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Abstract. The classical criterion for compactness in Banach spaces of functions can
be reformulated into a simple tightness condition in the time-frequency domain. This
description preserves more explicitly the symmetry between time and frequency than the
classical conditions. The result is first stated and proved for L2(Rd), and then generalized
to coorbit spaces. As special cases, we obtain new characterizations of compactness in
Besov–Triebel–Lizorkin, modulation and Bargmann–Fock spaces.

1. Introduction. Compactness in function spaces is usually character-
ized by conditions of the Arzelà–Ascoli type. Typically, what is necessary
is an equicontinuity condition with respect to the norm of the space under
consideration. If the underlying topological space is not compact, then in
addition a tightness condition is required, i.e., all functions have the same
“essential” support. The prototype of such a result is the characterization
of compactness in Lp-spaces, which in its general form on locally compact
abelian groups is due to A. Weil. In what follows, χU will denote the indi-
cator function of a compact set U .

Theorem 1 ([15]). A closed and bounded subset S of Lp(Rd) for 1 ≤
p <∞ is compact if and only if the following conditions are satisfied :

(i) Equicontinuity : for all ε > 0 there exists δ > 0 such that

sup
f∈S
sup
|h|≤δ
‖f(· − h)− f‖p < ε.(1)

(ii) Tightness: for all ε > 0 there exists a compact set U in R
d such that

sup
f∈S
‖fχU − f‖p < ε.(2)

Far-reaching generalizations of Theorem 1 to general translation invari-
ant Banach spaces of distributions with a so-called double module structure
were proved in [5].
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Specializing to L2(Rd), it is well known and not difficult to see that the
equicontinuity condition (1) is equivalent to the tightness of the Fourier

transforms Ŝ = {f̂ : f ∈ S} in L2(Rd). In particular, a closed and bounded

set S ⊆ L2(Rd) is compact if and only if S and Ŝ are both tight in L2(Rd)
(see [5] and [12]).

The symmetry of this characterization under the Fourier transform mo-
tivated us to look at analytic tools which are designed expressedly to deal
with situations that treat a function and its Fourier transform simultane-
ously and to search for a characterization of compactness by means of these
tools. In this regard the short-time Fourier transform is the tool that is used
most frequently to describe both time and frequency simultaneously, i.e., a
function and its Fourier transform.

Definition 1 (Short-time Fourier transform). Let Mω and Tx denote
the frequency shift by ω and time shift by x, respectively, i.e., MωTxg(t) =
e2πitωg(t − x) for (x, ω) ∈ R

2d. The short-time Fourier transform (STFT)
of a function f ∈ L2(Rd) with respect to a window function g ∈ L2(Rd) is
defined as

Sgf(x, ω) =
\

Rd

f(t)g(t− x)e−2πiωt dt = 〈f,MωTxg〉.(3)

With slightly different normalization, the short-time Fourier transform
also occurs under the names “(radar) ambiguity function” or “(cross-) Wig-
ner distribution” (see [10]). For suitable windows g, e.g. g in the Schwartz
class S(Rd), the value Sgf(x, ω) can be interpreted as a measure for the
energy of f at z = (x, ω) ∈ R

2d. An important property in the study of
compactness is the isometry property of the short-time Fourier transform,
which states that for any f, g ∈ L2(Rd),

‖Sgf‖2 = ‖g‖2‖f‖2.(4)

It becomes intuitively obvious that a condition comprising the support
conditions given in Theorem 1 for time and frequency separately can be
formulated as a simultaneous tightness condition in time and frequency via
the short-time Fourier transform.

Theorem 2 (Compactness in L2(Rd)). For a closed and bounded set
S ⊆ L2(Rd) the following statements are equivalent :

(i) S is compact in L2(Rd).

(ii) The set {Sgf : f ∈ S} is tight in L
2(R2d); this means that for all

ε > 0 there exists a compact set U ⊆ R
2d such that

sup
f∈S

( \
Uc

|Sgf(x, ω)|
2 dx dω

)1/2
< ε.(5)
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Proof. To get an idea about possible generalizations we give the pretty
proof of this theorem right here. Without loss of generality we assume that
‖g‖2 = 1, so that Sg is an isometry on L

2(Rd).

(i)⇒(ii). By compactness of S we can find f1, . . . , fn such that

min
j=1,...,n

‖f − fj‖2 < ε/2 for all f ∈ S.

Since Sgfj ∈ L
2(R2d) by (4), we may choose a compact set U ⊆ R

2d such
that

T
Uc |Sgfj(x, ω)|

2 dx dω < ε2/4 for j = 1, . . . , n. From (4) we deduce for
arbitrary f ∈ S that
( \
Uc

|Sgf(x, ω)|
2 dx dω

)1/2
≤ min
j=1,...,n

{( \
Uc

|Sg(f − fj)(x, ω)|
2 dx dω

)1/2

+
( \
Uc

|Sgfj(x, ω)|
2 dx dω

)1/2}

≤ min
j
‖f − fj‖2 + ε/2 < ε.

(ii)⇒(i). It suffices to show that every sequence (fn) in S contains a
convergent subsequence. By (ii) we can choose a compact set U ⊆ R

2d such
that \

Uc

|Sgf(x, ω)|
2 dx dω < ε2(6)

for all f ∈ S, in particular for the sequence (fn). Since by assumption S
is bounded, it is weakly compact in L2(Rd) and thus (fn) has a weakly
convergent subsequence fj = fnj with limit f , i.e., 〈fj , h〉 → 〈f, h〉 for all

h ∈ L2(Rd). If we choose h = MωTxg for (x, ω) ∈ R
2d, this implies the

pointwise convergence of the short-time Fourier transforms

Sgfj(x, ω)→ Sgf(x, ω) for x, ω ∈ R
d.(7)

Since by (3) and the Cauchy–Schwarz inequality we have, for all (x, ω),

|Sg(f − fj)(x, ω)| ≤ ‖f − fj‖2 ≤ sup
j
‖fj‖2 + ‖f‖2 < C,

the restriction of |Sg(f − fj)|
2 to U is dominated by the constant function

C2χU ∈ L
1(Rd). In view of (7) we may now apply the dominated convergence

theorem to obtain \
U

|Sg(f − fj)(x, ω)|
2 dx dω → 0.(8)

The combination of (8) and (6) now yields

lim
j→∞
‖f − fj‖2 = lim

j→∞
‖Sg(f − fj)‖2
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≤ lim
j→∞

(\
U

|Sg(f − fj)(x, ω)|
2 dx dω

)1/2

+ lim
j→∞

( \
Uc

|Sg(f − fj)(x, ω)|
2 dx dω

)1/2

≤ 0 + 2ε.

Therefore limj→∞ ‖f − fj‖2 = 0 and thus S is compact.

Theorem 2 and its proof suggest several extensions. On the one hand, we
may replace the L2-norm of the short-time Fourier transform by other norms
and ask for which function spaces we can still characterize compactness as in
Theorem 2. Pursuing this idea leads to the characterization of compactness
in the so-called modulation spaces (Section 3.1).
On the other hand, if we are willing to give up the time-frequency in-

terpretation of Theorems 1 and 2, we may replace the short-time Fourier
transform by other transforms. As a further example occurring in mod-
ern analysis we consider the wavelet transform, which shares the important
isometry property with the STFT [4].

Definition 2 (Continuous wavelet transform). Let

TxDsg(t) = s
−d/2g(s−1(t− x))

for (x, s) ∈ R
d × R

+. The continuous wavelet transform of a function f ∈
L2(Rd) with respect to a wavelet g ∈ L2(Rd) is defined to be

Wgf(x, s) = s
−d/2

\
Rd

f(t)g

(
t− x

s

)
dt = 〈f, TxDsg〉.(9)

If g is radial and satisfies the admissibility condition\
R+

|ĝ(tω)|2
dt

t
= 1 for all ω ∈ R

d \ {0},(10)

then
T
|Wgf(x, s)|

2 dx ds/|s|d+1 = ‖f‖2 and thus Wg is an isometry for

L2(Rd) (see [4]).
The same proof as for Theorem 2 with the wavelet transform in place of

the STFT now yields the following criterion for compactness in L2(Rd).

Theorem 3 (Compactness in L2(Rd) via wavelet transform). Let g ∈
L2(Rd) satisfy condition (10). A closed and bounded set S ⊆ L2(Rd) is
compact in L2(Rd) if and only if for all ε > 0 there exists a compact set
U ⊆ R

d × R
+ such that

sup
f∈S

( \
Uc

|Wgf(x, s)|
2 dx ds

sd+1

)1/2
< ε.(11)
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The STFT and the wavelet transform do have other properties in com-
mon. Both are defined as the inner product of f with the action of a group
of unitary operators on a fixed function g. More precisely, both the STFT
and the wavelet transform are representation coefficients of a certain uni-
tary continuous representation π of a group G on a Hilbert space H. This
observation has been very fruitful for the evolution of the general wavelet
theory [6, 7, 9]. In our context we shall take the proof of Theorem 2 as an
outline to obtain compactness criteria for a general class of function spaces
defined by means of other group representations.
With each irreducible unitary continuous representation π of a locally

compact group on a Hilbert space H satisfying some additional integrabil-
ity condition, we associate a family of abstract function spaces, the so-called
coorbit spaces. For these spaces we will prove compactness criteria analogous
to those of Theorems 2 and 3. Upon choosing a particular group and a natu-
ral representation, we will recover the above statements. In addition we will
obtain compactness criteria for modulation spaces by means of the short-
time Fourier transform, similar to Theorem 2, and using the wavelet trans-
form we will characterize compactness in Besov–Triebel–Lizorkin spaces.
Another modification leads to a new compactness criterion for Bargmann–
Fock spaces.
The paper is organized as follows. Section 2 introduces the concept of

coorbit spaces and deals with technical difficulties arising in the generaliza-
tion of Theorem 2 to coorbit spaces. These concern the validity of dominated
convergence and the theorem of Alaoglu–Bourbaki. In Section 2.2 we state
the main theorem for general coorbit spaces. In Section 3 we treat the ap-
plication of this theorem to several classes of well known function spaces.
In a subsequent project we will apply the new compactness criteria to

study operators on coorbit spaces.

2. Coorbit spaces

2.1. Preliminaries and definition. We first recall the theory of coorbit
spaces. For simplicity we omit some technical details and refer the reader to
[6, 7, 9] where the theory has been thoroughly investigated.
The theory of coorbit spaces requires the following basic structures:

• a locally compact group G with Haar measure dz,
• an irreducible unitary representation π of G on a Hilbert space H,
• a continuous submultiplicative weight function ν on G, i.e., ν satisfies

ν(z1 + z2) ≤ ν(z1)ν(z2) and ν(z1) ≥ 1 for all z1, z2 ∈ G,
• a Banach space (Y, ‖ · ‖Y ) of functions on G.

Functions of the form z ∈ G 7→ 〈f, π(z)g〉 are called representation coef-
ficients of π. Upon inspection we see that the short-time Fourier transform
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defined in (3) is (up to a trivial factor) a representation coefficient of the
Schrödinger representation of the Heisenberg group G = R

d × R
d × T on

L2(Rd), given by π(x, y, τ)f(t) = τe2πiy(t−x)f(t − x). Likewise the wavelet
transform is a representation coefficient of the ax+ b-group G = R

d×R
+ of

the representation ̺(x, s)f(t) = s−d/2f(s−1(t− x)).

For reasons of compatibility and well-definedness we impose the following
conditions on G, (π,H), ν. We refer to [6] for a detailed justification of these
assumptions.

(A) π is irreducible, unitary, continuous and ν-integrable, i.e., there exists
g ∈ H, g 6= 0, such that \

G

|〈π(z)g, g〉|ν(z) dz <∞.(12)

(B) Y is a solid Banach function space on G, i.e., if F ∈ Y and G is
measurable with |G(z)| ≤ |F (z)| for almost all z ∈ G, then G ∈ Y and
‖G‖Y ≤ ‖F‖Y .

(C) Y is invariant under right and left translations and satisfies the
convolution relation Y ∗ L1ν(G) ⊆ Y , with ‖F ∗ G‖Y ≤ ‖F‖Y ‖G‖L1ν(G) for

F ∈ Y , G ∈ L1ν(G).

It follows that L∞0 (G), the space of bounded functions with compact
support on G, is contained in Y . This property will be crucial in the proof
of our main statement.

We introduce the following notation for the representation coefficient
of π:

Vgf(z) = 〈f, π(z)g〉 for z ∈ G.

Definition 3 (Abstract test functions and distributions). We fix g0 ∈
H \ {0} satisfying (12). Then the space Aν of test functions is defined as

Aν = {g ∈ H : ‖g‖Aν = ‖Vg0g‖L1ν(G) <∞}

The space Aν is dense in H, its dual A
′
ν , the space of all (conjugate-)

linear continuous functionals on Aν , contains H and plays the role of a space
of distributions. It will serve us as a reservoir of selection.

Definition 4 (Coorbit spaces). Under the hypotheses (A), (B), (C) im-
posed on G, π,H, ν, fix any g ∈ Aν \ {0}. Then the coorbit space of Y under
the representation π is defined as

CoπY = {f ∈ A
′
ν : Vgf ∈ Y }

with norm ‖f‖CoπY = ‖Vgf‖Y .

Then CoπY has the following properties (see [6] for details):



COMPACTNESS CRITERIA IN FUNCTION SPACES 43

(i) CoπY is a Banach space invariant under the action of π. Specifically,

‖π(z)f‖CoπY ≤ Cν(z)‖f‖CoπY for f ∈ CoπY.(13)

(ii) The definition of CoπY is independent of the choice of g ∈ Aν .
(iii) Different functions g ∈ Aν \ {0} define equivalent norms on CoπY .
(iv) By definition CoπY is a subspace of A

′
ν and we also have

‖f‖A′ν ≤ C‖f‖CoπY(14)

(v) Special cases: CoπL
2(G)=H, CoπL

1
ν(G)=Aν , and CoπL

∞
1/ν(G)=A

′
ν .

In order to obtain compactness criteria analogous to Theorem 2 for gen-
eral coorbit spaces, we have to impose further assumptions on Y . As pointed
out at the end of Section 1, we need to use a norm ‖·‖Y for which dominated
convergence holds. In our treatment of dominated convergence we follow [2,
Ch. 1.3].

Definition 5. A Banach function space Y on G is said to have absolutely
continuous norm if ‖fχEn‖Y → 0 for all f and for every sequence {En}

∞
n=1

of measurable subsets of G satisfyingEn → ∅ almost everywhere with respect
to Haar measure.

Proposition 1 ([2]). For a Banach function space Y the following are
equivalent :

(i) Y has absolutely continuous norm.
(ii) Dominated convergence holds for all f ∈ Y : If fn ∈ Y , n = 1, 2, . . . ,

and g ∈ Y satisfy |fn| ≤ |g| for all n and fn(z)→ f(z) a.e., then ‖fn − f‖Y
→ 0.
(iii) The dual space Y ′ of Y coincides with its associate space Y ∗ defined

as

Y ∗ =
{
g measurable : sup

f∈Y, ‖f‖Y≤1

\
G

|f(z)g(z)| dz <∞
}
.(15)

Example (Mixed-norm spaces). Let m be a weight function on R
2d and

let 1 ≤ p, q ≤ ∞. Then the weighted mixed norm space Lp,qm (R2d) consists
of all measurable functions on R

2d such that the norm

‖F‖Lp,qm =
( \

Rd

( \
Rd

|F (x, ω)|pm(x, ω)p dx
)q/p
dω
)1/q

is finite, with the usual modifications when p =∞ or q =∞.
If m is a “moderate” weight with respect to the submultiplicative weight

ν, i.e., m(z1 + z2) ≤ Cν(z1)m(z2), then hypotheses (B) and (C) are always
satisfied (see [10, Prop. 11.1.3]).
If p, q < ∞, then Lp,qm has absolutely continuous norm. For p = q = 1

this is just Lebesgue’s theorem on dominated convergence. If p, q <∞, then

the dual space is Lp
′,q′

1/m, where 1/p + 1/p
′ = 1 (cf. [1]). As a consequence of
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Hölder’s inequality the dual space coincides with the associate space defined
in (15). By Proposition 1, Lp,qm has absolutely continuous norm.

2.2. Compactness in coorbit spaces. We are now ready to state and prove
our main theorem, a criterion for compactness in coorbit spaces.

Theorem 4 (Compactness in CoπY ). In addition to the general assump-
tions (A), (B), and (C), assume that Y has absolutely continuous norm. For
a closed and bounded set S ⊆ CoπY the following statements are equivalent :

(i) S is compact in CoπY .
(ii) For all ε > 0 there exists a compact set U ⊆ G such that

sup
f∈S
‖χUcVgf‖Y < ε.(16)

Proof. The argument follows the simpler proof of Theorem 2.

(i)⇒(ii). Assume that S is compact in CoπY and let ε > 0. Then there
exist f1, . . . , fn ∈ S such that

min
j=1,...,n

‖f − fj‖CoπY < ε/2 for all f ∈ S.

Since L∞0 (G) is contained in Y as a consequence of (B) and (C) and since Y
has absolutely continuous norm, L∞0 (G) is even dense in Y ; see [5, Prop. 1.4].
Hence, there exist Hj ∈ L

∞
0 ⊆ Y with ‖Hj − Vgfj‖Y < ε/2. By solidity of

Y , Hj can be chosen as the restriction χUVgfj for some compact set U ⊆ G,
and thus we see that

‖χUcVgfj‖Y < ε/2 for j = 1, . . . , n.

Then for general f ∈ S we find that

‖χUcVgf‖Y ≤ min
j=1,...,n

(‖χUcVg(f − fj)‖Y + ‖χUcVgfj‖Y )

≤ min
j=1,...,n

‖Vg(f − fj)‖Y + ε/2

= min
j=1,...,n

‖f − fj‖CoπY + ε/2 < ε

In the second inequality we have applied condition (B) to the pointwise
estimate

|χUcVg(f − fj)(z)| ≤ |Vg(f − fj)(z)|.

(ii)⇒(i). Assume that (16) holds. Again it suffices to show that every
sequence (fn) ⊆ S contains a convergent subsequence.
To extract a weak-star convergent subsequence of (fn) ⊆ S, we modify

the argument for L2 as follows: Since S is bounded and closed in CoπY ,
it is also bounded and closed in A′ν by (14), and therefore S is weak-star
compact in A′ν by Alaoglu’s theorem. Consequently, we can find a weak-star
convergent subsequence fnj of (fn), which we again denote by fj , with limit
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f∞ in S, i.e. 〈fj , h〉 → 〈f∞, h〉 for all h ∈ Aν . In particular, for h = π(z)g,
we obtain pointwise convergence of the representation coefficients on G:

Vgfj(z)→ Vgf∞(z) for all z ∈ G.

Next we show that the sequence {Vg(f∞ − fj) : j ∈ N} is uniformly
bounded on any compact set U ⊆ G. We have

|〈f∞ − fj , π(z)g〉| ≤ ‖f∞ − fj‖A′ν‖π(z)g‖Aν ,

by duality, and ‖π(z)g‖Aν ≤ ν(z)‖g‖Aν by (13). Therefore

sup
z∈U
|Vg(f∞ − fj)(z)| ≤ ‖g‖Aν sup

z∈U
ν(z) sup

j∈N

‖f∞ − fj‖A′ν ≤ CχU (z).

Since χU ∈ Y and Y has absolutely continuous norm, we can apply domi-
nated convergence (Proposition 1(ii)) to obtain

lim
j→∞
‖χUVg(f∞ − fj)‖Y = 0.(17)

To deal with the behavior of Vg(f∞− fj) on the complement U c, we use
the assumption (16). Given ε > 0, we choose U ⊆ G so that ‖χUcVgf‖Y <
ε/2 for all f ∈ S ∪ {f∞}. The combination of these steps now yields

lim
j→∞
‖f∞ − fj‖CoπY = lim

j→∞
‖Vg(f∞ − fj)‖Y

≤ lim
j→∞
‖χUVg(f∞ − fj)‖Y + lim

j→∞
‖χUcVg(f∞ − fj)‖Y

≤ 0 + 2 sup
f∈S∪{f∞}

‖χUcVgf‖Y < 2ε.

Therefore any sequence in S has a subsequence that converges in CoπY and
so S is compact.

Remarks. 1. Loosely speaking, Theorem 4 states that a set in CoπY is
compact if and only if the set of representation coefficients is tight in Y .
2. Note that in the first part of the proof we have only used the fact that

L∞0 (G) is dense in Y . On the other hand, the absolutely continuous norm
of Y is only needed for the proof of sufficiency of (ii) for S to be compact. If
L∞0 (G) is not dense in Y , then condition (ii) characterizes the compactness
in the closed subspace CoπY0 of CoπY , where Y0 is the closure of L

∞
0 (G)

in Y .
3. If Y does not have absolutely continuous norm, then one may alterna-

tively apply the compactness criterion to the coorbit corresponding to the
closed subspace Ya ⊆ Y of all “functions of absolutely continuous norm”
(see [2, Ch. 1.3]).

3. Examples. Theorem 4 yields a handy compactness criterion for most
function spaces commonly used in analysis. We now give several concrete
manifestations of Theorem 4. In order to apply it we have to verify that
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all the conditions on G, π, ν and Y are satisfied. Once the general setting is
described, this is an easy task.

3.1. Modulation spaces. Modulation spaces are those function spaces
which are associated with the short-time Fourier transform (3).
Their standard definition is as follows. Fix a non-zero “window function”

g ∈ S(Rd) and consider moderate functions m satisfying m(z1 + z2) ≤
C(1 + |z1|)

sm(z2), z1, z2 ∈ R
2d, for some constants C, s ≥ 0; for instance

m(z) = (1 + |z|)a for a ∈ R is moderate with respect to ν(z) = (1 + |z|)|a|.
Then the modulation space Mp,qm (Rd) is defined as the space of all tempered
distributions f ∈ S ′(Rd) with Vgf ∈ L

p,q
m (R2d), with norm

‖f‖Mp,qm (Rd) = ‖Sgf‖Lp,qm (R2d).

For a detailed theory of the modulation spaces we refer to [10, Chs. 11–
13] where they are treated for even more general classes of weight functions.

As particularly important modulation space we mentionM1,1m with constant
weight m ≡ 1. In the abstract notation this is just Aν ; it is a Segal algebra
and is denoted by S0 in harmonic analysis.
To interpret modulation spaces as coorbit spaces, we extend the time-

frequency shifts (x, ω) 7→ TxMω to a unitary representation of the Heisen-
berg group. Let H = R

d ×R
d × T be the d-dimensional reduced Heisenberg

group with multiplication

(x1, ω1, e
2πiτ1)(x2, ω2, e

2πiτ2) = (x1 + x2, ω1 + ω2, e
2πi(τ1+τ2)eπix2·ω1)

and let π be the Schrödinger representation of H acting on L2(Rd) by time-
frequency shifts

π(x, ω, τ) = e2πiτTxMω.(18)

Then π is an irreducible unitary representation of H on L2(Rd). The rep-
resentation coefficient for the Gaussian φ(t) = e−πt·t is 〈φ, π(x, ω, τ)φ〉 =
2−d/2 τeπix·ω e−π(x·x+ω·ω), therefore π is integrable with respect to any weight
ν(x) = O(eα|z|), α ≥ 0 (see [10]). Furthermore observe that

|Vgf(x, ω)| = |〈f, π(x, ω, τ)g〉|.

Now consider the auxiliary space L̃p,qm consisting of all measurable functions
f on H such that ( \

τ∈T

|f(x, ω, τ)|2 dτ
)1/2
∈ Lp,qm ;

then the modulation spaces can be interpreted as coorbit spaces by

Mp,qm (R
d) = CoπL̃

p,q
m .

If 1 ≤ p, q < ∞, then L∞0 (H) is dense in L̃
p,q
m . We have already verified

after Proposition 1 that the spaces L̃p,qm have absolutely continuous norm.
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Therefore all conditions of Theorem 4 are satisfied, and we obtain the fol-
lowing more explicit characterization of compactness in modulation spaces.

Theorem 5 (Compactness in Mp,qm (Rd)). Let 0 6= g ∈ M1ν(R
d), 1 ≤

p, q < ∞ and S be a closed and bounded subset of Mp,qm (Rd). Then S is
compact in M

p,q
m (Rd) if and only if for all ε > 0 there exists a compact set

U ⊆ R
2d such that

sup
f∈S
‖χUcSgf‖Lp,qm < ε.

Remark. Clearly such a characterization cannot hold when p = ∞ or
q = ∞. In this case Mp,qm (Rd) is the dual of a non-reflexive Banach space,
and compactness in norm takes on a different shape.

3.2. Besov–Triebel–Lizorkin spaces. The Besov–Triebel–Lizorkin spaces
are those function spaces that can be associated with the wavelet trans-
form (9). Let g ∈ S(Rd) be a fixed non-zero radial function with all mo-
ments vanishing. Then the homogeneous Besov space Ḃαp,q(R

d) contains all
tempered distributions (modulo polynomials) such that

‖f‖q
Bαp,q
=
\
R

( \
Rd

|〈f, ̺(x, s)g〉|p dx
)q/p
s−q(α+d/2−d/q)

ds

sd+1
<∞.(19)

This definition is equivalent to the standard definition given in [13] (see
also [14]).
To interpret the Besov spaces as coorbit spaces, we consider the (ax+b)-

group G = R
d × R

+ with multiplication (b, a) · (x, y) = (ax + b, ay) for
b, x ∈ R

d, a, y ∈ R
+, and the representation of G on L2(Rd) by translations

and dilations

̺(x, s)f(t) = s−d/2f(s−1(t− x)).(20)

Again it is easy to see that this representation is integrable with re-
spect to all weights of the form ν(x, s) = max(1, sα) for some α ≥ 0 by
choosing g ∈ S(Rd) such that supp ĝ ⊆ {t ∈ R

d : 0 < c ≤ |t| ≤ d < ∞}.
However, this representation is reducible, and thus the general theory of
Section 2 is not immediately applicable. To save the situation, we take the
extended group R

d× (R+×SO(d)) with the representation π(x, s,O)f(t) =
s−d/2f(s−1(O−1(t − x))), O ∈ SO(d), acting on L2(Rd). Then π is again
irreducible. Now take a wavelet g that is rotation invariant; then

〈f, π(x, s,O)g〉 = 〈f, ̺(x, s)g〉.

Comparing with (19), we see that

Ḃαp,q(R
d) = CoπL

p,q
α+d/2−d/q

where the subscript refers to the weight ν(x, t,O) = t−(α+d/2−d/q) on the
extended (ax + b)-group. As before all assumptions of Theorem 4 are sat-
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isfied, and we obtain the following new characterization of compactness in
Besov spaces.

Theorem 6 (Compactness in Ḃαp,q(R
d)). A closed and bounded set S ⊆

Ḃαp,q(R
d), 1 ≤ p, q < ∞, is compact in Ḃαp,q(R

d) if and only if for all ε > 0

there exists a compact set U ⊆ R
d × R

+ such that

sup
f∈S
‖χUcWgf‖Lp,qν < ε.

Similarly, all Triebel–Lizorkin spaces Fαp,q(R
d), among them Lp and the

Hardy spaces, can be defined as the coorbits of so-called tent spacesTp,qν on G
(cf. [3]). The compactness in Fαp,q(R

d) can be characterized as in Theorem 6
with Lp,qν replaced by T

p,q
ν . Since the classical criterion of Theorem 1 is

much simpler to use, we omit the explicit formulation of Theorem 6 for
Fαp,q(R

d)-spaces.

3.3. Bargmann–Fock spaces. Finally we study a class of function spaces
occurring in complex analysis (see [11, 8]).

Definition 6. The Bargmann–Fock spaces Fp = Fp(Cd), p < ∞, are
the Banach spaces of entire functions F on C

d for which the norm

‖F‖Fp(Cd) =
( \

Cd

|F (z)|pe−πp|z|
2/2 dz

)1/p

is finite.

Remark. F2 is a Hilbert space with inner product

〈F,G〉F2 =
\

Cd

F (z)G(z)e−π|z|
2

dz,

which is isometrically isomorphic to L2(Rd) via the Bargmann transform
(see [10, Ch. 3]).

By identifying H = R
2d × T with C

d × T and using the notation of [10,
p. 183], the Heisenberg group acts on F2 via the Bargmann–Fock represen-
tation β as follows:

β(z, τ)F (w) = e2πiτeπz·wF (w − z)e−π|z|
2/2, z, w ∈ C

d, |τ | = 1.

Then β is irreducible on F2 and is in fact equivalent to the Schrödinger
representation π of (18). Therefore β enjoys all properties required to apply
Theorem 4. The following compactness criterion for Bargmann–Fock spaces
seems to be new.

Theorem 7 (Compactness in Fp(Cd)). Let 1 ≤ p < ∞. A closed and
bounded set S ⊆ Fp(Cd) is compact in Fp(Cd) if and only if for all ε > 0
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there exists a compact set U ⊆ Cd such that

sup
F∈S

( \
Uc

|F (z)|pe−πp|z|
2/2 dz

)1/p
< ε.

Proof. We show the identification Fp(Cd) = CoβL
p(Rd) by using the

properties of F2 as a reproducing kernel Hilbert space [10, Thm. 3.4.2].

We know that F (ξ) = 〈F, eπzξ〉. In particular, for the constant 1 we
obtain

|〈1, β(z, τ)1〉| = |〈1, eπξz〉e−π|z|
2/2| = e−π|z|

2/2,

which implies that β is integrable with respect to arbitrary weights ν(x) =
O(eα|z|) and that 1 ∈ Aν . Furthermore, the identity

|〈F, β(z, τ)1〉| = |〈F, eπξz e−π|z|
2/2〉| = |F (z)|e−π|z|

2/2

implies that

〈F, β(z, τ)1〉 ∈ Lp(Rd) ⇔ F ∈ Fp(Cd).

This means that Fp(Cd) = CoβL
p(Rd). Thus Fp(Cd) is a coorbit space and

so the statement follows from Theorem 4.

Remark. We leave it to the reader to generalize the result to weighted
Bargmann–Fock spaces Fpν (Cd) or to “mixed-norm” Bargmann–Fock spaces.
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häuser, Boston, 2001.

[11] S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Rev. Mat.
Iberoamericana 3 (1987), 61–138.
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