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ABSOLUTELY S-DOMAINS AND PSEUDO-POLYNOMIAL RINGS

BY

NOÔMEN JARBOUI and IHSEN YENGUI (Sfax)

Abstract. A domain R is called an absolutely S-domain (for short, AS-domain) if
each domain T such that R ⊆ T ⊆ qf(R) is an S-domain. We show that R is an AS-domain
if and only if for each valuation overring V of R and each height one prime ideal q of V ,
the extension R/(q ∩ R) ⊆ V/q is algebraic. A Noetherian domain R is an AS-domain
if and only if dim(R) ≤ 1. In Section 2, we study a class of R-subalgebras of R[X]
which share many spectral properties with the polynomial ring R[X] and which we call
pseudo-polynomial rings. Section 3 is devoted to an affirmative answer to D. E. Dobbs’s
question of whether a survival pair must be a lying-over pair in the case of transcendental
extension.

0. Introduction. In this paper, all rings considered are commutative
with identity. An inclusion of rings signifies that the smaller ring is a subring
of the larger and has the same identity. Let R be a ring and n a positive
integer. We denote by R[n] the ring of polynomials in n indeterminates over
R and by R[X] the ring of polynomials in one indeterminate. We denote by
dim(R) the Krull dimension of R and by dimv(R) its valuative dimension,
that is, the limit of the sequence (dim(R[n]) − n, n ∈ N). If p is a prime
ideal of R, we denote by ht(p) the height of p, and by htv(p) the limit of the
sequence (ht(p[n]), n ∈ N).
Given a finite-dimensional ring R, we say that R is a Jaffard ring if

dim(R) = dimv(R) [2]. This property is not local; we say that R is a locally
Jaffard ring if Rp is a Jaffard ring for each prime ideal p of R. A domain R
is said to be an S-domain if for each height 1 prime ideal p of R, we have
ht(p[X]) = 1. A strong S-ring is a ring R such that for each prime ideal p of
R, R/p is an S-domain; equivalently for any consecutive primes p ⊂ q in R,
p[X] ⊂ q[X] are consecutive in R[X]. An overring of a domain R is a ring
contained between R and its quotient field qf(R).
For an extension of domains R ⊆ T , we denote by tr.deg[T : R] the

transcendence degree of qf(T ) over qf(R). Recall that an extension R ⊆ T
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is said to satisfy the altitude inequality (resp., the altitude formula) if for
any prime ideal q of T over a prime ideal p of R, we have respectively

ht(q) + tr.deg[T/q : R/p] ≤ ht(p) + tr.deg[T : R],

ht(q) + tr.deg[T/q : R/p] = ht(p) + tr.deg[T : R].

A. Ayache and P.-J. Cahen in [4] studied the domains each of whose
overrings is Jaffard; these are domainsR whose integral closure R′ is a Prüfer
domain ([4, Théorème 2.6]). They are called domains satisfying absolutely
the altitude inequality or absolutely Jaffard domains.
Our purpose in Section 1 is to complete this circle of ideas by dealing with

absolutely S-domains (for short AS-domains); that is, domains each of whose
overrings is an S-domain. The main result of this section is Theorem 1.5
which states that R is an AS-domain if and only if for each valuation overring
V of R and each height 1 prime ideal q of V , the extension R/(q∩R) ⊆ V/q is
algebraic. It is clear that absolutely Jaffard domains are AS-domains, but the
converse does not hold (see Corollary 1.18). On the other hand, Proposition
1.11 points out a relationship between these two classes of domains: R is
an absolutely Jaffard domain if and only if R/p is an AS-domain for each
prime ideal p of R. Among the several interesting consequences of Theorem
1.5, we just point out that R[X] is an AS-domain if and only if R is a field
(Proposition 1.14) and that a Noetherian domain R is absolutely S if and
only if dim(R) ≤ 1 (Proposition 1.15). The last part of Section 1 is devoted
to the transfer of this notion to some pullback constructions.
In [5], it is proved that if R is a Jaffard domain, then each domain

contained between R and R[n] is Jaffard. It is an open question whether
each domain between R and R[X] is a locally Jaffard (resp., an S-) domain
when R is a locally Jaffard (resp., an S-) domain. The difficulty in the study
of intermediate rings between R and R[X] is that the nature of R as well
as that of R[X] has a very subtle influence on intermediate rings. Because
of this, it appears to be too difficult to understand all domains between R
and R[X] except in case R has very simple structure.
In Section 2 we begin with a description of the valuative height of

p[X] ∩ T , for any ring T between R and R[X] and any prime ideal p of
R. Moreover, we note that if T is an intermediate ring between R and R[X]
and P is a prime ideal of T , then the inclusion relation p[X] ∩ T ⊆ P with
p = P ∩ R may not hold (Propositions 2.6 and 3.5). Our concern in that
section is with rings T between R and R[X] satisfying the previous inclusion
for each prime P of T ; we call them R-pseudo-polynomial rings, or briefly
pseudo-polynomial rings. The name is justified by the fact that these rings
share many ideal-theoretic properties with polynomial rings in one variable
to which they are closely related. The motivation for studying this gener-
alization is diverse. To have an example of a pseudo-polynomial ring, one
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can consider an (R[X], I[X], D) construction ring T , where R is a ring, I is
an ideal of R such that dim(R/I) = 0 and D is a ring contained between
R/I and (R/I)[X] (Proposition 2.3). Note that a pseudo-polynomial ring
need not be a polynomial ring. For instance, if K is a field, then the domain
K[X2, X3] is not a polynomial ring since it is not integrally closed, while it
is obviously a K-pseudo-polynomial ring.

Pseudo-polynomial rings are characterized in terms of lying-over exten-
sions (Proposition 2.6). We study the structure of the prime spectrum of T ,
clarifying the relation between the spectrum of T and those of R and R[X].
We generalize some well-known results previously established for polyno-
mial rings [9]. The final aim of this section is to prove our promised results
which state that if R is a locally Jaffard (resp., an S-) domain, then each
pseudo-polynomial ring is locally Jaffard (resp., S). Section 3 is concluded
with a study of the relationship between pseudo-polynomial rings and lying-
over pairs. We give an affirmative answer to D. E. Dobbs’ question [13] of
whether a survival pair must be a lying-over pair in the case of transcen-
dental extension.

1. Absolutely S-domains. A domain R is said to be an S-domain if
for each prime ideal p of R such that ht(p) = 1, we have ht(p[X]) = 1. Now,
we recall some definitions given in the introduction.

Definition 1.1. A domain R is said to be an absolutely S-domain (for
short, AS-domain) if each overring of R is an S-domain.

It follows immediately from this definition that each domain which sat-
isfies absolutely the altitude inequality [4, Lemme 2.1] is an AS-domain.
Moreover, this notion is stable under localization. We first give the follow-
ing straightforward result.

Proposition 1.2. Let R be a domain. Then the following statements
are equivalent :

(i) R is an AS-domain;

(ii) Rp is an AS-domain for each prime ideal p of R;

(iii) Rm is an AS-domain for each maximal ideal m of R;

(iv) N−1R is an AS-domain for each multiplicative subset N of R.

Recall that a domain R is said to be going-down if for each overring T
of R the extension R ⊆ T has the going-down property ([14]).

Proposition 1.3. A going-down S-domain is an AS-domain.

Proof. Let R be a going-down S-domain, T a overring of R and q a
height 1 prime ideal in T . Since R is going-down, ht(p) = 1, where p = q∩R.
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The domain Rp is a one-dimensional Jaffard domain [8, Corollary 6.3], hence
so is Tq. Therefore T is an S-domain.

In particular, a one-dimensional S-domain is an AS-domain. However,
an S-domain need not be an AS-domain. To see this, it suffices to consider
a ring of polynomials with coefficients in an integral domain which is not a
field (see Proposition 1.14).
We begin by presenting some terminology. LetB be a ring, I an ideal of B

and D a subring of B/I. Consider the pullback construction of commutative
rings:

R → D
↓ ↓
B → B/I

Following [10], we say that R is the ring of the (B, I,D) construction and
we write R = (B, I,D). Next we consider the case where I is assumed to
be maximal. Denote by M the ideal I, by T the domain B, by K the field
T/M , and by ϕ : T → K the natural epimorphism.
We recall a few well-known properties of pullbacks. First,M is a common

ideal of both R and T , M = (R : T ) = {x ∈ T | xT ⊆ R} (if D 6= K),
and R/M ≃ D. For each p ∈ Spec(R) with M ⊆ p, there is a (unique) q ∈
Spec(D) such that ϕ−1(q) = p; and ϕ−1(Dq) = Rp. If T is local, then each
prime ideal of R compares with M , and thus dim(R) = dim(D) + dim(T ).
Also R is local if and only if both D and T are local (cf. [16, Theorem 1.4
and Proposition 2.1]).
Before stating Theorem 1.5, we establish a proposition which serves both

to motivate this theorem and to dispatch the difficult implication in its proof.

Proposition 1.4. Let T be a domain, M a maximal ideal of T , D
a subring of the residue field K = T/M , k the quotient field of D and
R := (T,M,D).

(a) If htT (M) ≥ 2, then the following statements are equivalent :

(i) R is an S-domain;
(ii) T is an S-domain.

(b) If htT (M) = 1, then the following statements are equivalent :

(i) R is an S-domain;
(ii) T is an S-domain and K is algebraic over k.

Proof. (a) (i)⇒(ii). Let q be a height 1 prime ideal of T . Then q does
not contain M . Thus Tq = Rp, where p = q ∩ R. Hence ht(p) = 1 and so
ht(p[X]) = 1 since R is an S-domain. Thus ht(q[X]) = ht(p[X]) = 1.
(ii)⇒(i). Let p be a height 1 prime ideal of R. Then p does not con-

tain M . Thus there exists a unique prime ideal q of T such that Tq = Rp.
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Hence ht(q) = 1 and as T is an S-domain, we have ht(q[X]) = 1. Thus
ht(p[X]) = ht(q[X]) = 1.

(b) (i)⇒(ii). First notice that RM = (TM ,MTM , k). Since RM is a one-
dimensional S-domain, it is a Jaffard domain. Thus K is algebraic over k
([2, Theorem 2.6]). Now our task is to show that T is an S-domain. Let q
be a height 1 prime ideal of T . If q = M , then since RM = (TM ,MTM , k)
is a Jaffard domain, it follows readily from [2, Theorem 2.6] that TM is a
Jaffard domain. Thus htT [X](q[X]) = 1. Now if q 6=M , then Tq = Rp, where
p = q ∩ R. Hence ht(p) = 1 and so ht(p[X]) = 1 since R is an S-domain.
Thus ht(q[X]) = ht(p[X]) = 1.

(ii)⇒(i). Let p be a height 1 prime ideal of R. If p =M , then since RM =
(TM ,MTM , k), K is algebraic over k and TM is a Jaffard domain it follows
from [2, Theorem 2.6] that RM is a Jaffard domain. Thus htR[X](p[X]) = 1.
Now assume that p 6= M . Then there exists a unique prime ideal q of T
such that Tq = Rp. Hence ht(q) = 1 and as T is an S-domain, we have
ht(q[X]) = 1. Thus ht(p[X]) = ht(q[X]) = 1.

Recall that an extension R ⊆ T of domains is said to be residually
algebraic if R/(q ∩ R) ⊆ T/q is algebraic for each prime ideal q of T
([7] and [17]).

Now, we establish the main result of this section.

Theorem 1.5. Let R be a domain. Then the following statements are
equivalent :

(1) R is an AS-domain;

(2) for each overring T of R and primes q ⊆ q1 in T , if q ∩R = q1 ∩R
and ht(q) = 1, then q = q1;

(3) for each valuation overring V of R and primes q ⊆ q1 in V , if
q ∩R = q1 ∩R and ht(q) = 1, then q = q1;

(4) for each overring T of R and each height 1 prime ideal q of T , we
have tr.deg[T/q : R/(q ∩R)] = 0;

(5) for each one-dimensional overring T of R, the extension R ⊆ T is
residually algebraic;

(6) for each valuation overring V of R and each height 1 prime ideal q
of V , we have tr.deg[V/q : R/(q ∩R)] = 0;

(7) for each one-dimensional valuation overring V of R, the extension
R ⊆ V is residually algebraic.

Proof. The equivalences (4)⇔(5) and (6)⇔(7) as well as the implica-
tions (2)⇒(3) and (5)⇒(7) are clear. The implication (3)⇒(2) is due to
[18, Corollary 19.7].
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(1)⇒(4). Let T be an overring of R, and q a height 1 prime in T . Since
R + qTq obtained by the (Tq, qTq, R/(q ∩ R)) construction is an S-domain,
Proposition 1.4 implies that tr.deg[T/q : R/(q ∩R)] = 0.

We prove that if (1) fails, then (6) fails. Assume that T is an overring of
R containing a prime ideal q of height 1 such that ht(q[X]) = 2. Then there
is a nonzero prime ideal Q of T [X] contained in q[X] such that Q ∩ T = (0).
Thus T is a subring of T1 = T [X]/Q which is isomorphic to T [u], where u
is an algebraic element over T . By [18, Corollary 19.7], there is a valuation
overring W of T1 containing a prime ideal J of height 1 such that J ∩ T1
= q[X]/Q. Set V = W ∩ qf(R). Then V is a valuation overring of R con-
taining a height 1 prime ideal J ∩ qf(R) ([18, Theorem 19.16]) such that
(J ∩ qf(R)) ∩R = q ∩R. Now, tr.deg[W/J : V/(J ∩ qf(R))] = 0 ([18, Theo-
rem 19.16]). Hence

tr.deg[V/(J ∩ qf(R)) : R/(q ∩R)] = tr.deg[W/J : R/(q ∩R)]

≥ tr.deg[T1/(q[X]/Q) : T/q] = tr.deg[(T [X]/Q)/(q[X]/Q) : T/q]

= tr.deg[T [X]/q[X] : T/q] = 1.

We prove that if (3) fails, then (6) fails. Assume that V is a valuation
overring of R containing primes q ⊂M lying over p and such that ht(q) = 1.

If x ∈M \ q, we show that x is transcendental over R/p in V/q. Let akxk +
. . . + a1x + a0 = 0, where a0, a1, . . . , ak are elements of R. Then akx

k +
. . . + a1x + a0 ∈ q. Now, a0 ∈ M ∩ R = p, x(akx

k−1 + . . . + a1) ∈ q and
akx

k−1 + . . . + a1 ∈ q. By induction, we conclude that ak = ak−1 = . . . =
a1 = a0 = 0, and consequently tr.deg[V/q : R/p] ≥ 1.

We prove that if (1) fails, then (3) fails. Assume that T is an overring of
R containing a prime ideal q of height 1 such that ht(q[X]) = 2. Then there
is a nonzero prime ideal Q of T [X] contained in q[X] such that Q∩T = (0).
Thus, T is a subring of T1 = T [X]/Q which is isomorphic to T [u], where u
is an algebraic element over T . We can assume that T is local with maxi-
mal ideal q. The ideal p0 = q[X]/Q is prime in T1, but not maximal (since
T1/p0 ∼= (T/q)[X], which is not a field). Therefore if M is a maximal ideal
of T1 containing p0, then p0 and M are prime ideals of T1 lying over q.
By [18, Corollary 19.7], there is a valuation overring W of T1 containing
prime ideals p′ ⊂ M ′ such that ht(p′) = 1, p′ ∩ T1 = p0 and M

′ ∩ T1 = M .
Set V = W ∩ qf(R). Then V is a valuation overring of R containing dis-
tinct prime ideals p′ ∩ qf(R) ⊂ M ′ ∩ qf(R) such that ht(p′ ∩ qf(R)) = 1
and

(p′ ∩ qf(R)) ∩R = p0 ∩R = q ∩R =M ∩R = (M
′ ∩ qf(R)) ∩R.

Among the several interesting consequences of Theorem 1.5, we limit
ourselves to pointing out the following three propositions.
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Proposition 1.6. Let R ⊂ T be an algebraic extension. If R is an
AS-domain, then so is T .

Proof. Assume that T is not an AS-domain. Then by the previous the-
orem, there is a valuation overring W of T containing distinct prime ideals
p and M such that ht(p) = 1 and p ∩ T =M ∩ T . By [18, Theorem 19.16],
V =W ∩ qf(R) is a valuation overring of R containing distinct prime ideals
p ∩ qf(R) and M ∩ qf(R) such that (p ∩ qf(R)) ∩R = (M ∩ qf(R)) ∩R and
ht(p ∩ qf(R)) = 1. In view of Theorem 1.5, we conclude that R is not an
AS-domain.

Remark 1.7. The converse of the previous proposition does not hold
(see Corollary 1.18).

Proposition 1.8. Let R ⊂ T be an integral extension. R is an AS-
domain if and only if T is an AS-domain.

Proof. According to Proposition 1.6, if R is an AS-domain, then so is T .
Assume now that T is an AS-domain, and let C be an overring of R. Denote
by C ′ the integral closure of C in qf(T ). Since C ′ is an overring of T , it is
an S-domain. Therefore C is also an S-domain.

Proposition 1.9. If R is an AS-domain, then it has the following prop-
erty :

(∗) For each prime ideal p of R, if (0) ⊂ P ⊂ p[X] is a saturated chain
of primes in R[X], then P ∩R 6= (0).

Proof. We show that if the property (∗) fails, then so does assertion (3)
in Theorem 1.5. For this, consider the ring T1 = R[X]/P and use the same
idea as in the proof of (3)⇒(1) in Theorem 1.5.

Recall that a domain R is said to be strong S if R/p is an S-domain for
each prime ideal p of R; equivalently, if for each pair of consecutive prime
ideals p ⊂ q of R, the extended primes p[X] ⊂ q[X] are consecutive. R is
said to be stably strong S if R[n] is strong S for each integer n ([20, 21]).
A domain R is said to be totally Jaffard if R/p is locally Jaffard for each
prime p of R ([11]). We now recall the following theorem.

Theorem 1.10 [6, Théorème 5.1]. Let R be a domain. Then the follow-
ing statements are equivalent :

(i) each overring of R is a strong S-domain;
(ii) each overring of R is Jaffard ;
(iii) each overring of R is totally Jaffard ;
(iv) each overring of R is a stably strong S-domain;
(v) each overring of R satisfies the altitude inequality ;
(vi) each overring of R is locally Jaffard ;
(vii) R satisfies absolutely the altitude inequality.
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This raises the question whether the class of rings satisfying absolutely
the altitude inequality coincides with that of absolutely S-domains. It is
clear that for one-dimensional domains these two notions coincide, but in
the general case, the answer is negative. Indeed, if V is a valuation domain
with maximal idealM and k is a subfield of V/M such that dim(V ) ≥ 2 and
tr.deg[V/M : k] ≥ 1, then by Corollary 1.18, R := (V,M, k) is an AS-domain
and by [2, Theorem 2.6], R is not a Jaffard domain.
The following result establishes a relationship between absolutely S-

domains and domains satisfying the altitude inequality.

Proposition 1.11. Let R be a domain. The following statements are
equivalent :

(i) R satisfies absolutely the altitude inequality;
(ii) R/p is an AS-domain for each prime ideal p of R.

Proof. (i)⇒(ii). For each prime p of R, R/p satisfies absolutely the al-
titude inequality ([4, Proposition 2.2]), and therefore is an AS-domain.
(ii)⇒(i). Let P ⊂ q[X] be consecutive primes in R[X] and p = P ∩R.

Then P/p[X] ⊂ (q/p)[X] are consecutive in (R/p)[X]. Since R/p is an
AS-domain, it follows that P = p[X] (Proposition 1.9). Thus R satisfies
absolutely the altitude inequality [6, Proposition 1.4].

As an immediate consequence of Proposition 1.11, we have:

Corollary 1.12. Let R be a domain such that dim(R) ≤ 2 and
dim(R[X]) = 1 + dim(R). Then the following statements are equivalent :

(i) R satisfies absolutely the altitude inequality;
(ii) R is an AS-domain.

In the course of proof of Proposition 1.14, we need the following lemma.

Lemma 1.13. If R[X] is an AS-domain, then so is R.

Proof. Let V be a one-dimensional valuation overring of R with max-
imal ideal M . By [18, Proposition 20.11], V [X]M [X] is a one-dimensional
valuation overring of R[X]. Therefore, by Theorem 1.5, we have

tr.deg[V [X]M [X]/MV [X]M [X] : R[X]/(M ∩R)[X]] = 0

= tr.deg[V [X]/M [X] : R[X]/(M ∩R)[X]]

= tr.deg[(V/M)[X] : (R/(M ∩R))[X]] = tr.deg[V/M : R/(M ∩R)].

Hence by Theorem 1.5, R is an AS-domain.

Proposition 1.14. R[X] is an AS-domain if and only if R is a field.

Proof. By way of contradiction, suppose that R has a height 1 prime
ideal p. From the previous lemma, it follows that R is an S-domain. Thus Rp
is a Jaffard domain. Since Rp[X] is a localization of R[X], it is an AS-domain
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(Proposition 1.2). Moreover, Rp is a one-dimensional Jaffard domain, so
by Corollary 1.12, Rp[X] satisfies absolutely the altitude inequality and
therefore Rp is a field [4], contrary to the hypothesis.

According to the previous proposition, a Noetherian domain need not
be an AS-domain. Indeed, a polynomial ring with two indeterminates over
a field is not an AS-domain. Nevertheless, we have the following

Proposition 1.15. A Noetherian domain R is an AS-domain if and
only if dim(R) ≤ 1.

Proof. Assume that R is a Noetherian domain such that dim(R) ≥ 2. Let
p be a prime ideal of R of height 2. Since Rp is a two-dimensional Noethe-
rian AS-domain (Proposition 1.2), Corollary 1.12 shows that Rp satisfies
absolutely the altitude inequality, contrary to [4, Remarques §3].
Conversely, if dim(R) ≤ 1, then R satisfies absolutely the altitude in-

equality and therefore R is an AS-domain.

We now turn to transferring the “AS-domain” property to pullback con-
structions. We first record the following lemma, which is an immediate con-
sequence of Proposition 1.4.

Lemma 1.16. Let T be a domain, M a maximal ideal of T , D a subring
of the field K = T/M and R := (T,M,D). If R is an S-domain, then each
intermediate ring between R and T is an S-domain.

Now, we establish the following useful result.

Proposition 1.17. Let T be a Prüfer domain,M a maximal ideal of T ,
D a subring of the residue field K = T/M and R := (T,M,D).

(a) If htT (M) ≥ 2, then R is an AS-domain.
(b) If htT (M) = 1, then the following statements are equivalent :

(i) R is an S-domain;
(ii) K is algebraic over qf(D);
(iii) R is an AS-domain.

Proof. Assertion (a) is straightforward and we omit its proof.
(b) (i) and (ii) are equivalent by virtue of Proposition 1.4. Now it remains

to show that (i)⇒(iii). We discuss two cases:

Case 1 : If T is local, then it is a valuation domain. Let R1 be an overring
of R. Then by [3, Lemme 4.9], either R1 is an overring of T and therefore
is an S-domain, or R1 is a domain between R and T and therefore it is an
S-domain by the previous lemma. It follows that each overring of R is an
S-domain.
Case 2 : If T is not local, we show that for each prime ideal p of R, Rp

is an AS-domain. Then we conclude using Proposition 1.2.
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IfM is not contained in p, then there is a unique prime ideal q of T such
that Rp = Tq. Thus Rp is an AS-domain (since Tq is a Prüfer domain).

If M ⊆ p, then there is a unique prime ideal q of D such that Rp =
(TM ,MTM , Dq) and therefore Rp is an AS-domain by Case 1.

The following corollary is in the same vein.

Corollary 1.18. Let R := (V,M, k), where V is a valuation domain
with maximal ideal M and k a subfield of V/M .

(a) If dim(R) ≥ 2, then R is an AS-domain.

(b) If dim(R) = 1, then R is an AS-domain if and only if the residue
field V/M is algebraic over R/M .

Proposition 1.19. Let T be a domain, M a maximal ideal of T , k
a subfield of the residue field K = T/M and R := (T,M, k). If T is an
AS-domain and K is algebraic over k, then R is an AS-domain.

Proof. Since K is algebraic over k, we see that T is integral over R ([2,
Lemma 2.1]). By Proposition 1.8, R is an AS-domain.

It is clear that under the same hypotheses of the previous proposition,
if htT (M) = 1, then R is an AS-domain if and only T is an AS-domain and
K is algebraic over k. In the general case, if htT (M) ≥ 2, then R may be an
AS-domain even if K is not algebraic over k (see Corollary 1.18).

2. Pseudo-polynomial rings. Let R be a ring and R[X] the polyno-
mial ring in one indeterminate X over R. The purpose of this section is to
study pseudo-polynomial rings. We define an R-pseudo-polynomial ring to
be a ring T contained between R and R[X] in which every prime ideal P
contains the prime ideal p[X]∩T , where p = P ∩R. Clearly R, R[X2], R[X]
are R-pseudo-polynomial rings. In this section we collect more information
on rings between R and R[X] in order to clear up their relationship with
the polynomial ring R[X]. We start with a proposition which generalizes the
fact that if p is a prime ideal of a ring R and X is an indeterminate over
R, then ht(p[X]) ≥ ht(p), dim(R[X]) ≥ dim(R)+ 1, and htv(p[X]) = htv(p)
([9, 15]).

Proposition 2.1. Let R be a domain, p a prime ideal of R, X an in-
determinate over R, and T a domain such that R ⊂ T ⊆ R[X]. Then:

(i) ht(p[X] ∩ T ) ≥ ht(p);

(ii) if p[X] ∩ T is not maximal among the primes of T lying over p,
then htv(p[X] ∩ T ) = htv(p);

(iii) if p[X] ∩ T is maximal among the primes of T lying over p, then
htv(p[X] ∩ T ) = htv(p) + 1.
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Proof. The case where ht(p) = ∞ is clear. Hence we assume that ht(p)
is finite. By localization of R at p, we can suppose that R is local with
maximal ideal p.

(i) It is clear that a chain p0 ⊂ p1 ⊂ . . . ⊂ pk = p of prime ideals in R
gives rise to a chain p0[X]∩T ⊂ p1[X]∩T ⊂ . . . ⊂ pk[X]∩T of prime ideals
in T . Thus ht(p[X] ∩ T ) ≥ ht(p).

(ii) Since Tp[X]∩T ⊆R[X]p[X] is an algebraic extension, [18, Theorem 30.8]
yields htv(p[X] ∩ T ) ≥ htv(p[X]) = htv(p). On the other hand, using the
fact that p[X] ∩ T is not maximal among the primes of T lying over p and
[4, Lemme 1.1], we have htv(p[X]∩T ) ≤ dimv(Tp)− 1 ≤ dimv(R) = htv(p).
Thus htv(p[X] ∩ T ) = htv(p).

(iii) It is clear that htv(p[X]∩T ) ≤ dimv(Tp) ≤ dimv(R)+1 = htv(p)+1
[4, Lemme 1.1]. Since Tp/(p[X] ∩ T )p is a field contained between R/p and
(R/p)[X], necessarily Tp/(p[X] ∩ T )p = R/p. Thus denoting by A the ring
of the (R[X], p[X], R/p) construction (in fact A = R + p[X]), we have the
algebraic extension Tp = R + (p[X] ∩ T )p ⊆ A and, by [18, Theorem 30.8],
we get htv(p[X] ∩ T ) ≥ htvA(p[X]). On the other hand, for any positive
integers m and r, we have, according to [11, Lemme 3],

htA[m+r](p[X][m+ r])

≥ htR[X][m](p[X][m]) + inf(tr.deg[(R/p)[X] : R/p], r).

Then by passage to the limit m, r →∞, we obtain

htvA(p[X]) ≥ 1 + htvR[X](p[X]) = 1 + htv(p).

For instance, let R be a domain, p a maximal ideal of R, X an indeter-
minate over R, and set T := (R[X], p[X], D), where D is a ring contained
between R/p and (R/p)[X]. Then htvT (p[X]) = 1 + htv(p) if D is a field,
and htvT (p[X]) = htv(p) if not.

Recall that according to [15], a prime ideal p of a ring R is said to be a
Jaffard prime ideal if ht(p) = htv(p) <∞. It is an open question whether if
R is locally Jaffard, then each ring between R and R[X] is locally Jaffard.
Nevertheless, we have the following

Corollary 2.2. Let R be a domain, X an indeterminate over R and
T a domain such that R ⊆ T ⊆ R[X]. Then for each Jaffard prime ideal p
of R, p[X] ∩ T is a Jaffard prime ideal of T .

Proof. We ignore the case T = R and by localization of R at p, we can
suppose that R is local with maximal ideal p. If ht(p[X]∩T ) = ht(p)+1, then
Proposition 2.1 gives ht(p[X]∩T ) = htv(p[X]∩T ) = htv(p)+1 = ht(p)+1.
If ht(p[X] ∩ T ) = ht(p) = htv(p), then using Proposition 2.1, to prove that
ht(p[X] ∩ T ) = htv(p[X] ∩ T ) = htv(p) = ht(p), it suffices to prove that
p[X] ∩ T is not maximal in T .
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Indeed, assume that p[X]∩T is maximal in T and ht(p[X]∩T ) = ht(p).
Let q be a prime ideal of R such that ht(q) = ht(p)− 1. By passage to the
quotients R/q ⊆ T/(q[X] ∩ T ) ⊆ (R/q)[X], we can suppose that ht(p) = 1
and that p[X]∩ T is a height 1 maximal ideal of T . By [5, Proposition 1.7],
we have necessarily R/p = T/(p[X] ∩ T ) and therefore R ⊂ T ⊆ R + p[X]
and T = R + p[X] ∩ T . But in this case ht(p[X] ∩ T ) = 2 > 1, since
(0) ⊂ (XR[X]) ∩ T ⊂ p[X] ∩ T , contradicting the hypothesis ht(p[X] ∩ T )
= ht(p) = 1.

Now, we turn our attention to pseudo-polynomial rings. We start with
a simple result showing how we can construct a pseudo-polynomial ring.

Proposition 2.3. Let R be a ring , I an ideal of R such that dim(R/I)
= 0, and D a ring contained between R/I and (R/I)[X]. Then the ring T
of the (R[X], I[X], D) construction is a pseudo-polynomial ring.

Proof. Let Q be a prime ideal of T and q = Q∩R. If Q does not contain
I[X], then by [10, Proposition 0] there is a prime ideal Q′ of R[X] lying
over Q. Since q[X] ⊆ Q′, we find that q[X]∩T ⊆ Q. If Q contains I[X], the
result is a consequence of Proposition 3.5 sinceR/I ⊆ T/I[X] ⊆ (R/I)[X].

Remark 2.4. (a) The “dim(R/I) = 0” condition is essential in the
previous proposition. Indeed, if dim(R/I) ≥ 1, then by Proposition 3.5,
there exists a ring D contained between R/I and (R/I)[X] which is not
pseudo-polynomial. Therefore, the ring T := (R[X], I[X], D) is not pseudo-
polynomial.
(b) If J is not an extended ideal of R[X] (i.e. is not of the form I[X]),

then an (R[X], J,D) construction ring need not be pseudo-polynomial as
will be illustrated by the following example.

Example 2.5. Let t1, t2 be two independent indeterminates over a
field K. Setting B = K[t1, t2], M = (t1 − 1) and N = (t1, t2), we have
B/M ∼= K[t2] and B/N ∼= K. Let I = M ∩N , R = K + I, q = (t1 + t2)B
and p = q ∩ R. Pick an element α of q whose class α in B/M is transcen-
dental over R/I = K (for instance α = t1 + t2). By [11, Exemple 8], for
P = (αX − 1) ∩ R[X], (0) ⊂ P ⊂ I[X] is a chain of prime ideals in R[X].
Consider the ring T obtained by the (R[X], P,R) construction. It is clear
that R ⊂ T ⊂ R[X] and that p + P is a prime ideal of T lying over p
in R. Select two elements x and y in I such that x + y ∈ p, x 6∈ p and
y 6∈ p (for instance x = (t1 − 1)t1 and y = (t1 − 1)t2). Then the polynomial
f = x(αX − 1) − y = αxX − x − y belongs to p[X] ∩ T , whereas f does
not belong to p + P . Thus p + P does not contain p[X] ∩ T and T is not
pseudo-polynomial.

Recall that a ring extension R ⊆ T is lying-over if each prime ideal p of
R lifts to T .
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Proposition 2.6. Let T be a ring contained between R and R[X]. Then
T is pseudo-polynomial if and only if T ⊆ R[X] is a lying-over extension.

Proof. Of course the “if” part is immediate since R[X] is pseudo-poly-
nomial.
For the “only if” part, let Q be a prime ideal of T and set q = Q ∩ R.

Since T is pseudo-polynomial, we have q[X] ∩ T ⊆ Q. By localization of
R at q, we can assume that R is local with maximal ideal q. If q[X] ∩
T ⊂ Q, then Q/(q[X]∩T ) is a nonzero prime ideal of T/(q[X]∩T ) which is
contained between R/q and (R/q)[X]. Since (R/q, (R/q)[X]) is a lying-over
pair [13, Proposition 2.9], there is a prime ideal Q′/q[X] of (R/q)[X] such
that Q/(q[X] ∩ T ) = (Q′/q[X]) ∩ (T/(q[X] ∩ T )). Thus Q′ ∩ T = Q.

Now, we give some results concerning the spectrum of pseudo-polynomial
rings which generalize well-known results about the polynomial ring in one
variable.

Proposition 2.7. Let R be a domain, p a prime ideal of R and T a
pseudo-polynomial ring distinct from R. Then:

(i) ht(p) ≤ ht(p[X] ∩ T ) ≤ 2ht(p);
(ii) dim(R) + 1 ≤ dim(T ) ≤ 2 dim(R) + 1.

To prove this result we need the following lemma.

Lemma 2.8. Let R be a domain and T a pseudo-polynomial ring. If
P1 ⊆ P2 ⊆ P3 is a chain of primes in T such that P1∩R = P2∩R = P3∩R,
then necessarily P1 = P2 or P2 = P3.

Proof. By localization of R at p = P1∩R, we can suppose that R is local
with maximal ideal p. Since T is pseudo-polynomial, p[X]∩T ⊆ P1. On the
other hand, we have the inclusions R/p ⊆ T/(p[X] ∩ T ) ⊆ (R/p)[X] and
dim(T/(p[X] ∩ T )) ≤ 1 [4, Lemme 1.1], hence necessarily P1/(p[X] ∩ T ) =
P2/(p[X]∩T ) or P2/(p[X]∩T ) = P3/(p[X]∩T ). Thus P1 = P2 or P2 = P3.

Proof of Proposition 2.7. The prime ideal (X) ∩ T is nonzero and such
that T/(X) ∩ T ≃ R. Thus dim(R) + 1 ≤ dim(T ). The inequality ht(p) ≤
ht(p[X] ∩ T ) is established in Proposition 2.1(i). It is straightforward to
check that, with the use of Lemma 2.8, the proof of [18, Corollary 30.3] may
be adapted to establish the remaining inequalities.

Remark 2.9. Let R be a one-dimensional domain and M a maximal
ideal of R, and set T := (R[X],M [X], R/M) = R+M [X]. Then, by Propo-
sition 2.3, T is a pseudo-polynomial ring. Moreover, we have htT (M [X]) = 2
and dim(T ) = 2. Thus the upper bound in statement (i) of Proposition 2.7
is attained.
Notice that if R is a Jaffard domain, then for each T such that R ⊂

T ⊆ R[X] we have dim(T ) = dimv(T ) = dimv(R) + 1 = dim(R) + 1. On
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the other hand, consider a local domain R with maximal ideal M such
that dim(R[X]) = 2 dim(R) + 1. Let T := (R[X],M [X], (R/M)[X2]). By
Proposition 2.3, T is a pseudo-polynomial ring and dim(T ) = 2 dim(R) + 1
since R[X] is integral over T . Hence the upper bound in statement (ii) of
Proposition 2.7 is attained.

Lemma 2.10. Let R be a domain and T a pseudo-polynomial ring. If
P is a prime ideal of T such that p[X] ∩ T ⊂ P , where p = P ∩ R, then
ht(P ) = ht(p[X] ∩ T ) + 1 and htv(P ) = htv(p[X] ∩ T ) + 1 = htv(p) + 1.

Proof. Both assertions of the lemma are clear if ht(P ) = ∞. Hence
assume that ht(P ) is finite. To prove the first part, we proceed as in [18,
Lemma 30.17]. By localization of R at p, we can suppose that R is local
with maximal ideal p. If p = (0), then qf(R) ⊆ S−1T ⊆ qf(R)[X], where
S = R \ {0}. By [4, Lemme 1.1], we have dim(S−1T ) ≤ 1. Thus ht(P ) =
1 = 1 + ht(p[X] ∩ T ). We assume the result for all k < m, where m ≥ 0
and ht(p) = m. To prove that ht(P ) = ht(p[X] ∩ T ) + 1, it suffices to show
that ht(Q) ≤ ht(p[X] ∩ T ) for each prime ideal Q ⊂ P . Let q = Q ∩ R.
If q = p, then (p[X] ∩ T ) ⊆ Q ⊂ P . By the previous lemma, we have
necessarily Q = p[X] ∩ T and ht(Q) ≤ ht(p[X] ∩ T ). If q ⊂ p, then the
induction hypothesis implies that ht(Q) = ht(q[X]∩ T ) + 1 ≤ ht(p[X]∩ T ).
This completes the proof of ht(P ) = ht(p[X] ∩ T ) + 1.
Let Y1, . . . , Yn be n indeterminates over R[X]. We have the inclusions

R[Y1, . . . , Yn] ⊆ T [Y1, . . . , Yn] ⊆ R[Y1, . . . , Yn][X]. From the first part of the
lemma, ht(P [n]) = ht(P [Y1, . . . , Yn]) = ht((p[X] ∩ T )[Y1, . . . , Yn]) + 1. By
Proposition 2.1 and letting n → ∞, we have htv(P ) = htv(p[X] ∩ T ) + 1
= htv(p) + 1.

By combining Proposition 2.1 and Lemma 2.10, we have the following
theorem which generalizes the special chain theorem ([9], [19]) and the val-
uative special chain theorem [15] for a given pseudo-polynomial ring.

Theorem 2.11. Let R be a domain, X an indeterminate over R and T
an R-pseudo-polynomial ring. Let P be a prime ideal of T and let p = P∩R.
Then ht(P ) = ht(p[X] ∩ T ) + ht(P/(p[X] ∩ T )) ≤ ht(p[X] ∩ T ) + 1 and
htv(P ) = htv(p) + ht(P/(p[X] ∩ T )) ≤ htv(p) + 1.

Definition 2.12. Let R be a ring, X an indeterminate over R and T a
ring such that R ⊆ T ⊆ R[X]. We say that a chain P0 ⊂ P1 ⊂ . . . ⊂ Pk of
primes in T is a generalized special chain if for each 0 ≤ i ≤ k, (pi[X] ∩ T )
is a member of this chain, where pi = Pi ∩R.

It is clear that if T = R[X], then this definition coincides with the
definition of a special chain set by P. Jaffard [19, Chapitre II, Section 4].
The next theorem is a generalization of [19, chapitre II, Théorème 3] for
pseudo-polynomial rings R.
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Theorem 2.13. Let R be a ring and T a pseudo-polynomial ring. If P
is a prime ideal of T of finite height , then ht(P ) can be realized as the length
of a generalized special chain of primes in T with terminal element P .

Proof. We proceed as in [18]. If ht(P ) = 0, then P = (P ∩ R)[X] ∩ T
and the desired conclusion holds. If ht(P ) = m > 0, and if the theorem is
true for primes of height less than m, then we take a chain of prime ideals
P0 ⊂ P1 ⊂ . . . ⊂ Pm = P of length m. It is clear that ht(Pj) = j for
each j. By Theorem 2.11, we can assume that Pm−1 = (P ∩ R)[X] ∩ T or
Pm = (P∩R)[X]∩T . If Pm−1 = (P∩R)[X]∩T , then the induction hypothesis
implies that there is a generalized special chain P ′0 ⊂ P

′

1 ⊂ . . . ⊂ P
′

m−1 =
Pm−1 of length m − 1, and P

′

0 ⊂ . . . ⊂ P
′

m−1 = Pm−1 ⊂ P is a generalized
special chain of length m with terminal element P . If P = (P ∩R)[X] ∩ T ,
then we can obtain a generalized special chain P ′0 ⊂ . . . ⊂ P

′

m−1 of length
m − 1 with terminal element Pm−1, and P

′

0 ⊂ . . . ⊂ P
′

m−1 ⊂ Pm = P is a
generalized special chain of length m with terminal element P .

It is known that if R is a Jaffard domain, then each domain between R
and R[X] is Jaffard [5]. We give here an analogous result in the case where
R is locally Jaffard for pseudo-polynomial rings. Note that it is an open
question whether each ring between R and R[X] is locally Jaffard whenever
R is locally Jaffard.

Theorem 2.14. If R is a locally Jaffard domain, then each pseudo-
polynomial ring is locally Jaffard.

Proof. Let T be a pseudo-polynomial ring distinct from R, P a prime
ideal of T , and p = P ∩ R. By localization of R at p, we can suppose that
R is local with maximal ideal p. Two cases may occur:

Case 1 : p[X] ∩ T ⊂ P . Then by Lemma 2.10, htv(P ) = htv(p) + 1 ≤
ht(P ) and therefore htv(P ) = ht(P ) = ht(p) + 1.

Case 2 : p[X] ∩ T = P . By Corollary 2.2, we have ht(P ) = htv(P ) =
ht(p) or ht(p) + 1.

Corollary 2.15. If R is a one-dimensional S-domain, then each
pseudo-polynomial ring is totally Jaffard.

Proof. From [4, Lemme 1.1], it follows that if T is a domain such that
R ⊆ T ⊆ R[X], then dim(T ) ≤ dim(R) + 1 = 2. Thus, each ring between R
and R[X] is catenarian. Since a locally Jaffard catenarian domain is totally
Jaffard [11, Corollaire 1], the previous theorem yields the desired conclu-
sion.

Corollary 2.16. If R is an S-domain, then each pseudo-polynomial
ring is an S-domain.
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Proof. Let T be a pseudo-polynomial ring and let P be a height 1 prime
ideal in T . We have p[X] ∩ T ⊆ P , where p = P ∩ R. If p = (0), then
qf(R) ⊆ S−1T ⊆ qf(R)[X], where S = R \ {0}. By [5, Théorème 1.9], we
conclude that S−1T is locally Jaffard and therefore ht(P ) = htv(P ) = 1. If
p 6= (0), then necessarily P = p[X] ∩ T and ht(p) = 1. By localization of R
at p and using the previous corollary, we deduce that ht(P ) = htv(P ) = 1.
Thus T is an S-domain.

3. Pseudo-polynomial rings and lying-over pairs. Recall that a
ring extension R ⊆ T is lying-over (resp., survival) if each prime ideal p
of R lifts to T (resp., pT 6= T ). Considering an extension property (P), we
say that (R, T ) is a (P)-pair if, for each ring A between R and T , that is,
R ⊆ A ⊆ T , both extensions R ⊆ A and A ⊆ T are (P) extensions.
If R ⊆ T is a lying-over extension, then for each A in between, R ⊆ A is

also a lying-over extension. Thus to say that (R, T ) is a lying-over pair, it is
enough to say that, for each A such that R ⊆ A ⊆ T , A ⊆ T is a lying-over
extension. On the other hand, in the case of survival pairs it is enough to
say that for each A such that R ⊆ A ⊆ T , R ⊆ A is a survival extension.
A pair (R, T ), where R ⊆ T , is said to be a lying-over pair (resp., survival
pair) if A ⊆ T (resp., R ⊆ A) is a lying-over extension (resp., survival
extension) whenever A is an intermediate ring between R and T [21]. It is
immediate that (R, T ) is a survival pair if and only if each maximal ideal of
an intermediate ring between R and T lifts to T .
In [13], D. E. Dobbs has shown that for rings R ⊆ T such that T is

semi-local, T is integral over R if and only if (R, T ) is a lying-over pair, or
equivalently (R, T ) is a survival pair. He asked if a survival pair is always a
lying-over pair. In this section we answer this question in the affirmative in
case T is transcendental over R.
In [13], D. E. Dobbs noted that a survival extension need not be lying-

over. He gave two examples; the first derives from Chevalley [12, Lemma 2]
and the second is due to W. J. Lewis [14, Example 4.4]. A sharpening of
this remark is that a survival extension of the form R ⊆ R[u] (for some u in
the quotient field of R) need not be lying-over (see Example 3.6).
We start with the following proposition.

Proposition 3.1. Let R ⊆ T be a ring extension. Then (R, T ) is a
survival pair if and only if (R/(q ∩ R), T/q) is a survival pair for each
prime ideal q of T .

Proof. For the “only if” part, our task is to show that for each ring C
contained between R/(q∩R) and T/q, C “survives” in T/q. Note that C may
be identified as C = A/q where A is a suitable ring contained between R+q
and T, and that maximal ideals of C correspond to those of A containing q.
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Let M be a maximal ideal of A containing q. Since (R + q, T ) is a survival
pair and A ⊆ T , there exists a prime ideal q1 of T such that M = q1 ∩ A
and so M/q = (q1/q) ∩ (A/q).
For the “if” part, consider a maximal ideal M of a ring C contained

between R and T . Let q be a minimal prime ideal contained in M . Then q
lifts to T as a minimal prime q′. Since (R/(q′ ∩R), T/q′) is a survival pair,
there exists a prime ideal q1/q

′ of T/q′ lying over M/q in C/q and hence
M = q1 ∩ C.

Recall that D. E. Dobbs has established that for any ring R, (R,R[X])
is a lying-over pair if and only if dim(R) = 0 [13, Proposition 2.13]. This
characterization is sharpened in the next lemma.

Lemma 3.2. Let R be a ring. Then (R,R[X]) is a survival pair if and
only if dim(R) = 0.

Proof. For the “if” part, assume that dim(R) = 0; then by [13, Propo-
sition 2.13], (R,R[X]) is a lying-over pair and a fortiori a survival pair.
For the “only if” part, if p is a minimal prime ideal of R, then by consid-

ering the survival pair (R/p, (R/p)[X]) (Proposition 3.1), we may assume
that R is a domain. If dim(R) > 0, then R contains a maximal ideal M
whose height is greater than 1. Select a nonzero element b in M , and con-
sider T = R[1+ bX]. By hypothesis, the extension T ⊆ R[X] is survival and
so there exists a prime ideal Q of R[X] such that Q∩T = (M, 1+bX)T (note
that (M, 1+bX)T is a maximal ideal of T ). As bX ∈ (MR[X]∩T ) ⊆ Q∩T ,
it follows that 1 = (1 + bX)− bX ∈ Q ∩ T , contradicting Q ⊂ T .

The next result as well as Proposition 3.4 are partial answers to a ques-
tion left open in [13] of whether a survival pair must be lying-over.

Theorem 3.3. Let R ⊆ T be domains such that T is transcendental
over R. The following statements are equivalent :

(i) (R, T ) is a lying-over pair ;
(ii) (R, T ) is a survival pair ;
(iii) R is a field and for each element x in T which is transcendental

over R, T is integral over R[x];
(iv) R is a field and T is integral over R[x] for some element x in T

which is transcendental over R.

Proof. Assertions (i) and (iii) are equivalent by [13, Theorem 4.1]. It is
clear that (i) implies (ii).
(ii)⇒(iii). Let x be an element of T which is transcendental over R.

Since (R,R[x]) is a survival pair, the previous lemma shows that R is a
field. If there were an element y of T which is transcendental over R[x], then
(R[x], R[x][y]) would be a survival pair, contradicting Lemma 3.2. Hence, T
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is algebraic over R[x]. Since R[x] is a one-dimensional Prüfer domain, each
ring contained between R[x] and T has dimension less than 1 and (R[x], T )
is an INC pair. Using [13, Theorem 2.1 and Corollary 2.4 (bis)], we conclude
that T is integral over R[x].
Finally, the equivalence between (iii) and (iv) is clear.

However, in the algebraic case we obtain the following result in the case
of (T,M,D) constructions.

Proposition 3.4. Let T be a domain, M a maximal ideal of T , D a
subring of the field K = T/M and R := (T,M,D). Then the following
statements are equivalent.

(i) (R, T ) is a lying-over pair ;
(ii) (R, T ) is a survival pair ;
(iii) D is a field and D ⊆ K is an algebraic extension.

Proof. The implication (i)⇒(ii) is clear.
(ii)⇒(iii). Since (R, T ) is a survival pair, Proposition 3.1 shows that

(D,K) is also a survival pair. Hence by [13, Theorem 2.7], K is integral
over D. Thus D is a field and D ⊆ K is an algebraic extension.
(iii)⇒(i). Since D is a field and D ⊆ K is an algebraic extension, K is

integral over D. Thus T is integral over R (see [10]). Therefore (R, T ) is a
lying-over pair.

By combining Theorem 3.3, [13, Proposition 2.13] and Proposition 2.6,
we get the following:

Proposition 3.5. Let R be a ring. The following statements are equiv-
alent :

(i) each ring contained between R and R[X] is pseudo-polynomial ;
(ii) (R,R[X]) is a lying-over pair ;
(iii) (R,R[X]) is a survival pair ;
(iv) dim(R) = 0.

The next example provides a survival extension of the form R ⊂ R[u]
(for some u in the quotient field of R) which is not lying-over.

Example 3.6. With the same hypotheses as in Example 2.5, set A =
R[X]/P ≃ R[1/α]. We prove that the extension R ⊂ A is not lying-over.
Indeed, assume that there is a prime ideal Q/P of R[X]/P such that p =
(Q/P )∩R. Since Rp = Bq, we see that α ∈ Qp. But αX−1 ∈ Qp, implying
that 1 ∈ Qp, a contradiction. We conclude that R ⊂ A is not a lying over
extension while it is a survival extension since I.A = I[X]/P .
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