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Abstract. We define partial spectral integrals SR on the Heisenberg group by means
of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V con-
taining the joint spectrum of the partial sub-Laplacians and the central derivative. Under
the assumption that an L2-function f lies in the logarithmic Sobolev space given by
log(2 + Lα)f ∈ L2, where Lα is a suitable “generalized” sub-Laplacian associated to the
dilation structure, we show that SRf(x) converges a.e. to f(x) as R→∞.

1. Introduction. Under the assumption that f belongs to the loga-
rithmic Sobolev space given by log(2 − ∆)f ∈ L2(Rd), where ∆ denotes
the Euclidean Laplacian, a short and simple proof of the almost everywhere
convergence as R → ∞ of the partial spectral integrals SRf, associated to
the dilates RV of any bounded measurable region V star-shaped with re-
spect to the origin and containing the origin in its interior, has been given
in [CMP]. The proof was based on Rademacher–Men’shov’s theorem.

By choosing V equal to the unit ball, the spherical partial integrals
studied in [CS] are obtained. The fact that the proof in [CMP] makes use
of only very basic properties allows for wide generalizations. In [MMP] e.g.
the above result has been extended to arbitrary connected Lie groups, the
partial spectral integrals being defined in terms of a sub-Laplacian as well
as the corresponding logarithmic Sobolev space.

More general partial integrals SR can be defined by means of the group
Fourier transform, for specific groups. We shall demonstrate this in the
present article for the case of the Heisenberg group Hn, where such spectral
integrals can also be defined by means of the joint spectral resolution of
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the partial sub-Laplacians L1, . . . , Ln and the central derivative −iU. For
V we choose suitable star-shaped subsets containing, as an interior point,
the origin of the ambient space Rn+1 which contains the joint spectrum
(the “Heisenberg fan” Fn) of these operators. We shall work with arbitrary
isotropic or anisotropic dilations on Rn+1.

As a simpler model case we shall first consider the Euclidean space Rd,
whose dual is endowed with arbitrary isotropic or anisotropic dilations. We
remark that our results in this setting, being independent of the geometry
of V, do not fall under the scope of C. Fefferman’s method in [F] which
requires V to be a rectangular box.

As in [MMP], our approach to this problem on the Heisenberg group
makes use of an asymptotic estimate for R→∞ of W (R) = ‖KR‖22, where
KR denotes the convolution kernel associated to our partial integrals SR,
together with the right-continuity of W (R). To show this latter property of
W (R), in the case of anisotropic dilations, we furthermore assume V to be
closed. A counter-example is given to show that without some extra assump-
tion the right-continuity of W (R) may fail to be true. This is related to the
fact that anisotropic dilations will not leave the Heisenberg fan invariant.

Throughout the article, C and c will denote constants which may change
from line to line.

2. The Euclidean case. Before studying the Heisenberg group, we
shall consider the simpler case of Rd endowed with an anisotropic dilation
structure. As in [CMP] a basic tool will be the classical

Theorem 2.1 (Rademacher–Men’shov). Suppose that (X,µ) is a pos-
itive measure space. Then there is a positive constant c with the following
property: For each orthogonal subset {fn : n ∈ N} in L2(X,µ) satisfying

(2.1)
∞∑
n=0

(log(n+ 2))2‖fn‖22 <∞ ,

the maximal function F ∗(x) := supN∈N |
∑N

n=0 fn(x)| is in L2(X,µ), and

(2.2) ‖F ∗‖2 ≤ c
( ∞∑
n=0

(log(n+ 2))2‖fn‖22
)1/2

.

In particular, (2.1) implies that the series
∑∞

n=0 fn(x) converges almost
everywhere on X.

See [S] or Theorem XIII.10.21 from [Z] for a proof. Here log means the
logarithm to the base 2.

Let {δr}r>0 be a fixed family of (usually) anisotropic dilations in Rd given
by δrx = (rα1x1, . . . , r

αdxd) with αj > 0 for j = 1, . . . , d. A set V ⊂ Rd is
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said to be star-shaped with respect to these dilations if for every x ∈ V ,

δrx ∈ V for all 0 ≤ r < 1.

Let D =
∑d

j=1 αj denote the homogeneous dimension of Rd with respect
to the above dilations. For any measurable subset W ⊂ Rd we denote by
SW the Fourier multiplier operator given by ŜW f(ξ) = χW (ξ)f̂(ξ). By the
method developed in [CMP] we can easily prove the following

Theorem 2.2. Let V ⊂ Rd be a bounded, measurable, star-shaped subset
containing the origin as an interior point, and set SR = SδRV . If�

Rd
|f̂(ξ) log(2 + |ξ|)|2 dξ <∞

then SRf(x) → f(x) a.e. as R → ∞. Moreover, if B is any set with finite
measure in Rd then

(2.3) ‖Mf‖2L2(B) ≤ CB,d
�
|f̂(ξ) log(2 + |ξ|)|2 dξ,

where M denotes the maximal function defined by Mf(x) = supR>1|SRf(x)|.
Proof. We just give a brief sketch. Since |δRV | = RD|V |, by choosing

Rn = n1/D, we see that

|δRnV \ δRn−1V | = |V | for every n = 1, 2, . . . .

Then, as in [CMP], by the Rademacher–Men’shov Theorem 2.1 it follows
that

SRnf(x) converges a.e. in Rd

and that the maximal function M̃f(x) = supn |SRnf(x)| belongs to L2(B).
Since the origin is an interior point of V it follows that

⋃
n≥1 δRnV = Rd,

hence SRnf → f in L2(Rd) as n→∞ and so SRnf(x)→ f(x) a.e.
Finally, for Rn−1 ≤ R < Rn the error term SRf(x) − SRn−1f(x) can

be shown to tend to zero for every x ∈ Rd as n → ∞ by Cauchy–Schwarz’
inequality, as in [CMP]. Then the estimate (2.3) for Mf easily follows.

Remark 2.3. If Q is the unit cube, say in R2 for simplicity, then a
stronger result is known. For instance, if we use the parabolic dilations
δr(x1, x2) = (rx1, r

2x2), then

SδRQf(x, y)→ f(x, y) a.e. as R→∞, for every f ∈ L2(R2).

Indeed, one can derive this result easily from Carleson’s theorem follow-
ing C. Fefferman’s idea in [F] as follows: Notice first that δRQ is the rectangle
{(ξ, η) : |ξ| ≤ R, |η| ≤ R2}. We therefore decompose f = f1 + f2, where
f̂1 = f̂χP , with P = {(ξ, η) : |η| ≤ ξ2}. Notice that χP is an L2-bounded
Fourier multiplier. Then it is easy to see that

sup
R≥1
|SδRQf1(x, y)| . (Cxf1)(x, y),
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where Cx denotes Carleson’s maximal operator acting in the variable x.
Similarly

sup
R≥1
|SδRQf2(x, y)| . (Cyf2)(x, y),

where Cy denotes Carleson’s maximal operator acting in the variable y.
Then the result follows by standard arguments.

The method just described does not work for dilations (isotropic or
anisotropic) of sets V with curved boundary, and not even for anisotropic
dilations of general polygonal regions since the slope of the edges of the
dilated polygons might change under anisotropic dilations.

The advantage of our method, which however requires a stronger regu-
larity assumption on the function f, lies in the fact that it is independent
of the geometry of the set V .

3. The case of the Heisenberg group

3.1. Statement of the main result. Recall that the Heisenberg group
Hn can be defined as Rn × Rn × R endowed with the product

(x, y, u) · (x′, y′, u′) :=
(
x+ x′, y + y′, u+ u′ +

1
2

(x · y′ − y · x′)
)
.

We denote by hn its Lie algebra, which can again be identified with Rn×Rn

×R. Then the exponential mapping exp : hn → Hn is the identity mapping.
Identifying as usual an element X ∈ hn with its Lie derivative

(LXϕ)(g) :=
d

dt
ϕ(g exp tX)

∣∣∣
t=0

, g ∈ Hn,

we shall consider the elements of the Lie algebra as left-invariant vector
fields. A natural basis of hn is then given by the vector fields

Xj =
∂

∂xj
− 1

2
yj

∂

∂u
, Yj :=

∂

∂yj
+

1
2
xj

∂

∂u
, j = 1, . . . , n,

and U = ∂/∂u. They satisfy the “Heisenberg commutation relations”

[Xj , Yk] = δjkU,

all other brackets being zero. In particular, U spans the center of hn, and
hn is two-step nilpotent. Denote by u(hn) its universal enveloping algebra,
regarded as the associative algebra of all left-invariant differential operators
on Hn.

The partial sub-Laplacians Lj ∈ u(hn) are defined by

Lj = −(X2
j + Y 2

j ), j = 1, . . . , n.

These play a basic role within u(hn) because of the following well-known
facts:
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Identify (x, y) ∈ Rn×Rn with z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn)
∈ Cn, and call a function f on Hn polyradial if f(z, u) = f̃(|z1|, . . . , |zn|, u)
for some function f̃ on Rn

+ × R. Under this identification of the underlying
manifold of Hn with Cn×R, the n-torus Tn = {(eiϕ1 , . . . , eiϕn) : ϕi ∈ [0, 2π[}
acts by (symplectic) automorphisms (z1, . . . , zn, u) 7→ (eiϕ1z1, . . . , e

iϕnzn, u)
on Hn, and f is polyradial if and only if f ◦τ = f for every τ ∈ Tn. The pair
(Hn,Tn) is then known to be a Gelfand pair in the sense that the algebra

L1
pr(Hn) := {f ∈ L1(Hn) : f is polyradial}

is a commutative subalgebra of L1(Hn), whose Gelfand spectrum has been
identified by A. Hulanicki and F. Ricci in [HR].

The counterpart of this algebra within u(hn) is the subalgebra upr(hn)
of all Tn-invariant elements (notice here that the subgroup Tn of the auto-
morphism group of Hn acts in a natural way by automorphisms on u(hn)).
This subalgebra is then generated by the partial sub-Laplacians L1, . . . , Ln
and U, so that the harmonic analysis for polyradial functions can be viewed
as the joint spectral theory of these operators.

A bi-invariant Haar measure on Hn is given by the Lebesgue measure
dg = dx dy du, and we shall denote by L2(Hn) the L2-space with respect
to this measure. The operators Lj and iU, initially defined on C∞0 (Hn), are
known to be essentially self-adjoint on L2(Hn), and their closures will again
be denoted by the same symbols.

By our previous remarks these operators form a commutative set of self-
adjoint operators on L2(Hn) so that, for every Borel measurable function
ψ on Rn+1, the joint spectral multiplier operator Tψ = ψ(L1, . . . , Ln,−iU)
can be defined as a (possibly unbounded) operator on L2(Hn) by means of
the spectral theorem. This functional calculus will be made explicit later by
means of the representation theory of the Heisenberg group. In particular, for
any Borel measurable subset W ⊂ Rn+1 we denote by SW the joint spectral
multiplier operator corresponding to the characteristic function of W, i.e.

SW = TχW = χW (L1, . . . , Ln,−iU).

Notice that Rn+1 contains the joint spectrum of the operators L1, . . . , Ln,
−iU, the so-called Heisenberg fan (see Subsection 3.2). In analogy with the
dilations considered in the Euclidean setting, which were acting on the dual
space, let us fix a one-parameter family of dilations on the space Rn+1 =
Rn × R, with coordinates ξ = (λ, µ) = (λ1, . . . , λn, µ), of the form

δrξ = (rα1λ1, . . . , r
αnλn, r

βµ),

with αj > 0 for j = 1, . . . , n and β > 0. Notice that these dilations leave the
subspace Rn \{0} invariant, which we identify with Rn. We shall denote the
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corresponding dilations of Rn again by δr. We set

αmin = min
j=1,...,n

αj , D =
n∑
j=1

αj .

Notice that D is the homogeneous dimension of Rn with respect to these
dilations.

Next assume that V ⊂ Rn+1 is a measurable, star-shaped subset con-
taining the origin as an interior point. Because of the special role played by
the operator −iU compared to the Lj , we now distinguish two cases:

Case 1. If β < αmin we assume that V is a bounded set and define

(3.1) L = L
1/α1

1 + · · ·+ L1/αn
n + |U |1/β.

Case 2. If β ≥ αmin we only assume that the projection of V onto the
space Rn of λ-variables is a bounded set and define

(3.2) L = L
1/α1

1 + · · ·+ L1/αn
n .

Notice that the corresponding joint spectral multipliers ψα(ξ) = λ
1/α1

1 +
· · ·+λ1/αn

n respectively ψα(ξ) = λ
1/α1

1 + · · ·+λ1/αn
n + |µ|1/β are homogeneous

of degree one with respect to our dilations. A particular case of such an
operator L is the sub-Laplacian L = L1 + · · · + Ln (Case 2) and the full
Laplacian L− U2. We can now state our main result.

Theorem 3.1. Let V ⊂ Rn+1 be a measurable, star-shaped subset con-
taining the origin as an interior point, which furthermore has the properties
as described in Case 1, respectively Case 2. In case the dilations δr are
anisotropic, assume in addition that V is closed. Choose L as in (3.1) re-
spectively (3.2) and let SR = SδRV .

If log(2+L)f ∈ L2(Hn) then SRf(x)→ f(x) a.e. as R→∞. Moreover,
if B is any subset with finite measure of Hn, then

(3.3) ‖Mf‖2L2(B) ≤ CB,n‖log(2 + L)f‖L2 ,

where M denotes the maximal function defined by

Mf(x) = sup
R≥1
|SRf(x)|.

3.2. Concrete realization of joint spectral multiplier operators.
Let us first recall some well-known facts about the Heisenberg group and
its representation theory (see e.g. [Fo], [St], [T], and the original papers by
D. Geller [G1], [G2]).

The group Fourier transform on the Heisenberg group Hn is defined in
terms of the Schrödinger representations, i.e. the irreducible unitary repre-
sentations of infinite dimension: For every µ ∈ R× := R\{0} the Schrödinger
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representation πµ, acting on L2(Rn), is given by

[πµ(x, y, u)φ](t) := eiµ(u+y·t+ 1
2
x·y)φ(t+ x), φ ∈ L2(Rn).

One checks that πµ : Hn → U(L2(Rn)) is a strongly continuous homo-
morphism from Hn into the group U(L2(Rn)) of unitary operators on the
representation space L2(Rn).

The Fourier transform of a function f ∈ L1(Hn) is the operator-valued
mapping f̂ : R× → B(L2(Rn)) given (in the strong operator sense) by

f̂(µ) :=
�

Hn

f(z, u)πµ(z, u) dz du, µ ∈ R×.

One also writes πµ(f) instead of f̂(µ). Then

f̂1 ∗ f2(µ) = f̂1(µ)f̂2(µ) ∀f1, f2 ∈ L1(Hn),

where the convolution of f1 and f2 on Hn is defined by

f1 ∗ f2(g) :=
�

Hn

f1(h)f2(h−1g) dh.

For sufficiently “nice” functions, such as Schwartz functions, one then has
the following Fourier inversion formula:

f(z, u) = (2π)−n−1
�

R×
tr(πµ(z, u)∗f̂(µ))|µ|n dµ.(3.4)

Here tr(T ) denotes the trace of the operator T. Equivalently, one has Plan-
cherel’s formula: If f ∈ L1 ∩ L2(Hn), then

‖f2‖2 = (2π)−n−1
�

R×
‖f̂(µ)‖2HS|µ|n dµ,(3.5)

where ‖ · ‖HS denotes the Hilbert–Schmidt norm. Denote by dπµ the derived
representation of the Lie algebra hn. Then

dπµ(Xj) = ∂tj , dπµ(Yj) = iµtj , dπµ(U) = iµ,

so that
dπµ(Lj) = −∂2

tj + µ2t2j , j = 1, . . . , n.

These are rescaled Hermite operators, acting on the jth coordinate only. The
joint eigenfunctions of dπµ(L1), . . . , dπµ(Ln) (and dπµ(−iU)) are therefore
given by

hµk(t) := |µ|n/4
n∏
j=1

hkj (|µ|
1/2tj),

where k = (k1, . . . , kn) ∈ Nn and hm(s) is the L2-normalized Hermite func-
tion given by

hm(s) := (2m
√
πm!)−1/2Hm(s)e−s

2/2.
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Here Hm(s) denotes the Hermite polynomial of degree m, i.e.

Hm(s) := (−1)mes
2 dm

dsm
(e−s

2
).

Then

dπµ(Lj)h
µ
k = |µ|(2kj + 1)hµk , j = 1, . . . , n,(3.6)

dπµ(−iU)hµk = µhµk .(3.7)

Therefore if ψ is any Borel measurable joint spectral multiplier on Rn+1,
say of moderate growth, we can explicitly define the (possibly unbounded)
operator Tψ = ψ(L1, . . . , Ln,−iU) by means of its Fourier transform given
by

(3.8) πµ(Tψf)hµk := ψ(|µ|(2k1 + 1), . . . , |µ|(2kn + 1), µ)πµ(f)hµk ,

and the Fourier inversion formula (3.4). This makes sense for instance for
Schwartz functions f ∈ S(Hn).

Denote by Fn the Heisenberg fan, i.e. the closure of the set

{(|µ|(2k1 +1), . . . , |µ|(2kn+1), µ) : µ ∈ R×, k = (k1, . . . , kn) ∈ Nn} ⊂ Rn+1.

Then clearly the operator Tψ depends only on the restriction of ψ to Fn.
Moreover, if ψ is bounded on the Heisenberg fan then, by Plancherel’s the-
orem, Tψ is bounded on L2(Hn) with norm

(3.9) ‖Tψ‖ = ‖ψ|Fn‖∞.
Also by the Schwartz kernel theorem and left-invariance there exists a unique
convolution kernel Kψ ∈ S ′(Hn) such that

(3.10) Tψf = f ∗Kψ for every f ∈ S(Hn).

We shall use the abbreviation

k̃ = (2k1 + 1, . . . , 2kn + 1) for k ∈ Nn.

We also define a spectral measure σ supported in Fn by

(3.11)
�
h(ξ) dσ(ξ) = cn

�

R×

∑
k∈Nn

h(|µ|k̃, µ)|µ|n dµ,

for suitable Borel measurable functions h on Rn+1, where cn = (2π)−n−1.
The following identity follows then easily from (3.5) and (3.8):

(3.12) ‖Kψ‖22 =
�
|ψ(ξ)|2 dσ(ξ).

3.3. Proof of Theorem 3.1. Let V ⊂ Rn+1 be as in the theorem, and
let again SR = SδRV . We set KR = KχSR

so that by (3.10),

SRf = f ∗KR for every f ∈ S(Hn).

We distinguish the cases: β < αmin = minj=1,...,n αj (Case 1), and β ≥ αmin

(Case 2). In Case 1 we introduce a homogeneous norm | · | on Rn+1, in the
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sense of [FS], as follows:

|(λ, µ)| = max(|λ1|1/α1 , . . . , |λn|1/αn , |µ|1/β).

In Case 2 we work with the homogenous seminorm

|(λ, µ)| = max(|λ1|1/α1 , . . . , |λn|1/αn)

instead. Then in particular |δrξ| = r|ξ|. Notice that an equivalent homoge-
neous norm, respectively seminorm, is given by

‖(λ, µ)‖ = |λ1|1/α1 + · · ·+ |λn|1/αn + |µ|1/β,

and
‖(λ, µ)‖ = |λ1|1/α1 + · · ·+ |λn|1/αn .

Hence in both Case 1 and Case 2 we have, in the sense of functional calculus,

(3.13) L = ‖(L1, . . . , Ln,−iU)‖.

Then our assumptions on V imply that there exists a constant M ≥ 1
such that, in both cases, for every R ≥M we have

|ξ| ≤MR for every ξ ∈ δRV ;(3.14)
ξ ∈ δRV for every ξ ∈ Fn with |ξ| ≤ R/M.(3.15)

Indeed, in Case 1, V is bounded so that there is a constant M such that
|ξ| ≤M for every ξ ∈ V. Similarly, in Case 2, the projection of V onto Rn is
bounded so that the same conclusion holds. Thus (3.14) follows by scaling.

As for (3.15), in Case 1, we can use a similar scaling argument making
use of the fact that V contains 0 as an interior point. Statement (3.15) then
even holds for any ξ ∈ Rn+1. The reasoning in Case 2 is a bit more subtle:

Assume ξ = (|µ|k̃, µ) ∈ Fn satisfies |ξ| ≤ R/M. Then (2kj + 1)|µ| ≤
(R/M)αj for j = 1, . . . , n and in particular |µ| ≤ (R/M)αmin. Since in Case 2,
β ≥ αmin, we get |µ| ≤ (R/M)β. Therefore δR−1ξ = η, where η lies in the set
U given by |ηj | ≤ (1/M)αj , j = 1, . . . , n, and |ηn+1| ≤ (1/M)β. By choosing
M sufficiently large we may assume that U ⊂ V and then ξ ∈ δRV.

Our strategy to prove Theorem 3.1 will be to adapt the method of [MMP]
by means of the following two lemmas.

Lemma 3.2. KR ∈ L2(Hn) for every R > 0. Moreover, if we set W (R) =
‖KR‖22 then W is an increasing function and there is a constant C ≥ 1 such
that for R� 1,

1
C
RD+ν ≤W (R) ≤ CRD+ν ,

where ν = min{αmin, β} = min{α1, . . . , αn, β}.
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Proof. By Plancherel’s formula (3.12) for spectral multipliers and (3.11)
we have

W (R) = ‖KR‖22 = σ(δRV ) = cn
�

R×

( ∑
k∈Nn, (|µ|k̃,µ)∈δRV

1
)
|µ|n dµ.

This function is clearly increasing in R. We shall prove that the right-hand
side in this display is finite and of order O(RD+ν). Indeed, (|µ|k̃, µ) ∈ δRV
implies by (3.14) that

(2kj + 1)|µ| ≤ (MR)αj , j = 1, . . . , n,
|µ| ≤ (MR)ν ,

since ν = β in Case 1, and ν = αmin in Case 2. Notice that, in Case 2, the
last inequality is a consequence of the first n inequalities. Therefore

W (R) ≤ C
�

|µ|≤(MR)ν

n∏
j=1

( ∑
2kj+1≤(MR)αj /|µ|

1
)
|µ|n dµ

≤ C(MR)α1+···+αn
�

|µ|≤(MR)ν

dµ ≤ CRD+ν .

The lower bound is derived in a similar way by using (3.15) in place of
(3.14). Indeed, by (3.15), in Case 2, (|µ|k̃, µ) ∈ δRV whenever

(2kj + 1)|µ| ≤ (R/M)αj for every j = 1 . . . , n,(3.16)

and, in Case 1, if in addition |µ| ≤ (R/M)β. In particular, in both cases, we
see that (|µ|k̃, µ) ∈ δRV whenever |µ| ≤ (R/M)ν and (3.16) holds. Notice
also that for such µ and R ≥ M we have (R/M)αj/|µ| ≥ 1 for every j.
Therefore

W (R) ≥ c
�

|µ|≤(R/M)ν

n∏
j=1

( ∑
2kj+1≤(R/M)αj /|µ|

1
)
|µ|n dµ

≥ c(R/M)α1+···+αn
�

|µ|≤(R/M)ν

dµ ≥ cRD+ν ,

for positive constants c > 0 which may change from line to line.

Lemma 3.3. Under the assumptions on V of Theorem 3.1 the function
W (R) is right-continuous.

Proof. We shall prove that W is continuous from the right at R = 1. For
general values of R the proof is similar.

We have seen that
W (R) = σ(δRV ).
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Let {Rj}j be a decreasing sequence such that limj→∞Rj = 1. We have to
prove that W (Rj)→W (1) as j →∞. To this end we first observe that

(3.17) V ⊆
∞⋂
j=1

δRjV ⊆ V .

Indeed, if x ∈ V then δrx ∈ V for all r ≤ 1 since V is star-shaped. Write
x = δRj (δ1/Rjx) to see that x ∈ δRjV. Hence the first inclusion is clear. To
prove the second inclusion let y ∈

⋂∞
j=1 δRjV. Then there are zj ∈ V such

that y = δRjzj . Trivially y = lim δ1/Rjy, hence y = lim zj ∈ V .

First case: anisotropic dilations. In this case we assume that V is closed
so that V =

⋂∞
j=1 δRjV by (3.17). Since δR1V ⊃ δR2V ⊃ · · · ⊃ V and

σ(δR1V ) < ∞ the dominated convergence theorem implies that σ(V ) =
limj→∞ σ(δRjV ). Hence W (1) = limj→∞W (Rj).

Second case: isotropic dilations δRx = Rx. Set Ṽ =
⋂∞
j=1 δRjV . Then

our reasoning above shows that σ(δRjV ) → σ(Ṽ ) as j → ∞. Therefore it
will suffice to prove that σ(Ṽ \ V ) = 0.

Fix any ray

Γ±k = {((2k1 + 1)|µ|, . . . , (2kn + 1)|µ|, µ) : ±µ > 0}

in the Heisenberg fan Fn and take x ∈ Ṽ . Then we may write x = Rjxj
with xj = (1/Rj)x ∈ V . Clearly xj → x.

Since V is star-shaped, Rx ∈ V for 0 ≤ R < 1. Therefore Γ±k ∩ (Ṽ \ V )
contains at most one point. So σ(Γ±k ∩ (Ṽ \ V )) = 0 since the measure σ
is absolutely continuous with respect to the Lebesgue measure along such a
ray. Our claim now follows since there are only a countable number of rays
within Fn.

Remark 3.4. If V is not closed and if the dilations are anisotropic then
the set Ṽ defined in the previous proof may satisfy σ(Ṽ \ V ) > 0, so that
W (R) is not right-continuous.

Example. For the Heisenberg group H1 we choose on R2 parabolic di-
lations δr(x1, x2) = (rx1, r

2x2) and consider the star-shaped set V given
by

V = A∪B = {(x1, x2) ∈ R2 : x2
1 +x2

2 < 1}∪{δr(t, t) : 0 < t < 2, 0 < r < 1}.
Observe that B = {(x1, x2) : x2

1/2 < x2 < x1, 0 < x1 < 2}. Next we
consider Ṽ . Notice that the boundary of V contains the segment γ = {(t, t) :
1 ≤ t ≤ 2}. Then, for R > 1, the boundary of δRV contains the line
segment {(Rt,R2t) : 1 ≤ t ≤ 2} which has slope R > 1. We thus see that
γ ⊂ δRV for every R > 1. Hence Ṽ =

⋂∞
j=1 δRjV ⊃ γ, whereas γ and V are
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disjoint. Therefore γ ⊂ Ṽ \ V . Now σ(γ) =
	
γ µdµ > 0. So we proved that

σ(Ṽ \ V ) > 0 since γ lies on the ray Γ+
0 of the Heisenberg fan F1.

To complete the proof of Theorem 3.1 we define a sequence 0 = R0 <
R1 < R2 < · · · recursively as in [MMP] by setting

Rm+1 = sup{R ≥ Rm : W (R) < W (Rm) + 1}, m ≥ 0.

Then by Lemma 3.2, Lemma 3.3 and arguing as in [MMP], the above re-
cursion leads to an infinite sequence {Rm}m tending to infinity and we have
(compare [MMP, (4.1), (4.2)])

m ≤W (Rm) ≤ CRD+ν
m , m ≥ 0,(3.18)

log(3 +m) ≤ C log(2 +Rm), m ≥ 1.(3.19)

Next we define pairwise orthogonal projections Pm on L2(Hn) by setting

P0 = S0 = χ{0}(L1, . . . , Ln,−iU) = 0,

Pm = SRm − SRm−1 = χm(L1, . . . , Ln,−iU),

with χm = χ(δRmV )\(δRm−1
V ), m ≥ 1. Then

SRJ =
J∑

m=0

Pm.

By Plancherel’s theorem, (3.19) and since χ2
m = χm, we have

[log(2 +m)]2‖Pmf‖22
= cn

�

R×

∑
k∈Nn

[log(3 +m− 1)]2χm(|µ|k̃, µ)‖πµ(f)hµk‖
2
2 |µ|n dµ

≤ C
�

R×

∑
k∈Nn

[log(2 +Rm−1)]2χm(|µ|k̃, µ)‖πµ(f)hµk‖
2
2 |µ|n dµ.

By (3.15) we know that |ξ| ≥ Rm−1/M if ξ = (|µ|k̃, µ) ∈ Fn ∩ (δRmV ) \
(δRm−1V ), hence

log(2 +Rm−1) ≤ log(2 +M |(|µ|k̃, µ)|) ≤ C log(2 + ‖(|µ|k̃, µ)‖).

Therefore, by (3.13),

[log(2 +m)]2‖Pmf‖22
≤ C

�

R×

∑
k∈Nn

[log(2 + ‖(|µ|k̃, µ)‖)]2χm(|µ|k̃, µ)‖πµ(f)hµk‖
2
2 |µ|n dµ

= C
�

R×

∑
k∈Nn

‖πµ(log(2 + L)f)hµk‖
2
2χm(|µ|k̃, µ)|µ|n dµ.
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Summing over all m we then obtain, by Plancherel’s formula,∑
m∈N

[log(2 +m)]2‖Pmf‖22 ≤ C
�

R×

∑
k∈Nn

‖πµ(log(2 + L)f)hµk‖
2
2 |µ|n dµ

= C‖log(2 + L)f‖22.
We can thus apply Rademacher–Men’shov’s theorem to conclude that

(3.20) ‖M̃f‖2 ≤ C‖log(2 + L)f‖2,
where M̃ denotes the discrete maximal operator given by

M̃f = sup
J≥0

∣∣∣ J∑
m=0

Pmf(x)
∣∣∣ = sup

J≥0
|SRJf(x)|.

We finally dominate the maximal function over arbitrary R ≥ 1 as fol-
lows:

Mf(x) = sup
R≥1
|SRf(x)| ≤ M̃f(x) + sup

m≥0
sup

Rm≤r<Rm+1

|Srf(x)− SRmf(x)|.

To control the remainder term, observe that by our definition of the
sequence Rm we have W (r) < W (Rm) + 1. Moreover, Srf − SRmf = Tηf,
where η = χ(δrV )\(δRmV ). Then Srf − SRmf = f ∗Kη, and since η2 = η we
have

‖Kη‖22 = cn
�

R×

∑
k∈Nn

η(|µ|k̃, µ) |µ|n dµ

= cn
�

R×

∑
k∈Nn

(χδrV − χδRmV )(|µ|k̃, µ) |µ|n dµ

= ‖Kr‖22 − ‖KRm‖22 = W (r)−W (Rm) ≤ 1.

Notice that f ∗Kη = (Pm+1f) ∗Kη. Then, as in [MMP], we may conclude
by Cauchy–Schwarz’ inequality that for x ∈ Hn,

|Srf(x)− SRmf(x)| ≤
�
|(Pm+1f)(y)Kη(y−1x)| dy

≤ ‖Pm+1f‖2Aη(x) ≤ ‖Pm+1f‖2,
where

Aη(x)2 =
�
|Kη(y−1x)|2 dy =

�
|Kη(y)|2 dy = ‖Kη‖22 ≤ 1

since Hn is unimodular. As in [MMP] this implies

sup
m≥0

( sup
Rm≤r<Rm+1

|Srf(x)− SRmf(x)|) ≤ C‖f‖2,

hence
Mf(x) ≤ M̃f(x) + C‖f‖2.

Therefore (3.3) is proved. The remaining statement about a.e. convergence
in Theorem 3.1 follows now by standard arguments.
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Remarks 3.5. (a) Our theorem applies for instance to pseudo-differen-
tial operators on Hn of the form L = La1

1 + · · · + Lann + |U |b and their
“subelliptic” variants L = La1

1 + · · · + Lann , with a1, . . . , an, b > 0, and the
spectrally defined partial sum operators SR =

	R
0 dEτ , where L =

	∞
0 τ dEτ

denotes the spectral resolution of L. The associated sets V are here given
by V = {(λ1, . . . , λn, µ) : |λ1|a1 + · · · + |λn|an + |µ|b ≤ 1}, respectively by
V = {(λ1, . . . , λn, µ) : |λ1|a1 + · · · + |λn|an ≤ 1}, and the dilations have
weights αj = 1/aj and β = 1/b for the first case (in the second case, β
must satisfy β ≥ minj 1/aj). Notice that V is unbounded with respect to
the variable µ in the second case.

(b) Extensions of Theorem 3.1 to more general two-step nilpotent Lie
groups seem possible.

(c) We take the opportunity to correct a minor error in [MMP] which
however has no effect on the proofs in that paper: the exponent α in display
(1.2) of [MMP] is not the local homogeneous dimension, but half of it.
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