej’s invitation. Since then he has visited
Poland regularly, at first to attend conferences, and later to do mathemat-
ics both with Andrzej and others. This collaboration has been one of the
most rewarding experiences of his career. In the process Andrzej and his
wife Barbara became good friends of his. He spent many memorable hours
with them, both in Poland and elsewhere, sharing a good meal (cooked by
Barbara) and discussing mathematics, life, etc. over a glass of good wine or
vodka. Andrzej will be dearly missed.

1. Statement of the result. Let S be a semidirect product S = NoA
where N is a connected and simply connected nilpotent Lie group and A is
isomorphic with Rk. For g ∈ S we let n(g) = n and a(g) = a denote the
components of g in this product so that g = (n, a).

We assume that there is a basis X1, . . . , Xm for n that diagonalizes the
A-action. Let ξ1, . . . , ξm ∈ a∗ = Rk be the corresponding roots, i.e., for every
H ∈ a, [H,Xj ] = ξj(H)Xj , j = 1, . . . ,m. As in [3], we assume that there is
an element H ∈ Rk such that

ξj(H) > 0 for 1 ≤ j ≤ m.
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Let, for α = (α1, . . . , αk) ∈ Rk and real dj ’s,

(1.1) Lα =
r∑
j=1

(e2ξj(a)X2
j + dje

ξj(a)Xj) +∆α,

where

∆α =
k∑
i=1

(∂2
ai − 2αi∂ai),

and X1, . . . , Xr satisfy the Hörmander condition, i.e., they generate the Lie
algebra n of N.

Define

(1.2) γ(α) = 2 min
1≤j≤r

ξj(α)
ξ2j

and ρ0 =
m∑
j=1

ξj ,

where for the vector x ∈ Rk we write

x2 = x · x =
k∑
i=1

x2
i .

Let
χ(g) = det(Ad(g)) = eρ0·a.

Let dx be left-invariant Haar measure on S. We have�

S

f(xg) dx = χ(g)
�

S

f(x) dx.

We set

(1.3)
A− = {a ∈ Rk : ξj(a) ≤ 0 for 1 ≤ j ≤ r},
A− = Int(A−), A+ = −A−.

Remark 1.1. It is clear that we could have used all of the roots in
defining A− since from the Hörmander condition the span over N of ξj ,
1 ≤ j ≤ r, contains all of the roots.

If α ∈ A+ then there exists a Poisson kernel ν for Lα [3]. That is, there
is a C∞ function ν on N such that every bounded Lα-harmonic function F
on S may be written as a Poisson integral against a bounded function f on
S/A = N,

F (g) =
�

S/A

f(gx)ν(x) dx =
�

N

f(x)ν̌a(x−1n) dx,

where
ν̌a(x) = ν(a−1x−1a)χ(a)−1.

Conversely, the Poisson integral of any f ∈ L∞(N) is a bounded Lα-harmonic
function.
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For t ∈ R+ and ρ ∈ A+, let

δρt = Ad((log t)ρ)|N .
Then t 7→ δρt is a one-parameter group of automorphisms of N for which the
corresponding eigenvalues on n are all positive. It is known [9] that then N
has a δρt -homogeneous norm: a non-negative continuous function | · |ρ on N
such that |n|ρ = 0 if and only if n = e and

|δρt n|ρ = t|n|ρ.
The main result is the following.

Theorem 1.2. Let α ∈ A+. Assume that the rank (dimension of A) is
k > 1. Let V + ⊂ A+ be an open convex cone with vertex at 0 such that
V + \ {0} ⊂ A+. Then there exists a constant c > 0, depending only on the
ξi’s and V +, such that for all ρ ∈ V + there exists Cρ such that for all x ∈ N ,

(1.4) ν(x) ≤ Cρ(1 + |x|ρ)−cρ0(ρ)γ(α).

Remark 1.3. The constant c above is one-fourth of the constant from
Corollary 2.2.

We say that the operator Lα has independent coefficients if the linear
forms ξj ’s depend on disjoint sets of variables. In this situation we also say
that Lα is independent. For example, the following operator is independent:

e2(c1a1+c2a2)X2
1 + e2c3a3X2

2 +
3∑
i=1

(∂2
ai − 2αi∂ai).

The proof of (1.4) can be simplified for independent operators without the
first order term on N. We present the details of the proof for such operators
in Sect. 8.

The outline of the rest of the paper is as follows. In Sect. 2 we clarify
the dependence of the constant c from Theorem 1.2 on the cone V + and
ξj ’s (Corollary 2.2). We also apply Theorem 1.2 to the Laplace–Beltrami
operator for the product of two half-planes. In Sect. 3 we split the diffusion
on S generated by Lα into a skew product of diffusions on A and N, and
we state the estimate for the “horizontal component” of the diffusion on N
(Theorem 3.2, which we prove in Appendix A). In Sect. 4 we recall the
construction of the Poisson kernel ν on N and its extension νa to S. In
Sect. 5 we study some exponential functionals of Brownian motion. In Sect. 6
we prove the main estimate for νa. Combining this with the material from
previous sections we get the required estimates for the Poisson kernel in
Sect. 7 and 8.

2. The cones V + and V −. Let A−, A− and Int(A−) be as in (1.3) and
set A+ = −A−. Let V ⊂ A+ be an open convex cone with vertex at 0 such
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that V̄ \ {0} ⊂ A+. The open dual cone V ∗ of V is defined by

V ∗ = {ξ : ξ(a) > 0 for all a ∈ V̄ \ {0}}.
Proposition 2.1. There exists ξ0 ∈ V ∗ such that for 1 ≤ j ≤ r,

(ξj − ξ0)(a) > 0 for all a ∈ V̄ \ {0}.
Proof. We take an arbitrary ξ ∈ V ∗. Then

lim
c→0

(ξj − cξ) = ξj .

But ξj ∈ V ∗ and V ∗ is open, hence there exists c0 such that for all c < c0,
and all 1 ≤ j ≤ r, we have ξj − cξ ∈ V ∗. Therefore cξ with c < c0 can be
taken as ξ0.

Corollary 2.2. There exist c > 0 such that cρ0, where ρ0 =
∑m

j=1 ξj ,
can be taken as ξ0 in Proposition 2.1.

We define
V − = −V

and, for obvious reasons, we often denote V by V +, i.e.,

V + = V.

Example 1. Consider the operator L of the form (1.1) with ξ1 = (1, 0),
ξ2 = (0, 1) and α = (1/2, 1/2), i.e.,

L = e2a1∂2
x + e2a2∂2

y + ∂2
a1
− ∂a1 + ∂2

a2
− ∂a2 .

This is the Laplace–Beltrami operator for the product of two half-planes
where each half-plane is identified with R2 using the map of R2 onto H+

defined by (x, t) 7→ x+ iet. The Poisson kernel for this operator is

ν(x, y) =
1

(1 + x2)(1 + y2)
.

In fact, to check this we note that in the multiplicative notation

L = a2∂2
x + b2∂2

y + (a∂a)2 − a∂a + (b∂b)2 − b∂b
= a2∂2

x + b2∂2
y + a2∂2

a + b2∂2
b .

Now it is enough to check that LF = 0, where

F (x, y, a, b) = a−1b−1ν(a−1x, b−1y).

Clearly, A+ = R+×R+. For a fixed ε > 0 let V + ⊂ A+ be the open cone
whose boundary is the union of the half-lines

a2 = (2− ε)a1 and a2 = (2 + ε)a1, a1 ≥ 0.

In other words,

V + = {(a1, a2) | a1 > 0, a2 = ba1, 2− ε < b < 2 + ε}.



POISSON KERNEL ON HIGHER RANK NA GROUPS 263

To find the constant c from Corollary 2.2, we note that for all a ∈ V̄ \{0},

(ξj − cρ0) · a > 0 for j = 1, 2

is equivalent to

(1− c,−c) · a > 0 and (−c, 1− c) · a > 0.

Using the relation a2 = ba1 with 2− ε < b < 2 + ε we get

c <
1

b+ 1
and c <

b

b+ 1
.

Therefore, we need to have

c <
1

3 + ε
and c <

2− ε
3 + ε

,

and consequently,

c <
1

3 + ε
.

We can take
ρ = (1, 2) ∈ V.

The corresponding dilation and homogeneous norms are respectively

δρt (x, y) = δ
(1,2)
t (x, y) = (tx, t2y), |(x, y)|ρ = |x|+ |y|1/2.

We have γ(α) = 1. Our Theorem 1.2 and Remark 1.3 say that

ν(x, y) =
1

(1 + x2)(1 + y2)
≤ Cρ(1 + |x|+ |y|1/2)−

1
3+ε
· 1
4
·3.

If we let ε→ 0, we get

ν(x, y) ≤ Cρ(1 + |x|+ |y|1/2)−1/4.

3. Disintegration of the diffusion into vertical and horizontal
components. Let

(3.1) Lα =
k∑
i=1

(∂2
ai − 2αi∂ai) +

r∑
j=1

(e2ξj(a)X2
j + dje

ξj(a)Xj) = ∆α + La.

3.1. Vertical component. The process σt in Rk generated by the op-
erator

∆α =
k∑
i=1

(∂2
ai − 2αi∂ai),

i.e., the Brownian motion with drift, is called the vertical component of the
diffusion generated by Lα.
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3.2. Horizontal component. Let C∞(N) be the space of continu-
ous functions f on N for which limx→∞ f(x) exists. For X ∈ n, we let
X̃ denote the corresponding right-invariant vector field. For a multi-index
I = (i1, . . . , im), ij ∈ Z+, and a basis X1, . . . , Xm of the Lie algebra n we
write XI = Xi1

1 . . . Xim . For k = 1, 2, . . . ,∞ we define

C(k,l)(N) = {f : X̃IXJf ∈ C∞(N) for every |I| ≤ k and |J | ≤ l}

and
‖f‖0(k,l) = sup

|I|=k, |J |=l
‖X̃IXJf‖∞,

‖f‖(k,l) = sup
|I|≤k, |J |≤l

‖X̃IXJf‖∞.
(3.2)

In particular, C(0,k)(N) is a Banach space with the norm ‖f‖(0,2).

For a ∈ Rk, let

(3.3) La =
r∑
j=1

(e2ξj(a)X2
j + dje

ξj(a)Xj).

For a continuous function σ : [0,∞)→ Rk, we consider the operator

(3.4) Lσt =
r∑
j=1

(e2ξj(σt)X2
j + dje

ξj(σt)Xj).

Let {Uσ(s, t) : 0 ≤ s ≤ t} be the (unique) family of bounded operators
on C∞(N) which satisfies

(i) Uσ(s, s) = Id for all s ≥ 0,
(ii) limh→0 U

σ(s, s+ h)f = f in C∞(N),
(iii) Uσ(s, r)Uσ(r, t) = Uσ(s, t), 0 ≤ s ≤ r ≤ t,
(iv) ∂sUσ(s, t)f = −LσsUσ(s, t)f for every f ∈ C(0,2),
(v) ∂tUσ(s, t)f = Uσ(s, t)Lσtf for every f ∈ C(0,2),
(vi) Uσ(s, t) : C(0,2) → C(0,2).

The operator Uσ(s, t) is a convolution operator with a probability measure
with a smooth density, i.e., Uσ(s, t)f = f ∗ pσ(t, s). In particular, Uσ(s, t) is
left-invariant. By (iii), pσ(t, r) ∗pσ(r, s) = pσ(t, s) for t > r > s. Existence of
Uσ(s, t) follows from [15]. Notice that from the above properties it follows
that

(vii) Uσ◦θu(s, t) = Uσ(s + u, t + u), where σ ◦ θu(s) = σs+u is the shift
operator.

In fact, V (s, t) := Uσ(s+ u, t+ u) satisfies (i)–(vi) with the operator Lσt+u .
Hence, the result follows from the uniqueness of Uσt+u(s, t).
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The stochastic process (evolution) in N corresponding to the transition
probabilities pσ(t, s) is called the horizontal component of the diffusion gen-
erated by Lα.

3.3. Disintegration of the solution of a heat equation on N ×Rk.
Consider the operators Lα, ∆α and La defined in (3.1). Let Uσ(t, s) be the
evolution generated by the operator Lσt defined in (3.4).

For f ∈ Cc(N × Rk) and t ≥ 0, we put

(3.5) Ttf(x, a) = EaUσ(0, t)f(x, σt) = Eapσ(t, 0) ∗N f(x, σt),

where the expectation is taken with respect to the distribution of the pro-
cess σt (Brownian motion with drift) in Rk with generator ∆α. The operator
Uσ(0, t) acts on the first variable of the function f (as a convolution opera-
tor).

We have the following

Theorem 3.1. The family Tt defined in (3.5) is the semigroup of oper-
ators generated by Lα. That is,

∂tTtf = LαTtf and lim
t→0

Ttf = f.

By now the proof of the above statement is standard and it goes along
the lines of [6] with obvious changes. The idea of such a decomposition of the
diffusion on the product of manifolds N ×M generated by the skew-product
L = L1(a) + L2 of the operators L1(a), a ∈ M , acting on N and L2 acting
on M goes back to [12, 13] (see also [16]).

3.4. Estimate for the evolution kernel pσ(t, 0). Let σt = wt − 2αt
be the k-dimensional Brownian motion with drift −2α, α ∈ Rk. We define
the functional

(3.6) Aσ(s, t) =
t�

s

max
j=1,...,r
d=1,2

edξj(σu) du.

The following theorem is a generalization of the rank-one result [6, Theo-
rem 4.1] to the higher rank setting. Here τ is a subadditive, δt-homogeneous
norm on N which is smooth on N \ {e} (see [10]).

Theorem 3.2. Let K ⊂ N be closed and e 6∈ K. Then there exist con-
stants C1, C2 and ν such that for every x ∈ K and every t,

pσ(t, 0)(x) ≤ C1

( t�
0

χ(σu)2/ν du
)−ν/2

exp
(
τ(x)

4
− τ(x)2

C2Aσ(0, t)

)
.

We give the proof of Theorem 3.2 in Appendix A.
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4. The Poisson kernel ν. Let µt be the semigroup of probability mea-
sures on S = N oA generated by Lα. It is known [4, 5] that

lim
t→∞

(πN (µ̌t), f) = (ν, f),

where πN denotes the projection from S onto N, and (µ̌, f) = (µ, f̌), f̌(x) =
f(x−1). Let a ∈ Rk and let µ be a measure on N. We define

(µa, f) = (µ, f ◦Ad(a)).

For a ∈ Rk we have

(4.1) νa(x) = ν(a−1xa)χ(a)−1,

where χ(b) = eρ0·b, ρ0 =
∑m

j=1 ξj . It is an easy calculation to check that

(4.2) lim
t→∞

(πN (µ̌t)a, f) = (νa, f).

Lemma 4.1. We have

(πN (µ̌t)a, f) = (Eap̌σ(t, 0), f).

Proof. Let Tt be the semigroup of operators generated by Lα, i.e.,

Ttf(x, a) = f ∗ µt(x, a) =
�

S

pt(x, a; y, b)f(y, b)χ(b)−1 dy db.

By Theorem 3.1,

Ttf(x, a) = Ea
�

N

f(xy−1, σt)pσ(t, 0)(y) dy.

Now we can write

(πN (µ̌t)a, f) = (πN (µ̌t), f ◦Ad(a)) = (µ̌t, f ◦Ad(a) ◦ πN )
= Tt(f ◦Ad(a) ◦ πN )(e, 0) = E0U

σ(0, t)(f ◦Ad(a) ◦ πN )(e, 0)

= E0p
σ(t, 0) ∗ (f ◦Ad(a))(e) = E0

�

N

f(Ad(a)y−1)pσ(t, 0)(y) dy

= E0

�

N

f(Ad(a)y)p̌σ(t, 0)(y) dy

= E0

�

N

f(x)p̌σ(t, 0)(Ad(−a)x)χ(a)−1 dx

= E0

�

N

f(x)p̌σ+a(t, 0)(x) dx = Ea
�

N

f(x)p̌σ(t, 0)(x) dx

= (Eap̌σ(t, 0), f).

By (4.2) and Lemma 4.1 it follows that

(4.3) (νa, f) = lim
t→∞

(πN (µ̌t)a, f) = lim
t→∞

(Eap̌σ(t, 0), f).
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5. Some functionals of Brownian motion. Let ws, s ≥ 0, be the
Brownian motion on R starting from a ∈ R and normalized so that

(5.1) Eaf(ws) =
�

R
f(x+ a)

1√
4πs

e−x
2/(4s) dx.

Hence Ews = a and Varws = 2s.
For d > 0 and µ > 0 we define the functional

(5.2) Id,µ =
∞�

0

ed(ws−µs)ds

which is called a perpetual functional in financial mathematics.
Theorem 5.1 (Dufresne, [8]). Let w0 = 0. Then the functional I2,µ is

distributed as (4γµ/2)−1, where γµ/2 denotes a gamma random variable with
parameter µ/2, i.e., γµ/2 has density (1/Γ (µ/2))xµ/2−1e−x1[0,∞)(x).

Many authors have been interested in this functional and the proof can
be found in many places. See for example [7, 5] or the survey paper [14] and
the references therein.

As a corollary from Theorem 5.1, by scaling the Brownian motion and
changing the variable, we get the following

Theorem 5.2. Let w0 = a. Then

Eaf(Id,µ) = cd,µe
µa
∞�

0

f(x)x−µ/d exp
(
− e

da

d2x

)
dx

x
.

The inverse gamma density (with respect to dx) is defined by

hµ,γ = Cµ,γx
−µ−1e−γ/x1(0,∞)(x).

Corollary 5.3. The random variable I2,µ has the inverse gamma den-
sity hµ/2,1/4.

We will also need the following lemma:
Lemma 5.4. Let σu = wu − 2αu be the k-dimensional Brownian motion

with a drift, d > 0, and let ` ∈ (Rk)∗ be such that `(α) > 0. Then

Eaf
(∞�

0

ed`(σu) du
)

= cd,`,αe
γ`(a)

∞�

0

f(u)u−γ/d exp
(
− e

d`(a)

d2`2u

)
du

u
,

where γ = 2`(α)/`2.

Proof. Notice that `(σu) = `(wu)−2`(α)u is the 1-dimensional Brownian
motion with (negative) drift. Moreover, E`(σu) = −2`(α)u and Var `(σu) =
2`2u. Therefore,

Eaf
(∞�

0

ed`(σu) du
)

= E`(a)f
(∞�

0

ed(b`2u−2`(α)u) du
)
,
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where bu is the 1-dimensional Brownian motion with density normalized as
in (5.1). Changing variables, the above expected value is equal to

E`(a)f
(∞�

0

ed(bs−2`(α)s/`2)ds

`2

)
,

and the result follows from Theorem 5.2.

Corollary 5.5. If `(α), d > 0 then the functional
	∞
0 ed`(wu−2αu) du has

the inverse gamma density h2`(α)/(d`2),1/(d2`2).

6. Estimates for νa

Theorem 6.1. For all compact subsets K 63 e of N and all ρ ∈ V + there
exist constants C = C(K) > 0 and c = c(V +) > 0 such that for all x ∈ K
and all s < 0,

(6.1) νsρ(x) ≤ Cecρ0(sρ)γ(α)−ρ0(sρ),

where

γ(α) = 2 min
1≤j≤r

ξj(α)
ξ2j

.

Proof. By (4.3), Theorem 3.2 and the Cauchy–Schwarz inequality we get

νsρ(x) ≤ CEsρ
(∞�

0

χ(σu)2/ν du
)−ν/2

e−β/A
σ(0,∞)(6.2)

≤ C
(
Esρ
(∞�

0

e(2/ν)ρ0(σu) du
)−ν)1/2(

Esρe−2β/Aσ(0,∞)
)1/2

for some β = βK > 0.
Consider the second term on the right in (6.2). The functional Aσ(0,∞)

for the operator (1.1) is given by

Aσ =: Aσ(0,∞) =
∞�

0

max
j=1,...,r
d=1,2

edξj(σu) du,

and can be estimated as follows:

Aσ(0,∞) ≤
r∑
j=1

Aσj +
r∑
j=1

Ãσj ,

where

Aσj =
∞�

0

e2ξj(σu) du and Ãσj =
∞�

0

eξj(σu) du.

Therefore,
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Esρe−2β/Aσ ≤ Esρ exp
(
−2β

/( r∑
j=1

Aσj +
r∑
j=1

Ãσj

))
(6.3)

= E0 exp
(
−2β

/( r∑
j=1

e2ξj(sρ)Aσj +
r∑
j=1

eξj(sρ)Ãσj

))
≤ E0 exp

(
−2β

/(
M(sρ)

( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)))
,

where
M(a) = max{e2ξj(a), eξj(a) : j = 1, . . . , r}.

We need the following

Lemma 6.2. For every β > 0 there exists a positive constant C such that
for all positive real numbers m,

E0 exp
(
−β
/(
m
( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)))
≤ C(mγ(α)/2 ∨mγ(α)).

Proof of Lemma 6.2. Let

Ω1 =
{

1 ≤ m
( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)}
,

Ω0,n =
{

1
n+ 1

≤ m
( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)
<

1
n

}
, n = 1, 2, . . . .

Then

(6.4) E0 exp
(
−β
/(
m
( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)))
= E01Ω1(σ) exp

(
−β
/(
m
( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)))
+
∞∑
n=1

E01Ω0,n(σ) exp
(
−β
/(
m
( r∑
j=1

Aσj +
r∑
j=1

Ãσj

)))
≤ P0(Ω1) +

∞∑
n=1

e−βnP0(Ω0,n).

We estimate the probability

P0(Ω1) ≤ P0

( r∑
j=1

(Aσj + Ãσj ) ≥ 1/m
)

(6.5)

≤ P0(there exists j such that Aσj + Ãσj ≥ (mr)−1)
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≤
r∑
j=1

P0(Aσj + Ãσj ≥ (mr)−1)

≤
r∑
j=1

P0(Aσj ≥ (2mr)−1) +
r∑
j=1

P0(Ãσj ≥ (2mr)−1).

It follows from the proof of Lemma 5.4 that for every j,

Aσj
d=

1
ξ2j

∞�

0

e2(bjs−γjs) ds =
1
ξ2j
I2,γj , Ãσj

d=
1
ξ2j
I1,γj ,

where
γj = γj(α) = 2ξj(α)/ξ2j ,

Id,γj is a perpetual functional defined in (5.2), bjs is a standard Brownian

motion, and d= means having the same distribution.
By the scaling property of the Brownian motion it follows that

I1,µ
d= 4I2,2µ.

Therefore,

P0(Ãσj ≥ (2mr)−1) = P0(4I2,2γj/ξ
2
j ≥ (2mr)−1) ≤ P0(I2,2γ ≥ ξ2j (8mr)−1),

where γ = γ(α) = min1≤j≤r γj(α), and similarly,

P0(Aσj ≥ (2mr)−1) = P0(I2,γj ≥ ξ2j (2mr)−1) ≤ P0(I2,γ ≥ ξ2j (2mr)−1).

By Corollary 5.3 the random variable I2,γ has the inverse gamma distribution
hγ/2,1/4(x) ∼ x−γ/2−1 as x→∞. Therefore,

P0(I2,2γ ≥ ξ2j (4mr)−1) ≤ C
∞�

ξ2j (4mr)
−1

x−γ−1 dx ≤ Cmγ

and
P0(I2,γ ≥ ξ2j (mr)−1) ≤ Cmγ/2.

Consequently,

(6.6) P0(Ω1) ≤ C(mγ/2 ∨mγ).

Now we estimate P0(Ω0,n). In the same way as in (6.5) we get

P0(Ω0,n) ≤ P0

( r∑
j=1

Aσj +
r∑
j=1

Ãσj ≥
1

m(n+ 1)

)

≤
r∑
j=1

P0

(
Aσj ≥

1
2rm(n+ 1)

)
+

r∑
j=1

P0

(
Ãσj ≥

1
2rm(n+ 1)

)
.
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In order to estimate the above sums we repeat the previous calculation (after
(6.5) with m replaced by m(n+ 1)) and we get

P0(Ω0,n) ≤ C(mγ/2 ∨mγ)(n+ 1)γ .

Hence, we can sum the second series on the right in (6.4),

(6.7)
∞∑
n=1

e−βnP0(Ω0,n) ≤ C(mγ/2∨mγ)
∞∑
n=1

e−βn(n+1)γ ≤ C(mγ/2∨mγ).

Now (6.4), (6.6) and (6.7) finish the proof.

Since ρ ∈ V + and s < 0 it follows that −sρ ∈ V +. Therefore, by Propo-
sition 2.1 and Corollary 2.2, there exists a positive constant c such that

M(sρ) = emax{2ξj(sρ),ξj(sρ):j=1,...,r} = e−min{2ξj(−sρ),ξj(−sρ):j=1,...,r}(6.8)

≤ e−cρ0(−sρ) = ecρ0(sρ) < 1.
By (6.8) and Lemma 6.2 we can continue estimating (6.3) as follows:

(6.9)

Esρe−2β/Aσ ≤ E0 exp
(
−2β

/(
ecρ0(sρ)

r∑
j=1

(Aσj + Ãσj )
))
≤ Ce(c/2)ρ0(sρ)γ(α).

Finally, to estimate the first term on the right in (6.2) we notice that

(6.10) Esρ
(∞�

0

e(2/ν)ρ0(σu) du
)−ν

= e−2ρ0(sρ)E0

(∞�
0

e(2/ν)ρ0(σu)du
)−ν

.

By Lemma 5.4,

(6.11) E0

(∞�
0

e(2/ν)ρ0(σu) du
)−ν
≤ Cα,ρ0 .

Now, (6.2), (6.10), (6.11) finish the proof.

7. Proof of Theorem 1.2. Using homogeneity this is an easy corollary
from Theorem 6.1.

Proof of Theorem 1.2. By definition (4.1) of νsρ and Theorem 6.1 we
have, for x in a compact set K 63 e,
ν((sρ)−1x(sρ)) = eρ0(sρ)νsρ(x) ≤ Ceρ0(sρ)ecρ0(sρ)γ(α)−ρ0(sρ) = Cecρ0(sρ)γ(α).

Let δρt = Ad((log t)ρ). Then |δρt x|ρ = t|x|ρ. Let y = δρexp(−s)x with |x|ρ = 1
and s < 0. Then |y|ρ = e−s > 1, and using the above inequality for K =
{x : |x|ρ = 1}, we get

ν(y) = ν(δρexp(−s)x) ≤ Cecρ0(sρ)γ(α) = C(e−scρ0(ρ)γ(α))−1 = C|y|−cρ0(ρ)γ(α)
ρ .

Clearly, for y with |y|ρ ≤ 1 we have ν(y) ≤ Cρ.
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8. Prooof of Theorem 1.2 for independent operators

8.1. Some probabilistic lemmas. Recall that the inverse gamma den-
sity (with respect to dx) is defined by

hµ,γ(x) = Cµ,γx
−µ−1e−γ/x1(0,∞)(x).

Lemma 8.1 ([1, Lemma 2]). For all n > 0, the n-fold convolution of the
inverse gamma density has asymptotic behavior (1)

h∗nµ,γ(x) ∼ nCµ,γx−µ−1, x→∞.

Lemma 8.2. For every n > 0 there exist constants C, c > 0 such that for
all x ≤ 1 we have

h∗nµ,γ(x) ≤ Cx−2µ−1e−γ/cx.

Proof. We use induction with respect to n. First consider the convolution
of two densities

h∗2µ,γ(x) =
x�

0

(x− t)−µ−1t−µ−1e−γ/(x−t)e−γ/tdt.

Changing variables u = 1/t we get

h∗2µ,γ(x) =
∞�

1/x

uµ−1

(x− u−1)µ+1
e−γux/(x−u

−1) du.

Changing variables again, ux = s, we obtain

h∗2µ,γ(x) = x−2µ−1
∞�

1

s2µ

(s− 1)µ+1
e−γs/(x(1−s

−1)) ds.

By a direct calculation one can show that the integral above is bounded
by Ce−γ/(2x). To estimate h∗(n+1)

µ,γ (x) = h∗nµ,γ ∗ hµ,γ(x) we use the induction
hypothesis and proceed similarly to the previous case.

Lemma 8.3. Let wjs, j = 1, . . . , n, be independent Brownian motions
on R. Let Ij2,µ be the corresponding perpetual functionals defined in (5.2).
Then there exists a constant C > 0 such that for every t > 0,

P0

( n∑
j=1

Ij2,µ ≥ t
)
≤ Ct−µ.

Proof. Since wjs are independent, the functionals Ij2,µ are also indepen-
dent. Moreover, if wj0 = 0, j = 1, . . . , n, then by Corollary 5.3, they have

(1) In [1] the case γ = 1/4 is considered, but the proof given there clearly works for
all γ.
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inverse gamma distributions hµ/2,1/4. Hence, the distribution of
∑n

j=1 I
j
2,µ is

h∗nµ/2,1/4. By Lemma 8.1, for t sufficiently large we can estimate

P0

( n∑
j=1

Ij2,µ ≥ t
)

=
∞�

t

h∗nµ/2,1/4(x) dx ≤ C
∞�

t

x−µ/2−1 dx = Ct−µ/2.

Lemma 8.4. Let wjs be independent Brownian motions on R. Let Ij2,µ
be the corresponding perpetual functionals defined in (5.2). Then for every
β > 0 there exists a constant C > 0 such that for all positive real numbers m,

E0e
−β/(m

Pn
j=1 I

j
2,µ) ≤

{
1 for m ≥ 1,
Cmµ/2 for m < 1.

Proof. By independence

E0e
−β/(m

Pn
j=1 I

j
2,µ) =

∞�

0

e−β/uh∗nµ/2,1/4(u/m)m−1 du.

By Lemma 8.1 and Lemma 8.2, respectively, we have
∞�

1

e−β/uh∗nµ/2,1/4(u/m)m−1 du ≤ Cmµ/2
∞�

1

e−β/uu−µ/2−1 du

and
1�

0

e−β/uh∗nµ/2,1/4(u/m)m−1 du ≤ Cmµ
1�

0

e−β/uu−µ−1 du.

Hence the estimate follows.

8.2. Sketch of the proof of Theorem 1.2 for independent op-
erators without first order N-part. We modify slightly the proof of
Theorem 6.1 so that we do not need to use Lemma 6.2. Instead, we make
use of Lemma 8.4. As a result we get the estimate for νsρ of the form (6.1)
but only for all s smaller than some s0 < 0. Clearly, this is sufficient for the
homogeneity argument in Sect. 7.

Since the operator is without first order N -part, the functional Aσ(s, t)
in Theorem 3.2 has simpler form

Aσ(s, t) =
t�

s

max
1≤j≤r

e2ξj(σu) du.

Therefore,

Aσ(0,∞) ≤
r∑
j=1

Aσj ,
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and (6.3) reads

(8.1) Esρe−2β/Aσ ≤ E0 exp
(
−2β

/(
M(sρ)

r∑
j=1

Aσj

))
.

By the independence of Lα the random variables Aσj are independent. More-
over,

Aσj
d=

1
ξ2j
I2,γj ,

where bjs, j = 1, . . . , n, appearing in I2,γj are independent Brownian motions.
Let

Ξ = max
1≤j≤r

1
ξ2j
.

Then the right side of (8.1) can be estimated by

(8.2) E0 exp
(
− 2β/

(
Ξecρ0(sρ)

r∑
j=1

Ij2,γ

))
,

where γ = min1≤j≤r γj , and I
j
2,γ are independent random variables with the

same distribution as I2,γ .
We choose s0 < 0 so that Ξecρ0(s0ρ) < 1. Then, by Lemma 8.4, it follows

from (8.2) that for all s < s0,

E0 exp
(
−2β

/(
M(sρ)

r∑
j=1

Aσj

))
≤ Ce(c/2)ρ0(sρ)γ ,

providing the desired estimate for (8.1). The remainder of the proof proceeds
as before.

Appendix A. Proof of Theorem 3.2. We follow the proof of [6, The-
orem 4.1]. Let notation be as in Sect. 3.2. The L2(N)-adjoint of La is

L̃a =
r∑
j=1

(e2ξj(a)X2
j − djeξj(a)Xj).

Let Ũσ(t, s), t ≥ s, be the fundamental solution for L̃σt−∂t, i.e., the (unique)
family of bounded operators Ũσ(t, s), t ≥ s ≥ 0, on C∞(N) with the follow-
ing properties (analogous to (i)–(vi) in Sect. 3.2):

(1) Ũσ(s, s) = Id,
(2) limh→0 Ũ

σ(s+ h, s)f = f in C∞(N),
(3) Ũσ(t, r)Ũσ(r, s) = Ũσ(t, s), t ≥ r ≥ s ≥ 0,
(4) ∂sŨσ(t, s)f = −Ũσ(t, s)L̃σsf for every f ∈ C(0,2),
(5) ∂tŨσ(t, s)f = L̃σtŨ

σ(t, s)f for every f ∈ C(0,2),
(6) Ũσ(t, s) : C(0,2) → C(0,2).
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The following is a simple consequence of the uniqueness of Uσ(s, t) (which
is the fundamental solution for Lσs + ∂s).

Lemma A.1. For all f ∈ C∞(N) and t ≥ s,

Ũσ(t, s)f = f ∗ p̃σ(s, t), where p̃σ(s, t)(x) = pσ(t, s)(x−1).

Also, for all f ∈ L1(N) and g ∈ L∞(N),

(A.1) (Uσ(s, t)f, g) = (f, Ũσ(t, s)g).

In the following proposition, the notation is as in, and above, (3.2).

Proposition A.2. Let f ∈ L1(N), f ≥ 0. Then for g ∈ C(0,2)(N),

(Uσ(s, t)f, eg) ≤ (f, eg) exp(Ca(g)Aσ(s, t)),

where C is independent of f , g, s, and t and where

a(g) = max{‖g‖0(0,1), ‖g‖
0
(0,2) + (‖g‖0(0,1))

2},

Aσ(s, t) =
t�

s

max
j=1,...,r
d=1,2

edξj(σu) du.

Proof. Set fs = Uσ(s, t)f , t ≥ s. Since f ∈ L1(N) and eg ∈ L∞(N), the
following is a consequence of (A.1):

m(s) ≡ (fs, eg) = (Uσ(s, t)f, eg) = (f, Ũσ(t, s)eg).

Then, by property (4) and (A.1),

−∂sm(s) = (f,−∂sŨσ(t, s)eg) = (f, Ũσ(t, s)L̃σse
g)(A.2)

= (fs, L̃σse
g)

=
r∑
j=1

e2ξj(σs)(fs, X2
j e
g)−

r∑
j=1

dje
ξj(σs)(fs, Xje

g).

Also

|Xje
g| = |(Xjg)|eg ≤ a(g)eg, |X2

j e
g| = |(X2

j g + (Xjg)2)|eg ≤ a(g)eg.

Thus, since fs > 0 and ft = f , we may continue (A.2) as

−∂sm(s) ≤ Ca(g) max
1≤j≤r, d=1,2

edξj(σs)m(s),

−∂s ln(m(s)) ≤ Ca(g) max
1≤j≤r, d=1,2

edξj(σs),

−
t�

s

∂u ln(m(u)) du ≤ Ca(g)
t�

s

max
1≤j≤r, d=1,2

edξj(σu) du,
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lnm(s)− lnm(t) ≤ Ca(g)Aσ(s, t),
m(s) ≤ (f, eg) exp(Ca(g)Aσ(s, t))

as claimed. (Note that m(t) = (f, eg).)

We note that N is a homogeneous group. In fact, if A0 ∈ A+ satisfies
ξj(A0) ≥ 1 for all j then

δt = Ad(exp((log t)A0))|N
is a dilation.

According to [10], there is a subadditive, δt-homogeneous norm τ on N
which is smooth on N \ {e}. From homogeneity, on N \ {e},

Xj(τ) ◦ δt = t1−ξj(A0)(Xjτ).

It follows that for all multi-indices I 6= 0, XIτ is uniformly bounded on
N \Br(e) for all r > 0, where Br(e) is the τ -ball of radius r. For ε > 0, let

τε =
τ

1 + ετ
.

Lemma A.3. Let I 6= 0. For 1 ≥ ε > 0, τε is a bounded subadditive
function on N for which

|XIτε(x)| ≤ Cr,I
for all x ∈ N \Br(e), where Cr,I does not depend on ε.

Proof. The subadditivity is easily seen. To prove the boundedness, note
that

Xiτε = (1 + ετ)−2Xiτ,

|Xiτε| ≤ |Xiτ |,
XjXiτε = −2ε(1 + ετ)−3XjτXiτ + (1 + ετ)−2XjXiτ,

|XjXiτε| ≤ 2|Xjτ | |Xiτ |+ |XjXiτ |.
The general case is proved similarly.

Theorem A.4. For all r > 0 there is a constant Cr such that

(pσ(t, s), eατ ) ≤ e2αr exp(Cr(α+ α2)Aσ(s, t))

for all α > 0 and t > s.

Proof. Let 0 ≤ φ ∈ C∞c (N), suppφ ⊂ Br(e), and
	
φ = 1. Let ηε(x) =

τε ∗ φ(x). The following lemma is similar to results in [11]. (See also (3.5)
of [2].)

Lemma A.5. There exists a positive constant C, independent of ε, such
that

‖ηε‖0(0,i) ≤ C for i = 1, 2.
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Proof of Lemma A.5. Let ψ ∈ C∞c (N) be non-negative, supported in
B2r(e), and equal to 1 on Br(e). Let ψ̃ = 1− ψ. Then

ηε = (τεψ̃) ∗ φ+ (τεψ) ∗ φ.
The second term on the right is clearly bounded independently of ε since
τε ≤ τ and

XI((τεψ) ∗ φ) = (τεψ) ∗XIφ.

For the first term let τ̃ε = τεψ̃.
From Lemma A.3, XI τ̃ε is uniformly bounded independently of ε. Fur-

thermore, for |I| 6= 0,

XI(τ̃ε ∗ φ)(x) =
�

Br(e)

(Ad(y)XI)τ̃ε(xy−1)φ(y) dy

=
∑
|J |=|I|

�

Br(e)

qJ(y)XJ τ̃ε(xy−1)φ(y) dy,

where the qJ are polynomials in the roots. Our result follows since the qJ
are uniformly bounded on Br(e).

Notice that since τε is subadditive and τε ≤ τ , we have

τε(x) =
�

Br(e)

τε(x)φ(y) dy

≤
�

Br(e)

(τε(xy−1) + τε(y))φ(y) dy ≤ ηε(x) + r,

ηε(e) =
�

Br(e)

τε(y−1)φ(y) dy ≤ r.

We apply Proposition A.2 with g = αηε. Note that, by Lemma A.5,

a(g) = max{‖g‖0(0,1), ‖g‖
0
(0,2) + (‖g‖0(0,1))

2} ≤ C(α+ α2).

Hence,
(Uσ(t, s)f, eαηε) ≤ (f, eαηε) exp(C(α+ α2)Aσ(s, t)).

Letting f run through an approximate identity, using ηε(x) ≥ τε(x)− r, and
letting ε→ 0, yields

(pσ(s, t), eαηε) ≤ eαr exp(C(α+ α2)Aσ(s, t)),

(pσ(s, t), eα(τε−r)) ≤ eαr exp(C(α+ α2)Aσ(s, t)),

(pσ(s, t), eατ ) ≤ e2αr exp(C(α+ α2)Aσ(s, t)),

proving our theorem.

Proposition A.6. There exist positive constants C and ν such that for
every t > s ≥ 0,
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‖pσ(t, s)‖∞ ≤ C
( t�
s

χ(σu)2/ν du
)−ν/2

.

Proof. Let L0 be as defined in (3.3). From the Nash inequality ([17])

‖f‖2+4/ν
2 ≤ −C(L0f, f)‖f‖4/ν1

(ν ∈ R+is arbitrary such that d ≤ ν ≤ D, where d and D denote the
local dimension and the dimension at infinity of N respectively) applied to
f ◦Ad(a) it follows that

χ(a)2/ν‖f‖2+4/ν
2 ≤ −C(Laf, f)‖f‖4/ν1 .

For a function 0 ≤ f ∈ C∞c (N) such that
	
f = 1 we define

fs(x) = f ∗ pσ(t, s)(x), hs(x) = ‖fs‖22.

From this, ‖f‖1 = 1, and the fact that ∂sfs = −Lσsfs, using the Nash
inequality, we can write

−∂shs = −∂s(fs, fs) = 2(Lσsfs, fs)

≤ −2C−1χ(σs)2/ν‖fs‖2(1+2/ν)
2 = −Cχ(σs)2/νh1+2/ν

s .

We solve this differential inequality finding

∂s(h−2/ν
s ) ≤ −Cχ(σs)2/ν ,

h
−2/ν
t − h−2/ν

s ≤ −C
t�

s

χ(σr)2/ν dr.

Hence

hs ≤ C
( t�
s

χ(σr)2/ν dr
)−ν/2

.

Replacing f with f/‖f‖1 shows

‖f ∗ pσ(t, s)‖22 ≤ C
( t�
s

χ(σr)2/ν dr
)−ν/2

‖f‖21,

‖pσ(t, s)‖22 ≤ C
( t�
s

χ(σr)
2
ν dr

)−ν/2
.

Hence, for s < u < t,

‖pσ(t, s)‖∞ = ‖pσ(t, u) ∗ pσ(u, s)‖∞ ≤ ‖pσ(t, u)‖2‖pσ(u, s)‖2

≤ C
( t�

u

χ(σr)2/νdr
)−ν/4( u�

s

χ(σr)2/νdr
)−ν/4

.
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We choose u so that
	t
u =

	u
s , concluding that

‖pσ(t, s)‖∞ ≤ C
( t�
s

χ(σr)2/νdr
)−ν/2

.

Proof of Theorem 3.2. By the subadditivity of τ , the property pσ(t, r) ∗
pσ(r, s) = pσ(t, s), Proposition A.6, and Theorem A.4 we have

pσ(0, t, x)eατ(x) = pσ(0, s) ∗ pσ(s, t)(x)eατ(x)

≤ ‖pσ(0, s)(·)eατ(·)‖2 ‖pσ(s, t)(·)eατ(·)‖2
≤ ‖pσ(0, s)‖1/2∞ ‖pσ(s, t)‖1/2∞ (pσ(0, s), e2ατ )1/2(pσ(s, t), e2ατ )1/2

≤ C ′
( s�

0

χ(σu)2/ν du
)−ν/4( t�

s

χ(σu)2/ν du
)−ν/4

· e4αr exp(C(α+ α2)Aσ(0, s)) exp(C(α+ α2)Aσ(s, t))

= C ′
( s�

0

χ(σu)2/ν du
)−ν/4( t�

s

χ(σu)2/ν du
)−ν/4

· e4αr exp(C(α+ α2)Aσ(0, t)).

Now choosing s analogously to u in the proof of Proposition A.6 we get

pσ(0, t, x)eατ(x) ≤ C ′e4αr exp(C(α+ α2)Aσ(0, t))
( t�

0

χ(σu)2/ν du
)−ν/2

,

pσ(0, t, x) ≤ C ′e[4r−τ(x)+CAσ(0,t)]α+CAσ(0,t)α2
( t�

0

χ(σu)2/ν du
)−ν/2

.

Now, let K ⊂ N and e /∈ K. Choose r < infx∈K τ(x)/16 and ε = 1/(4Cr)
where Cr is as in Theorem A.4. Let

α = ετ(x)/Aσ(0, t).

Then

Cr(α+ α2)Aσ(0, t) + 4αr − ατ(x)

= Cr

(
ετ(x)
Aσ(0, t)

+
ε2τ(x)2

Aσ(0, t)2

)
Aσ(0, t) +

4rετ(x)
Aσ(0, t)

− ετ(x)2

Aσ(0, t)

= Crετ(x) +
Crε

2τ(x)2 + 4εrτ(x)− ετ(x)2

Aσ(0, t)

=
τ(x)

4
+

2Crε2τ(x)2 + 8εrτ(x)− ετ(x)2

2Aσ(0, t)
− ετ(x)2

2Aσ(0, t)
.



280 R. PENNEY AND R. URBAN

The middle term is ≤ 0 since

2Crε2τ(x)2 =
ετ(x)2

2
and 8εrτ(x) ≤ 8ετ(x)2

16
,

and the proof is finished.
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