VOL. 94

2002

NO. 1

ABSOLUTELY S-DOMAINS AND PSEUDO-POLYNOMIAL RINGS

ΒY

NOÔMEN JARBOUI and IHSEN YENGUI (Sfax)

Abstract. A domain R is called an absolutely S-domain (for short, AS-domain) if each domain T such that $R \subseteq T \subseteq qf(R)$ is an S-domain. We show that R is an AS-domain if and only if for each valuation overring V of R and each height one prime ideal q of V, the extension $R/(q \cap R) \subseteq V/q$ is algebraic. A Noetherian domain R is an AS-domain if and only if dim $(R) \leq 1$. In Section 2, we study a class of R-subalgebras of R[X]which share many spectral properties with the polynomial ring R[X] and which we call pseudo-polynomial rings. Section 3 is devoted to an affirmative answer to D. E. Dobbs's question of whether a survival pair must be a lying-over pair in the case of transcendental extension.

0. Introduction. In this paper, all rings considered are commutative with identity. An inclusion of rings signifies that the smaller ring is a subring of the larger and has the same identity. Let R be a ring and n a positive integer. We denote by R[n] the ring of polynomials in n indeterminates over R and by R[X] the ring of polynomials in one indeterminate. We denote by dim(R) the Krull dimension of R and by dim $_v(R)$ its valuative dimension, that is, the limit of the sequence $(\dim(R[n]) - n, n \in \mathbb{N})$. If p is a prime ideal of R, we denote by h(p) the height of p, and by $ht_v(p)$ the limit of the sequence $(ht(p[n]), n \in \mathbb{N})$.

Given a finite-dimensional ring R, we say that R is a Jaffard ring if $\dim(R) = \dim_v(R)$ [2]. This property is not local; we say that R is a locally Jaffard ring if R_p is a Jaffard ring for each prime ideal p of R. A domain R is said to be an S-domain if for each height 1 prime ideal p of R, we have $\operatorname{ht}(p[X]) = 1$. A strong S-ring is a ring R such that for each prime ideal p of R, R/p is an S-domain; equivalently for any consecutive primes $p \subset q$ in R, $p[X] \subset q[X]$ are consecutive in R[X]. An overring of a domain R is a ring contained between R and its quotient field $\operatorname{qf}(R)$.

For an extension of domains $R \subseteq T$, we denote by tr.deg[T : R] the transcendence degree of qf(T) over qf(R). Recall that an extension $R \subseteq T$

²⁰⁰⁰ Mathematics Subject Classification: Primary 13B02; Secondary 13C15, 13A17, 13A18, 13B25, 13E05.

Key words and phrases: polynomial ring, Jaffard ring, strong S-ring, survival extension, lying-over extension.

is said to satisfy the *altitude inequality* (resp., the *altitude formula*) if for any prime ideal q of T over a prime ideal p of R, we have respectively

$$ht(q) + tr.deg[T/q: R/p] \le ht(p) + tr.deg[T:R],$$

$$ht(q) + tr.deg[T/q: R/p] = ht(p) + tr.deg[T:R].$$

A. Ayache and P.-J. Cahen in [4] studied the domains each of whose overrings is Jaffard; these are domains R whose integral closure R' is a Prüfer domain ([4, Théorème 2.6]). They are called domains *satisfying absolutely* the altitude inequality or absolutely Jaffard domains.

Our purpose in Section 1 is to complete this circle of ideas by dealing with absolutely S-domains (for short AS-domains); that is, domains each of whose overrings is an S-domain. The main result of this section is Theorem 1.5 which states that R is an AS-domain if and only if for each valuation overring V of R and each height 1 prime ideal q of V, the extension $R/(q \cap R) \subseteq V/q$ is algebraic. It is clear that absolutely Jaffard domains are AS-domains, but the converse does not hold (see Corollary 1.18). On the other hand, Proposition 1.11 points out a relationship between these two classes of domains: R is an absolutely Jaffard domain if and only if R/p is an AS-domain for each prime ideal p of R. Among the several interesting consequences of Theorem 1.5, we just point out that R[X] is an AS-domain if and only if R is a field (Proposition 1.14) and that a Noetherian domain R is absolutely S if and only if dim $(R) \leq 1$ (Proposition 1.15). The last part of Section 1 is devoted to the transfer of this notion to some pullback constructions.

In [5], it is proved that if R is a Jaffard domain, then each domain contained between R and R[n] is Jaffard. It is an open question whether each domain between R and R[X] is a locally Jaffard (resp., an S-) domain when R is a locally Jaffard (resp., an S-) domain. The difficulty in the study of intermediate rings between R and R[X] is that the nature of R as well as that of R[X] has a very subtle influence on intermediate rings. Because of this, it appears to be too difficult to understand all domains between Rand R[X] except in case R has very simple structure.

In Section 2 we begin with a description of the valuative height of $p[X] \cap T$, for any ring T between R and R[X] and any prime ideal p of R. Moreover, we note that if T is an intermediate ring between R and R[X] and P is a prime ideal of T, then the inclusion relation $p[X] \cap T \subseteq P$ with $p = P \cap R$ may not hold (Propositions 2.6 and 3.5). Our concern in that section is with rings T between R and R[X] satisfying the previous inclusion for each prime P of T; we call them R-pseudo-polynomial rings, or briefly pseudo-polynomial rings. The name is justified by the fact that these rings share many ideal-theoretic properties with polynomial rings in one variable to which they are closely related. The motivation for studying this generalization is diverse. To have an example of a pseudo-polynomial ring, one

can consider an (R[X], I[X], D) construction ring T, where R is a ring, I is an ideal of R such that dim(R/I) = 0 and D is a ring contained between R/I and (R/I)[X] (Proposition 2.3). Note that a pseudo-polynomial ring need not be a polynomial ring. For instance, if K is a field, then the domain $K[X^2, X^3]$ is not a polynomial ring since it is not integrally closed, while it is obviously a K-pseudo-polynomial ring.

Pseudo-polynomial rings are characterized in terms of lying-over extensions (Proposition 2.6). We study the structure of the prime spectrum of T, clarifying the relation between the spectrum of T and those of R and R[X]. We generalize some well-known results previously established for polynomial rings [9]. The final aim of this section is to prove our promised results which state that if R is a locally Jaffard (resp., an S-) domain, then each pseudo-polynomial ring is locally Jaffard (resp., S). Section 3 is concluded with a study of the relationship between pseudo-polynomial rings and lyingover pairs. We give an affirmative answer to D. E. Dobbs' question [13] of whether a survival pair must be a lying-over pair in the case of transcendental extension.

1. Absolutely S-domains. A domain R is said to be an *S-domain* if for each prime ideal p of R such that ht(p) = 1, we have ht(p[X]) = 1. Now, we recall some definitions given in the introduction.

DEFINITION 1.1. A domain R is said to be an *absolutely S-domain* (for short, *AS-domain*) if each overring of R is an S-domain.

It follows immediately from this definition that each domain which satisfies absolutely the altitude inequality [4, Lemme 2.1] is an AS-domain. Moreover, this notion is stable under localization. We first give the following straightforward result.

PROPOSITION 1.2. Let R be a domain. Then the following statements are equivalent:

- (i) R is an AS-domain;
- (ii) R_p is an AS-domain for each prime ideal p of R;
- (iii) R_m is an AS-domain for each maximal ideal m of R;
- (iv) $N^{-1}R$ is an AS-domain for each multiplicative subset N of R.

Recall that a domain R is said to be *going-down* if for each overring T of R the extension $R \subseteq T$ has the going-down property ([14]).

PROPOSITION 1.3. A going-down S-domain is an AS-domain.

Proof. Let R be a going-down S-domain, T a overring of R and q a height 1 prime ideal in T. Since R is going-down, ht(p) = 1, where $p = q \cap R$.

The domain R_p is a one-dimensional Jaffard domain [8, Corollary 6.3], hence so is T_q . Therefore T is an S-domain.

In particular, a one-dimensional S-domain is an AS-domain. However, an S-domain need not be an AS-domain. To see this, it suffices to consider a ring of polynomials with coefficients in an integral domain which is not a field (see Proposition 1.14).

We begin by presenting some terminology. Let B be a ring, I an ideal of B and D a subring of B/I. Consider the pullback construction of commutative rings:

$$\begin{array}{cccc} R & \to & D \\ \downarrow & & \downarrow \\ B & \to & B/I \end{array}$$

Following [10], we say that R is the ring of the (B, I, D) construction and we write R = (B, I, D). Next we consider the case where I is assumed to be maximal. Denote by M the ideal I, by T the domain B, by K the field T/M, and by $\varphi: T \to K$ the natural epimorphism.

We recall a few well-known properties of pullbacks. First, M is a common ideal of both R and T, $M = (R : T) = \{x \in T \mid xT \subseteq R\}$ (if $D \neq K$), and $R/M \simeq D$. For each $p \in \text{Spec}(R)$ with $M \subseteq p$, there is a (unique) $q \in$ Spec(D) such that $\varphi^{-1}(q) = p$; and $\varphi^{-1}(D_q) = R_p$. If T is local, then each prime ideal of R compares with M, and thus $\dim(R) = \dim(D) + \dim(T)$. Also R is local if and only if both D and T are local (cf. [16, Theorem 1.4 and Proposition 2.1]).

Before stating Theorem 1.5, we establish a proposition which serves both to motivate this theorem and to dispatch the difficult implication in its proof.

PROPOSITION 1.4. Let T be a domain, M a maximal ideal of T, D a subring of the residue field K = T/M, k the quotient field of D and R := (T, M, D).

(a) If $ht_T(M) \ge 2$, then the following statements are equivalent:

- (i) R is an S-domain;
- (ii) T is an S-domain.

(b) If $ht_T(M) = 1$, then the following statements are equivalent:

- (i) R is an S-domain;
- (ii) T is an S-domain and K is algebraic over k.

Proof. (a) (i) \Rightarrow (ii). Let q be a height 1 prime ideal of T. Then q does not contain M. Thus $T_q = R_p$, where $p = q \cap R$. Hence $\operatorname{ht}(p) = 1$ and so $\operatorname{ht}(p[X]) = 1$ since R is an S-domain. Thus $\operatorname{ht}(q[X]) = \operatorname{ht}(p[X]) = 1$.

(ii) \Rightarrow (i). Let p be a height 1 prime ideal of R. Then p does not contain M. Thus there exists a unique prime ideal q of T such that $T_q = R_p$.

Hence ht(q) = 1 and as T is an S-domain, we have ht(q[X]) = 1. Thus ht(p[X]) = ht(q[X]) = 1.

(b) (i) \Rightarrow (ii). First notice that $R_M = (T_M, MT_M, k)$. Since R_M is a onedimensional S-domain, it is a Jaffard domain. Thus K is algebraic over k([2, Theorem 2.6]). Now our task is to show that T is an S-domain. Let qbe a height 1 prime ideal of T. If q = M, then since $R_M = (T_M, MT_M, k)$ is a Jaffard domain, it follows readily from [2, Theorem 2.6] that T_M is a Jaffard domain. Thus $\operatorname{ht}_{T[X]}(q[X]) = 1$. Now if $q \neq M$, then $T_q = R_p$, where $p = q \cap R$. Hence $\operatorname{ht}(p) = 1$ and so $\operatorname{ht}(p[X]) = 1$ since R is an S-domain. Thus $\operatorname{ht}(q[X]) = \operatorname{ht}(p[X]) = 1$.

(ii) \Rightarrow (i). Let p be a height 1 prime ideal of R. If p = M, then since $R_M = (T_M, MT_M, k)$, K is algebraic over k and T_M is a Jaffard domain it follows from [2, Theorem 2.6] that R_M is a Jaffard domain. Thus $\operatorname{ht}_{R[X]}(p[X]) = 1$. Now assume that $p \neq M$. Then there exists a unique prime ideal q of T such that $T_q = R_p$. Hence $\operatorname{ht}(q) = 1$ and as T is an S-domain, we have $\operatorname{ht}(q[X]) = 1$. Thus $\operatorname{ht}(p[X]) = \operatorname{ht}(q[X]) = 1$.

Recall that an extension $R \subseteq T$ of domains is said to be *residually* algebraic if $R/(q \cap R) \subseteq T/q$ is algebraic for each prime ideal q of T ([7] and [17]).

Now, we establish the main result of this section.

THEOREM 1.5. Let R be a domain. Then the following statements are equivalent:

(1) R is an AS-domain;

(2) for each overring T of R and primes $q \subseteq q_1$ in T, if $q \cap R = q_1 \cap R$ and ht(q) = 1, then $q = q_1$;

(3) for each valuation overring V of R and primes $q \subseteq q_1$ in V, if $q \cap R = q_1 \cap R$ and $\operatorname{ht}(q) = 1$, then $q = q_1$;

(4) for each overring T of R and each height 1 prime ideal q of T, we have $\operatorname{tr.deg}[T/q: R/(q \cap R)] = 0;$

(5) for each one-dimensional overring T of R, the extension $R \subseteq T$ is residually algebraic;

(6) for each valuation overring V of R and each height 1 prime ideal q of V, we have $\operatorname{tr.deg}[V/q: R/(q \cap R)] = 0;$

(7) for each one-dimensional valuation overring V of R, the extension $R \subseteq V$ is residually algebraic.

Proof. The equivalences $(4) \Leftrightarrow (5)$ and $(6) \Leftrightarrow (7)$ as well as the implications $(2) \Rightarrow (3)$ and $(5) \Rightarrow (7)$ are clear. The implication $(3) \Rightarrow (2)$ is due to [18, Corollary 19.7].

 $(1) \Rightarrow (4)$. Let T be an overring of R, and q a height 1 prime in T. Since $R + qT_q$ obtained by the $(T_q, qT_q, R/(q \cap R))$ construction is an S-domain, Proposition 1.4 implies that tr.deg $[T/q : R/(q \cap R)] = 0$.

We prove that if (1) fails, then (6) fails. Assume that T is an overring of R containing a prime ideal q of height 1 such that ht(q[X]) = 2. Then there is a nonzero prime ideal Q of T[X] contained in q[X] such that $Q \cap T = (0)$. Thus T is a subring of $T_1 = T[X]/Q$ which is isomorphic to T[u], where u is an algebraic element over T. By [18, Corollary 19.7], there is a valuation overring W of T_1 containing a prime ideal J of height 1 such that $J \cap T_1 = q[X]/Q$. Set $V = W \cap qf(R)$. Then V is a valuation overring of R containing a height 1 prime ideal $J \cap qf(R)$ ([18, Theorem 19.16]) such that $(J \cap qf(R)) \cap R = q \cap R$. Now, tr.deg $[W/J : V/(J \cap qf(R))] = 0$ ([18, Theorem 19.16]). Hence

$$tr.deg[V/(J \cap qf(R)) : R/(q \cap R)] = tr.deg[W/J : R/(q \cap R)]$$

$$\geq tr.deg[T_1/(q[X]/Q) : T/q] = tr.deg[(T[X]/Q)/(q[X]/Q) : T/q]$$

$$= tr.deg[T[X]/q[X] : T/q] = 1.$$

We prove that if (3) fails, then (6) fails. Assume that V is a valuation overring of R containing primes $q \,\subset M$ lying over p and such that $\operatorname{ht}(q) = 1$. If $x \in M \setminus q$, we show that \overline{x} is transcendental over R/p in V/q. Let $\overline{a_k} \overline{x^k} + \dots + \overline{a_1x} + \overline{a_0} = 0$, where a_0, a_1, \dots, a_k are elements of R. Then $a_k x^k + \dots + a_1 x + a_0 \in q$. Now, $a_0 \in M \cap R = p$, $x(a_k x^{k-1} + \dots + a_1) \in q$ and $a_k x^{k-1} + \dots + a_1 \in q$. By induction, we conclude that $\overline{a_k} = \overline{a_{k-1}} = \dots = \overline{a_1} = \overline{a_0} = 0$, and consequently tr.deg $[V/q : R/p] \geq 1$.

We prove that if (1) fails, then (3) fails. Assume that T is an overring of R containing a prime ideal q of height 1 such that ht(q[X]) = 2. Then there is a nonzero prime ideal Q of T[X] contained in q[X] such that $Q \cap T = (0)$. Thus, T is a subring of $T_1 = T[X]/Q$ which is isomorphic to T[u], where u is an algebraic element over T. We can assume that T is local with maximal ideal q. The ideal $p_0 = q[X]/Q$ is prime in T_1 , but not maximal (since $T_1/p_0 \cong (T/q)[X]$, which is not a field). Therefore if M is a maximal ideal of T_1 containing p_0 , then p_0 and M are prime ideals of T_1 lying over q. By [18, Corollary 19.7], there is a valuation overring W of T_1 containing prime ideals $p' \subset M'$ such that ht(p') = 1, $p' \cap T_1 = p_0$ and $M' \cap T_1 = M$. Set $V = W \cap qf(R)$. Then V is a valuation overring of R containing distinct prime ideals $p' \cap qf(R) \subset M' \cap qf(R)$ such that ht(p') = 1 and

$$(p' \cap qf(R)) \cap R = p_0 \cap R = q \cap R = M \cap R = (M' \cap qf(R)) \cap R.$$

Among the several interesting consequences of Theorem 1.5, we limit ourselves to pointing out the following three propositions. PROPOSITION 1.6. Let $R \subset T$ be an algebraic extension. If R is an AS-domain, then so is T.

Proof. Assume that T is not an AS-domain. Then by the previous theorem, there is a valuation overring W of T containing distinct prime ideals p and M such that ht(p) = 1 and $p \cap T = M \cap T$. By [18, Theorem 19.16], $V = W \cap qf(R)$ is a valuation overring of R containing distinct prime ideals $p \cap qf(R)$ and $M \cap qf(R)$ such that $(p \cap qf(R)) \cap R = (M \cap qf(R)) \cap R$ and $ht(p \cap qf(R)) = 1$. In view of Theorem 1.5, we conclude that R is not an AS-domain.

REMARK 1.7. The converse of the previous proposition does not hold (see Corollary 1.18).

PROPOSITION 1.8. Let $R \subset T$ be an integral extension. R is an ASdomain if and only if T is an AS-domain.

Proof. According to Proposition 1.6, if R is an AS-domain, then so is T. Assume now that T is an AS-domain, and let C be an overring of R. Denote by C' the integral closure of C in qf(T). Since C' is an overring of T, it is an S-domain. Therefore C is also an S-domain.

PROPOSITION 1.9. If R is an AS-domain, then it has the following property:

(*) For each prime ideal p of R, if $(0) \subset P \subset p[X]$ is a saturated chain of primes in R[X], then $P \cap R \neq (0)$.

Proof. We show that if the property (*) fails, then so does assertion (3) in Theorem 1.5. For this, consider the ring $T_1 = R[X]/P$ and use the same idea as in the proof of $(3) \Rightarrow (1)$ in Theorem 1.5. \blacksquare

Recall that a domain R is said to be *strong* S if R/p is an S-domain for each prime ideal p of R; equivalently, if for each pair of consecutive prime ideals $p \subset q$ of R, the extended primes $p[X] \subset q[X]$ are consecutive. R is said to be *stably strong* S if R[n] is strong S for each integer n ([20, 21]). A domain R is said to be *totally Jaffard* if R/p is locally Jaffard for each prime p of R ([11]). We now recall the following theorem.

THEOREM 1.10 [6, Théorème 5.1]. Let R be a domain. Then the following statements are equivalent:

- (i) each overring of R is a strong S-domain;
- (ii) each overring of R is Jaffard;
- (iii) each overring of R is totally Jaffard;
- (iv) each overring of R is a stably strong S-domain;
- (v) each overring of R satisfies the altitude inequality;
- (vi) each overring of R is locally Jaffard;
- (vii) R satisfies absolutely the altitude inequality.

This raises the question whether the class of rings satisfying absolutely the altitude inequality coincides with that of absolutely S-domains. It is clear that for one-dimensional domains these two notions coincide, but in the general case, the answer is negative. Indeed, if V is a valuation domain with maximal ideal M and k is a subfield of V/M such that $\dim(V) \ge 2$ and tr.deg $[V/M:k] \ge 1$, then by Corollary 1.18, R := (V, M, k) is an AS-domain and by [2, Theorem 2.6], R is not a Jaffard domain.

The following result establishes a relationship between absolutely Sdomains and domains satisfying the altitude inequality.

PROPOSITION 1.11. Let R be a domain. The following statements are equivalent:

- (i) R satisfies absolutely the altitude inequality;
- (ii) R/p is an AS-domain for each prime ideal p of R.

Proof. (i) \Rightarrow (ii). For each prime p of R, R/p satisfies absolutely the altitude inequality ([4, Proposition 2.2]), and therefore is an AS-domain.

(ii) \Rightarrow (i). Let $P \subset q[X]$ be consecutive primes in R[X] and $p = P \cap R$. Then $P/p[X] \subset (q/p)[X]$ are consecutive in (R/p)[X]. Since R/p is an AS-domain, it follows that P = p[X] (Proposition 1.9). Thus R satisfies absolutely the altitude inequality [6, Proposition 1.4].

As an immediate consequence of Proposition 1.11, we have:

COROLLARY 1.12. Let R be a domain such that $\dim(R) \leq 2$ and $\dim(R[X]) = 1 + \dim(R)$. Then the following statements are equivalent:

(i) R satisfies absolutely the altitude inequality;

(ii) R is an AS-domain.

In the course of proof of Proposition 1.14, we need the following lemma.

LEMMA 1.13. If R[X] is an AS-domain, then so is R.

Proof. Let V be a one-dimensional valuation overring of R with maximal ideal M. By [18, Proposition 20.11], $V[X]_{M[X]}$ is a one-dimensional valuation overring of R[X]. Therefore, by Theorem 1.5, we have

$$tr.deg[V[X]_{M[X]}/MV[X]_{M[X]} : R[X]/(M \cap R)[X]] = 0$$

= tr.deg[V[X]/M[X] : R[X]/(M \cap R)[X]]

 $= \operatorname{tr.deg}[(V/M)[X] : (R/(M \cap R))[X]] = \operatorname{tr.deg}[V/M : R/(M \cap R)].$

Hence by Theorem 1.5, R is an AS-domain.

PROPOSITION 1.14. R[X] is an AS-domain if and only if R is a field.

Proof. By way of contradiction, suppose that R has a height 1 prime ideal p. From the previous lemma, it follows that R is an S-domain. Thus R_p is a Jaffard domain. Since $R_p[X]$ is a localization of R[X], it is an AS-domain

(Proposition 1.2). Moreover, R_p is a one-dimensional Jaffard domain, so by Corollary 1.12, $R_p[X]$ satisfies absolutely the altitude inequality and therefore R_p is a field [4], contrary to the hypothesis.

According to the previous proposition, a Noetherian domain need not be an AS-domain. Indeed, a polynomial ring with two indeterminates over a field is not an AS-domain. Nevertheless, we have the following

PROPOSITION 1.15. A Noetherian domain R is an AS-domain if and only if $\dim(R) \leq 1$.

Proof. Assume that R is a Noetherian domain such that $\dim(R) \geq 2$. Let p be a prime ideal of R of height 2. Since R_p is a two-dimensional Noetherian AS-domain (Proposition 1.2), Corollary 1.12 shows that R_p satisfies absolutely the altitude inequality, contrary to [4, Remarques §3].

Conversely, if dim $(R) \leq 1$, then R satisfies absolutely the altitude inequality and therefore R is an AS-domain.

We now turn to transferring the "AS-domain" property to pullback constructions. We first record the following lemma, which is an immediate consequence of Proposition 1.4.

LEMMA 1.16. Let T be a domain, M a maximal ideal of T, D a subring of the field K = T/M and R := (T, M, D). If R is an S-domain, then each intermediate ring between R and T is an S-domain.

Now, we establish the following useful result.

PROPOSITION 1.17. Let T be a Prüfer domain, M a maximal ideal of T, D a subring of the residue field K = T/M and R := (T, M, D).

- (a) If $ht_T(M) \ge 2$, then R is an AS-domain.
- (b) If $ht_T(M) = 1$, then the following statements are equivalent:
 - (i) R is an S-domain;
 - (ii) K is algebraic over qf(D);
 - (iii) R is an AS-domain.

Proof. Assertion (a) is straightforward and we omit its proof.

(b) (i) and (ii) are equivalent by virtue of Proposition 1.4. Now it remains to show that (i) \Rightarrow (iii). We discuss two cases:

Case 1: If T is local, then it is a valuation domain. Let R_1 be an overring of R. Then by [3, Lemme 4.9], either R_1 is an overring of T and therefore is an S-domain, or R_1 is a domain between R and T and therefore it is an S-domain by the previous lemma. It follows that each overring of R is an S-domain.

Case 2: If T is not local, we show that for each prime ideal p of R, R_p is an AS-domain. Then we conclude using Proposition 1.2.

If M is not contained in p, then there is a unique prime ideal q of T such that $R_p = T_q$. Thus R_p is an AS-domain (since T_q is a Prüfer domain).

If $M \subseteq p$, then there is a unique prime ideal q of D such that $R_p = (T_M, MT_M, D_q)$ and therefore R_p is an AS-domain by Case 1.

The following corollary is in the same vein.

COROLLARY 1.18. Let R := (V, M, k), where V is a valuation domain with maximal ideal M and k a subfield of V/M.

(a) If $\dim(R) \ge 2$, then R is an AS-domain.

(b) If dim(R) = 1, then R is an AS-domain if and only if the residue field V/M is algebraic over R/M.

PROPOSITION 1.19. Let T be a domain, M a maximal ideal of T, k a subfield of the residue field K = T/M and R := (T, M, k). If T is an AS-domain and K is algebraic over k, then R is an AS-domain.

Proof. Since K is algebraic over k, we see that T is integral over R ([2, Lemma 2.1]). By Proposition 1.8, R is an AS-domain.

It is clear that under the same hypotheses of the previous proposition, if $ht_T(M) = 1$, then R is an AS-domain if and only T is an AS-domain and K is algebraic over k. In the general case, if $ht_T(M) \ge 2$, then R may be an AS-domain even if K is not algebraic over k (see Corollary 1.18).

2. Pseudo-polynomial rings. Let R be a ring and R[X] the polynomial ring in one indeterminate X over R. The purpose of this section is to study pseudo-polynomial rings. We define an R-pseudo-polynomial ring to be a ring T contained between R and R[X] in which every prime ideal P contains the prime ideal $p[X] \cap T$, where $p = P \cap R$. Clearly R, $R[X^2]$, R[X] are R-pseudo-polynomial rings. In this section we collect more information on rings between R and R[X] in order to clear up their relationship with the polynomial ring R[X]. We start with a proposition which generalizes the fact that if p is a prime ideal of a ring R and X is an indeterminate over R, then $\operatorname{ht}(p[X]) \geq \operatorname{ht}(p)$, $\operatorname{dim}(R[X]) \geq \operatorname{dim}(R) + 1$, and $\operatorname{ht}_v(p[X]) = \operatorname{ht}_v(p)$ ([9, 15]).

PROPOSITION 2.1. Let R be a domain, p a prime ideal of R, X an indeterminate over R, and T a domain such that $R \subset T \subseteq R[X]$. Then:

(i) $\operatorname{ht}(p[X] \cap T) \ge \operatorname{ht}(p);$

(ii) if $p[X] \cap T$ is not maximal among the primes of T lying over p, then $\operatorname{ht}_v(p[X] \cap T) = \operatorname{ht}_v(p)$;

(iii) if $p[X] \cap T$ is maximal among the primes of T lying over p, then $ht_v(p[X] \cap T) = ht_v(p) + 1$.

Proof. The case where $ht(p) = \infty$ is clear. Hence we assume that ht(p) is finite. By localization of R at p, we can suppose that R is local with maximal ideal p.

(i) It is clear that a chain $p_0 \subset p_1 \subset \ldots \subset p_k = p$ of prime ideals in R gives rise to a chain $p_0[X] \cap T \subset p_1[X] \cap T \subset \ldots \subset p_k[X] \cap T$ of prime ideals in T. Thus $\operatorname{ht}(p[X] \cap T) \geq \operatorname{ht}(p)$.

(ii) Since $T_{p[X]\cap T} \subseteq R[X]_{p[X]}$ is an algebraic extension, [18, Theorem 30.8] yields $\operatorname{ht}_v(p[X]\cap T) \geq \operatorname{ht}_v(p[X]) = \operatorname{ht}_v(p)$. On the other hand, using the fact that $p[X]\cap T$ is not maximal among the primes of T lying over p and [4, Lemme 1.1], we have $\operatorname{ht}_v(p[X]\cap T) \leq \operatorname{dim}_v(T_p) - 1 \leq \operatorname{dim}_v(R) = \operatorname{ht}_v(p)$. Thus $\operatorname{ht}_v(p[X]\cap T) = \operatorname{ht}_v(p)$.

(iii) It is clear that $\operatorname{ht}_v(p[X] \cap T) \leq \dim_v(T_p) \leq \dim_v(R) + 1 = \operatorname{ht}_v(p) + 1$ [4, Lemme 1.1]. Since $T_p/(p[X] \cap T)_p$ is a field contained between R/p and (R/p)[X], necessarily $T_p/(p[X] \cap T)_p = R/p$. Thus denoting by A the ring of the (R[X], p[X], R/p) construction (in fact A = R + p[X]), we have the algebraic extension $T_p = R + (p[X] \cap T)_p \subseteq A$ and, by [18, Theorem 30.8], we get $\operatorname{ht}_v(p[X] \cap T) \geq \operatorname{ht}_{v_A}(p[X])$. On the other hand, for any positive integers m and r, we have, according to [11, Lemme 3],

$$\operatorname{ht}_{A[m+r]}(p[X][m+r]) \geq \operatorname{ht}_{R[X][m]}(p[X][m]) + \operatorname{inf}(\operatorname{tr.deg}[(R/p)[X]:R/p], r)$$

Then by passage to the limit $m, r \to \infty$, we obtain

 $\operatorname{ht}_{v_A}(p[X]) \ge 1 + \operatorname{ht}_{v_{R[X]}}(p[X]) = 1 + \operatorname{ht}_v(p).$

For instance, let R be a domain, p a maximal ideal of R, X an indeterminate over R, and set T := (R[X], p[X], D), where D is a ring contained between R/p and (R/p)[X]. Then $\operatorname{ht}_{v_T}(p[X]) = 1 + \operatorname{ht}_v(p)$ if D is a field, and $\operatorname{ht}_{v_T}(p[X]) = \operatorname{ht}_v(p)$ if not.

Recall that according to [15], a prime ideal p of a ring R is said to be a Jaffard prime ideal if $ht(p) = ht_v(p) < \infty$. It is an open question whether if R is locally Jaffard, then each ring between R and R[X] is locally Jaffard. Nevertheless, we have the following

COROLLARY 2.2. Let R be a domain, X an indeterminate over R and T a domain such that $R \subseteq T \subseteq R[X]$. Then for each Jaffard prime ideal p of R, $p[X] \cap T$ is a Jaffard prime ideal of T.

Proof. We ignore the case T = R and by localization of R at p, we can suppose that R is local with maximal ideal p. If $\operatorname{ht}(p[X] \cap T) = \operatorname{ht}(p)+1$, then Proposition 2.1 gives $\operatorname{ht}(p[X] \cap T) = \operatorname{ht}_v(p[X] \cap T) = \operatorname{ht}_v(p)+1 = \operatorname{ht}(p)+1$. If $\operatorname{ht}(p[X] \cap T) = \operatorname{ht}(p) = \operatorname{ht}_v(p)$, then using Proposition 2.1, to prove that $\operatorname{ht}(p[X] \cap T) = \operatorname{ht}_v(p[X] \cap T) = \operatorname{ht}_v(p) = \operatorname{ht}(p)$, it suffices to prove that $p[X] \cap T$ is not maximal in T. Indeed, assume that $p[X] \cap T$ is maximal in T and $\operatorname{ht}(p[X] \cap T) = \operatorname{ht}(p)$. Let q be a prime ideal of R such that $\operatorname{ht}(q) = \operatorname{ht}(p) - 1$. By passage to the quotients $R/q \subseteq T/(q[X] \cap T) \subseteq (R/q)[X]$, we can suppose that $\operatorname{ht}(p) = 1$ and that $p[X] \cap T$ is a height 1 maximal ideal of T. By [5, Proposition 1.7], we have necessarily $R/p = T/(p[X] \cap T)$ and therefore $R \subset T \subseteq R + p[X]$ and $T = R + p[X] \cap T$. But in this case $\operatorname{ht}(p[X] \cap T) = 2 > 1$, since $(0) \subset (XR[X]) \cap T \subset p[X] \cap T$, contradicting the hypothesis $\operatorname{ht}(p[X] \cap T) = \operatorname{ht}(p) = 1$.

Now, we turn our attention to pseudo-polynomial rings. We start with a simple result showing how we can construct a pseudo-polynomial ring.

PROPOSITION 2.3. Let R be a ring, I an ideal of R such that dim(R/I) = 0, and D a ring contained between R/I and (R/I)[X]. Then the ring T of the (R[X], I[X], D) construction is a pseudo-polynomial ring.

Proof. Let Q be a prime ideal of T and $q = Q \cap R$. If Q does not contain I[X], then by [10, Proposition 0] there is a prime ideal Q' of R[X] lying over Q. Since $q[X] \subseteq Q'$, we find that $q[X] \cap T \subseteq Q$. If Q contains I[X], the result is a consequence of Proposition 3.5 since $R/I \subseteq T/I[X] \subseteq (R/I)[X]$.

REMARK 2.4. (a) The "dim(R/I) = 0" condition is essential in the previous proposition. Indeed, if dim $(R/I) \ge 1$, then by Proposition 3.5, there exists a ring D contained between R/I and (R/I)[X] which is not pseudo-polynomial. Therefore, the ring T := (R[X], I[X], D) is not pseudo-polynomial.

(b) If J is not an extended ideal of R[X] (i.e. is not of the form I[X]), then an (R[X], J, D) construction ring need not be pseudo-polynomial as will be illustrated by the following example.

EXAMPLE 2.5. Let t_1, t_2 be two independent indeterminates over a field K. Setting $B = K[t_1, t_2]$, $M = (t_1 - 1)$ and $N = (t_1, t_2)$, we have $B/M \cong K[t_2]$ and $B/N \cong K$. Let $I = M \cap N$, R = K + I, $q = (t_1 + t_2)B$ and $p = q \cap R$. Pick an element α of q whose class $\overline{\alpha}$ in B/M is transcendental over R/I = K (for instance $\alpha = t_1 + t_2$). By [11, Exemple 8], for $P = (\alpha X - 1) \cap R[X]$, $(0) \subset P \subset I[X]$ is a chain of prime ideals in R[X]. Consider the ring T obtained by the (R[X], P, R) construction. It is clear that $R \subset T \subset R[X]$ and that p + P is a prime ideal of T lying over pin R. Select two elements x and y in I such that $x + y \in p$, $x \notin p$ and $y \notin p$ (for instance $x = (t_1 - 1)t_1$ and $y = (t_1 - 1)t_2$). Then the polynomial $f = x(\alpha X - 1) - y = \alpha xX - x - y$ belongs to $p[X] \cap T$, whereas f does not belong to p + P. Thus p + P does not contain $p[X] \cap T$ and T is not pseudo-polynomial.

Recall that a ring extension $R \subseteq T$ is *lying-over* if each prime ideal p of R lifts to T.

PROPOSITION 2.6. Let T be a ring contained between R and R[X]. Then T is pseudo-polynomial if and only if $T \subseteq R[X]$ is a lying-over extension.

Proof. Of course the "if" part is immediate since R[X] is pseudo-polynomial.

For the "only if" part, let Q be a prime ideal of T and set $q = Q \cap R$. Since T is pseudo-polynomial, we have $q[X] \cap T \subseteq Q$. By localization of R at q, we can assume that R is local with maximal ideal q. If $q[X] \cap T \subset Q$, then $Q/(q[X] \cap T)$ is a nonzero prime ideal of $T/(q[X] \cap T)$ which is contained between R/q and (R/q)[X]. Since (R/q, (R/q)[X]) is a lying-over pair [13, Proposition 2.9], there is a prime ideal Q'/q[X] of (R/q)[X] such that $Q/(q[X] \cap T) = (Q'/q[X]) \cap (T/(q[X] \cap T))$. Thus $Q' \cap T = Q$.

Now, we give some results concerning the spectrum of pseudo-polynomial rings which generalize well-known results about the polynomial ring in one variable.

PROPOSITION 2.7. Let R be a domain, p a prime ideal of R and T a pseudo-polynomial ring distinct from R. Then:

(i) $\operatorname{ht}(p) \le \operatorname{ht}(p[X] \cap T) \le 2\operatorname{ht}(p);$

(ii) $\dim(R) + 1 \le \dim(T) \le 2\dim(R) + 1$.

To prove this result we need the following lemma.

LEMMA 2.8. Let R be a domain and T a pseudo-polynomial ring. If $P_1 \subseteq P_2 \subseteq P_3$ is a chain of primes in T such that $P_1 \cap R = P_2 \cap R = P_3 \cap R$, then necessarily $P_1 = P_2$ or $P_2 = P_3$.

Proof. By localization of R at $p = P_1 \cap R$, we can suppose that R is local with maximal ideal p. Since T is pseudo-polynomial, $p[X] \cap T \subseteq P_1$. On the other hand, we have the inclusions $R/p \subseteq T/(p[X] \cap T) \subseteq (R/p)[X]$ and $\dim(T/(p[X] \cap T)) \leq 1$ [4, Lemme 1.1], hence necessarily $P_1/(p[X] \cap T) = P_2/(p[X] \cap T)$ or $P_2/(p[X] \cap T) = P_3/(p[X] \cap T)$. Thus $P_1 = P_2$ or $P_2 = P_3$.

Proof of Proposition 2.7. The prime ideal $(X) \cap T$ is nonzero and such that $T/(X) \cap T \simeq R$. Thus $\dim(R) + 1 \leq \dim(T)$. The inequality $\operatorname{ht}(p) \leq \operatorname{ht}(p[X] \cap T)$ is established in Proposition 2.1(i). It is straightforward to check that, with the use of Lemma 2.8, the proof of [18, Corollary 30.3] may be adapted to establish the remaining inequalities.

REMARK 2.9. Let R be a one-dimensional domain and M a maximal ideal of R, and set T := (R[X], M[X], R/M) = R + M[X]. Then, by Proposition 2.3, T is a pseudo-polynomial ring. Moreover, we have $ht_T(M[X]) = 2$ and dim(T) = 2. Thus the upper bound in statement (i) of Proposition 2.7 is attained.

Notice that if R is a Jaffard domain, then for each T such that $R \subset T \subseteq R[X]$ we have $\dim(T) = \dim_v(T) = \dim_v(R) + 1 = \dim(R) + 1$. On

the other hand, consider a local domain R with maximal ideal M such that $\dim(R[X]) = 2\dim(R) + 1$. Let $T := (R[X], M[X], (R/M)[X^2])$. By Proposition 2.3, T is a pseudo-polynomial ring and $\dim(T) = 2\dim(R) + 1$ since R[X] is integral over T. Hence the upper bound in statement (ii) of Proposition 2.7 is attained.

LEMMA 2.10. Let R be a domain and T a pseudo-polynomial ring. If P is a prime ideal of T such that $p[X] \cap T \subset P$, where $p = P \cap R$, then $\operatorname{ht}(P) = \operatorname{ht}(p[X] \cap T) + 1$ and $\operatorname{ht}_v(P) = \operatorname{ht}_v(p[X] \cap T) + 1 = \operatorname{ht}_v(p) + 1$.

Proof. Both assertions of the lemma are clear if $\operatorname{ht}(P) = \infty$. Hence assume that $\operatorname{ht}(P)$ is finite. To prove the first part, we proceed as in [18, Lemma 30.17]. By localization of R at p, we can suppose that R is local with maximal ideal p. If p = (0), then $\operatorname{qf}(R) \subseteq S^{-1}T \subseteq \operatorname{qf}(R)[X]$, where $S = R \setminus \{0\}$. By [4, Lemme 1.1], we have $\dim(S^{-1}T) \leq 1$. Thus $\operatorname{ht}(P) =$ $1 = 1 + \operatorname{ht}(p[X] \cap T)$. We assume the result for all k < m, where $m \geq 0$ and $\operatorname{ht}(p) = m$. To prove that $\operatorname{ht}(P) = \operatorname{ht}(p[X] \cap T) + 1$, it suffices to show that $\operatorname{ht}(Q) \leq \operatorname{ht}(p[X] \cap T)$ for each prime ideal $Q \subset P$. Let $q = Q \cap R$. If q = p, then $(p[X] \cap T) \subseteq Q \subset P$. By the previous lemma, we have necessarily $Q = p[X] \cap T$ and $\operatorname{ht}(Q) \leq \operatorname{ht}(p[X] \cap T)$. If $q \subset p$, then the induction hypothesis implies that $\operatorname{ht}(Q) = \operatorname{ht}(p[X] \cap T) + 1 \leq \operatorname{ht}(p[X] \cap T)$. This completes the proof of $\operatorname{ht}(P) = \operatorname{ht}(p[X] \cap T) + 1$.

Let Y_1, \ldots, Y_n be *n* indeterminates over R[X]. We have the inclusions $R[Y_1, \ldots, Y_n] \subseteq T[Y_1, \ldots, Y_n] \subseteq R[Y_1, \ldots, Y_n][X]$. From the first part of the lemma, $\operatorname{ht}(P[n]) = \operatorname{ht}(P[Y_1, \ldots, Y_n]) = \operatorname{ht}((p[X] \cap T)[Y_1, \ldots, Y_n]) + 1$. By Proposition 2.1 and letting $n \to \infty$, we have $\operatorname{ht}_v(P) = \operatorname{ht}_v(p[X] \cap T) + 1 = \operatorname{ht}_v(p) + 1$.

By combining Proposition 2.1 and Lemma 2.10, we have the following theorem which generalizes the special chain theorem ([9], [19]) and the valuative special chain theorem [15] for a given pseudo-polynomial ring.

THEOREM 2.11. Let R be a domain, X an indeterminate over R and T an R-pseudo-polynomial ring. Let P be a prime ideal of T and let $p = P \cap R$. Then $\operatorname{ht}(P) = \operatorname{ht}(p[X] \cap T) + \operatorname{ht}(P/(p[X] \cap T)) \leq \operatorname{ht}(p[X] \cap T) + 1$ and $\operatorname{ht}_v(P) = \operatorname{ht}_v(p) + \operatorname{ht}(P/(p[X] \cap T)) \leq \operatorname{ht}_v(p) + 1$.

DEFINITION 2.12. Let R be a ring, X an indeterminate over R and T a ring such that $R \subseteq T \subseteq R[X]$. We say that a chain $P_0 \subset P_1 \subset \ldots \subset P_k$ of primes in T is a generalized special chain if for each $0 \leq i \leq k$, $(p_i[X] \cap T)$ is a member of this chain, where $p_i = P_i \cap R$.

It is clear that if T = R[X], then this definition coincides with the definition of a special chain set by P. Jaffard [19, Chapitre II, Section 4]. The next theorem is a generalization of [19, chapitre II, Théorème 3] for pseudo-polynomial rings R.

THEOREM 2.13. Let R be a ring and T a pseudo-polynomial ring. If P is a prime ideal of T of finite height, then ht(P) can be realized as the length of a generalized special chain of primes in T with terminal element P.

Proof. We proceed as in [18]. If ht(P) = 0, then $P = (P \cap R)[X] \cap T$ and the desired conclusion holds. If ht(P) = m > 0, and if the theorem is true for primes of height less than m, then we take a chain of prime ideals $P_0 \subset P_1 \subset \ldots \subset P_m = P$ of length m. It is clear that ht(P_j) = j for each j. By Theorem 2.11, we can assume that $P_{m-1} = (P \cap R)[X] \cap T$ or $P_m = (P \cap R)[X] \cap T$. If $P_{m-1} = (P \cap R)[X] \cap T$, then the induction hypothesis implies that there is a generalized special chain $P'_0 \subset P'_1 \subset \ldots \subset P'_{m-1} =$ P_{m-1} of length m - 1, and $P'_0 \subset \ldots \subset P'_{m-1} = P_{m-1} \subset P$ is a generalized special chain of length m with terminal element P. If $P = (P \cap R)[X] \cap T$, then we can obtain a generalized special chain $P'_0 \subset \ldots \subset P'_{m-1}$ of length m - 1 with terminal element P_{m-1} , and $P'_0 \subset \ldots \subset P'_{m-1} \subset P_m = P$ is a generalized special chain of length m with terminal element P. ■

It is known that if R is a Jaffard domain, then each domain between R and R[X] is Jaffard [5]. We give here an analogous result in the case where R is locally Jaffard for pseudo-polynomial rings. Note that it is an open question whether each ring between R and R[X] is locally Jaffard whenever R is locally Jaffard.

THEOREM 2.14. If R is a locally Jaffard domain, then each pseudopolynomial ring is locally Jaffard.

Proof. Let T be a pseudo-polynomial ring distinct from R, P a prime ideal of T, and $p = P \cap R$. By localization of R at p, we can suppose that R is local with maximal ideal p. Two cases may occur:

Case 1: $p[X] \cap T \subset P$. Then by Lemma 2.10, $ht_v(P) = ht_v(p) + 1 \leq ht(P)$ and therefore $ht_v(P) = ht(P) = ht(p) + 1$.

Case 2: $p[X] \cap T = P$. By Corollary 2.2, we have $ht(P) = ht_v(P) = ht(p)$ or ht(p) + 1.

COROLLARY 2.15. If R is a one-dimensional S-domain, then each pseudo-polynomial ring is totally Jaffard.

Proof. From [4, Lemme 1.1], it follows that if *T* is a domain such that $R \subseteq T \subseteq R[X]$, then dim(*T*) ≤ dim(*R*) + 1 = 2. Thus, each ring between *R* and *R*[*X*] is catenarian. Since a locally Jaffard catenarian domain is totally Jaffard [11, Corollaire 1], the previous theorem yields the desired conclusion. ■

COROLLARY 2.16. If R is an S-domain, then each pseudo-polynomial ring is an S-domain.

Proof. Let *T* be a pseudo-polynomial ring and let *P* be a height 1 prime ideal in *T*. We have $p[X] \cap T \subseteq P$, where $p = P \cap R$. If p = (0), then $qf(R) \subseteq S^{-1}T \subseteq qf(R)[X]$, where $S = R \setminus \{0\}$. By [5, Théorème 1.9], we conclude that $S^{-1}T$ is locally Jaffard and therefore $ht(P) = ht_v(P) = 1$. If $p \neq (0)$, then necessarily $P = p[X] \cap T$ and ht(p) = 1. By localization of *R* at *p* and using the previous corollary, we deduce that $ht(P) = ht_v(P) = 1$. Thus *T* is an S-domain. ■

3. Pseudo-polynomial rings and lying-over pairs. Recall that a ring extension $R \subseteq T$ is *lying-over* (resp., *survival*) if each prime ideal p of R lifts to T (resp., $pT \neq T$). Considering an extension property (\mathcal{P}), we say that (R,T) is a (\mathcal{P})-*pair* if, for each ring A between R and T, that is, $R \subseteq A \subseteq T$, both extensions $R \subseteq A$ and $A \subseteq T$ are (\mathcal{P}) extensions.

If $R \subseteq T$ is a lying-over extension, then for each A in between, $R \subseteq A$ is also a lying-over extension. Thus to say that (R, T) is a lying-over pair, it is enough to say that, for each A such that $R \subseteq A \subseteq T$, $A \subseteq T$ is a lying-over extension. On the other hand, in the case of survival pairs it is enough to say that for each A such that $R \subseteq A \subseteq T$, $R \subseteq A$ is a survival extension. A pair (R, T), where $R \subseteq T$, is said to be a *lying-over pair* (resp., *survival pair*) if $A \subseteq T$ (resp., $R \subseteq A$) is a lying-over extension (resp., survival extension) whenever A is an intermediate ring between R and T [21]. It is immediate that (R, T) is a survival pair if and only if each maximal ideal of an intermediate ring between R and T lifts to T.

In [13], D. E. Dobbs has shown that for rings $R \subseteq T$ such that T is semi-local, T is integral over R if and only if (R, T) is a lying-over pair, or equivalently (R, T) is a survival pair. He asked if a survival pair is always a lying-over pair. In this section we answer this question in the affirmative in case T is transcendental over R.

In [13], D. E. Dobbs noted that a survival extension need not be lyingover. He gave two examples; the first derives from Chevalley [12, Lemma 2] and the second is due to W. J. Lewis [14, Example 4.4]. A sharpening of this remark is that a survival extension of the form $R \subseteq R[u]$ (for some u in the quotient field of R) need not be lying-over (see Example 3.6).

We start with the following proposition.

PROPOSITION 3.1. Let $R \subseteq T$ be a ring extension. Then (R,T) is a survival pair if and only if $(R/(q \cap R), T/q)$ is a survival pair for each prime ideal q of T.

Proof. For the "only if" part, our task is to show that for each ring C contained between $R/(q \cap R)$ and T/q, C "survives" in T/q. Note that C may be identified as C = A/q where A is a suitable ring contained between R+q and T, and that maximal ideals of C correspond to those of A containing q.

Let M be a maximal ideal of A containing q. Since (R + q, T) is a survival pair and $A \subseteq T$, there exists a prime ideal q_1 of T such that $M = q_1 \cap A$ and so $M/q = (q_1/q) \cap (A/q)$.

For the "if" part, consider a maximal ideal M of a ring C contained between R and T. Let q be a minimal prime ideal contained in M. Then qlifts to T as a minimal prime q'. Since $(R/(q' \cap R), T/q')$ is a survival pair, there exists a prime ideal q_1/q' of T/q' lying over M/q in C/q and hence $M = q_1 \cap C$.

Recall that D. E. Dobbs has established that for any ring R, (R, R[X]) is a lying-over pair if and only if dim(R) = 0 [13, Proposition 2.13]. This characterization is sharpened in the next lemma.

LEMMA 3.2. Let R be a ring. Then (R, R[X]) is a survival pair if and only if dim(R) = 0.

Proof. For the "if" part, assume that $\dim(R) = 0$; then by [13, Proposition 2.13], (R, R[X]) is a lying-over pair and a fortiori a survival pair.

For the "only if" part, if p is a minimal prime ideal of R, then by considering the survival pair (R/p, (R/p)[X]) (Proposition 3.1), we may assume that R is a domain. If dim(R) > 0, then R contains a maximal ideal M whose height is greater than 1. Select a nonzero element b in M, and consider T = R[1+bX]. By hypothesis, the extension $T \subseteq R[X]$ is survival and so there exists a prime ideal Q of R[X] such that $Q \cap T = (M, 1+bX)T$ (note that (M, 1+bX)T is a maximal ideal of T). As $bX \in (MR[X] \cap T) \subseteq Q \cap T$, it follows that $1 = (1+bX) - bX \in Q \cap T$, contradicting $Q \subset T$.

The next result as well as Proposition 3.4 are partial answers to a question left open in [13] of whether a survival pair must be lying-over.

THEOREM 3.3. Let $R \subseteq T$ be domains such that T is transcendental over R. The following statements are equivalent:

(i) (R,T) is a lying-over pair;

(ii) (R,T) is a survival pair;

(iii) R is a field and for each element x in T which is transcendental over R, T is integral over R[x];

(iv) R is a field and T is integral over R[x] for some element x in T which is transcendental over R.

Proof. Assertions (i) and (iii) are equivalent by [13, Theorem 4.1]. It is clear that (i) implies (ii).

(ii) \Rightarrow (iii). Let x be an element of T which is transcendental over R. Since (R, R[x]) is a survival pair, the previous lemma shows that R is a field. If there were an element y of T which is transcendental over R[x], then (R[x], R[x][y]) would be a survival pair, contradicting Lemma 3.2. Hence, T is algebraic over R[x]. Since R[x] is a one-dimensional Prüfer domain, each ring contained between R[x] and T has dimension less than 1 and (R[x], T)is an INC pair. Using [13, Theorem 2.1 and Corollary 2.4 (bis)], we conclude that T is integral over R[x].

Finally, the equivalence between (iii) and (iv) is clear. \blacksquare

However, in the algebraic case we obtain the following result in the case of (T, M, D) constructions.

PROPOSITION 3.4. Let T be a domain, M a maximal ideal of T, D a subring of the field K = T/M and R := (T, M, D). Then the following statements are equivalent.

(i) (R,T) is a lying-over pair;

(ii) (R,T) is a survival pair;

(iii) D is a field and $D \subseteq K$ is an algebraic extension.

Proof. The implication (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (iii). Since (R,T) is a survival pair, Proposition 3.1 shows that (D,K) is also a survival pair. Hence by [13, Theorem 2.7], K is integral over D. Thus D is a field and $D \subseteq K$ is an algebraic extension.

(iii)⇒(i). Since D is a field and $D \subseteq K$ is an algebraic extension, K is integral over D. Thus T is integral over R (see [10]). Therefore (R,T) is a lying-over pair. ■

By combining Theorem 3.3, [13, Proposition 2.13] and Proposition 2.6, we get the following:

PROPOSITION 3.5. Let R be a ring. The following statements are equivalent:

- (i) each ring contained between R and R[X] is pseudo-polynomial;
- (ii) (R, R[X]) is a lying-over pair;
- (iii) (R, R[X]) is a survival pair;
- (iv) $\dim(R) = 0$.

The next example provides a survival extension of the form $R \subset R[u]$ (for some u in the quotient field of R) which is not lying-over.

EXAMPLE 3.6. With the same hypotheses as in Example 2.5, set $A = R[X]/P \simeq R[1/\alpha]$. We prove that the extension $R \subset A$ is not lying-over. Indeed, assume that there is a prime ideal Q/P of R[X]/P such that $p = (Q/P) \cap R$. Since $R_p = B_q$, we see that $\alpha \in Q_p$. But $\alpha X - 1 \in Q_p$, implying that $1 \in Q_p$, a contradiction. We conclude that $R \subset A$ is not a lying over extension while it is a survival extension since I.A = I[X]/P.

Acknowledgments. The authors wish to thank the referee for helpful suggestions concerning presentation.

REFERENCES

- D. D. Anderson, D. F. Anderson and M. Zafrullah, *Rings between D[X] and K[X]*, Houston J. Math. 17 (1991), 109–129.
- [2] D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domains, Exposition. Math. 5 (1988), 145–175.
- [3] A. Ayache, *Inégalité ou formule de la dimension et produits fibrés*, thèse de doctorat, Univ. d'Aix-Marseille III, 1991.
- [4] A. Ayache et P.-J. Cahen, Anneaux vérifiant absolument l'inégalité ou la formule de la dimension, Boll. Un. Mat. Ital. B (7) 6 (1992), 39–65.
- [5] —, —, Radical valuatif et sous-extensions, Comm. Algebra 26 (1998), 2767–2787.
- [6] A. Ayache, P.-J. Cahen et O. Echi, Anneaux quasi-pr
 üfériens et P-anneaux, Boll. Un. Mat. Ital. B (7) 10 (1996), 1–24.
- [7] A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z. 225 (1997), 49–65.
- [8] A. Bouvier, D. E. Dobbs and M. Fontana, Universally catenarian integral domains, Adv. Math. 72 (1988), 211–238.
- [9] J. W. Brewer, P. R. Montgomery, E. A. Rutter and W. J. Heinzer, Krull dimension of polynomial rings, in: Lecture Notes in Math. 311, Springer, 1972, 26–45.
- [10] P.-J. Cahen, Couple d'anneaux partageant un idéal, Arch. Math. (Basel) 51 (1988), 505–514.
- [11] —, Construction B, I, D et anneaux localement ou résiduellement de Jaffard, ibid. 54 (1990), 125–141.
- [12] C. Chevalley, La notion d'anneau de décomposition, Nagoya Math. J. 7 (1954), 21–33.
- [13] D. E. Dobbs, Lying-over pairs of commutative rings, Canad. J. Math. 33 (1981), 454–475.
- [14] D. E. Dobbs and I. J. Papick, *Going-down: a survey*, Nieuw. Arch. Wisk. 26 (1978), 255–291.
- [15] O. Echi, Sur les hauteurs valuatives, Boll. Un. Mat. Ital. B (7) 9 (1995), 281–297.
- [16] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. (4) 123 (1980), 331–355.
- [17] M. Fontana, L. Izelgue et S. Kabbaj, Quelques propriétés des chaînes d'idéaux premiers dans les anneaux A + XB[X], Comm. Algebra 22 (1994), 9–24.
- [18] R. Gilmer, *Multiplicative Ideal Theory*, Dekker, New York, 1972.
- [19] P. Jaffard, Théorie de la dimension dans les anneaux de polynômes, Mém. Sci. Math. 146, Gauthier-Villars, Paris, 1960.
- [20] S. Kabbaj, Sur les S-domaines forts de Kaplansky, J. Algebra 137 (1991), 400–415.
- [21] I. Kaplansky, Commutative Rings, rev. ed., Univ. of Chicago Press, Chicago, 1974.

Department of Mathematics Faculty of Sciences University of Sfax B.P. 802, 3018 Sfax, Tunisia E-mail: Noomen.Jarboui@fss.rnu.tn Ihsen.Yengui@fss.rnu.tn

> Received 16 May 2000; revised 13 August 2001