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A TRANSVECTION DECOMPOSITION IN GL(n, 2)

BY

CLORINDA DE VIVO and CLAUDIA METELLI (Napoli)

Abstract. An algorithm is given to decompose an automorphism of a finite vector
space over Z2 into a product of transvections. The procedure uses partitions of the indexing
set of a redundant base. With respect to tents, i.e. finite Z2-representations generated by
a redundant base, this is a decomposition into base changes.

1. Introduction. Let V be a vector space of dimension m− 1 over the
field Z2 with 2 elements. There is a well-known procedure to decompose
an automorphism α of V into a product of transvections (automorphisms
fixing a hyperplane pointwise). Given a basis (v1, . . . , vm−1) of V , α is rep-
resented as an invertible (m − 1) × (m − 1) matrix over Z2; the classical
algorithm (summing columns or rows in order to get strategically placed
zeros) uses transvections that fix a coordinate hyperplane, represented by
matrices which coincide with the identity matrix but for one column.
We describe in Sections 3 and 4 a different algorithm, based on attaching

to V a redundant base B, and representing automorphisms accordingly. This
brings in partitions with their order structure, and they change the game
significantly. The decomposition we give might be shorter than the classical
one, since the m − 2 generating vectors of the hyperplanes are not chosen
among the m− 1 base vectors, but among the m vectors of B.
In Sections 5 and 6 we show a property of this decomposition with respect

to finite Z2-representations R = (V ;V1, . . . , Vn) in which all the subspaces
Vi are generated from a redundant base B of V ; such a representation is
called a tent on B. An automorphism α of V is called a base change for R if
α(R) = (V ;α(V1), . . . , α(Vn)) is again a tent on B. In general, if α = βγ is a
base change, β and γ need not be base changes. We prove that the algorithm
we describe in Section 3 is, for any tent, a decomposition of a base change
into base changes.

2. Redundant bases. A redundant base for V is a family B of m
vectors (m − 1)-wise linearly independent: B = (v1, . . . , vm) where (say)
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(v1, . . . , vm−1) is a base of V and vm = v1+. . .+vm−1. We set I = {1, . . . ,m},
and write I \ E = E−1 for subsets E of I. Then

∑

{vi | i ∈ E} =
∑

{vi |
i ∈ E−1}; what determines that sum is the bipartition of I: bE = {E,E

−1};
we will use the same symbol bE for the sum itself:

bE =
∑

{vi | i ∈ E} =
∑

{vi | i ∈ E
−1} ( = bE−1).

E.g., bI = b∅ = 0, b{i} = vi. A vector v ∈ V coincides with bE for some
E ⊆ I, and will be represented as a column vector with m entries: either as
the usual (m− 1)-vector with 0 at the mth place, or as the vector obtained
from that by switching zeros and ones.

A new redundant base is an m-tuple of vectors E = (bE1 , . . . , bEm) with
zero sum and (m − 1)-wise linearly independent elements; if we write the
elements as column vectors over B, then E becomes the matrix of an au-
tomorphism α of V . An m ×m matrix representing an automorphism of a
vector space of dimensionm−1 with respect to a redundant base is called ad-
missible. The inverse F = (bF1 , . . . , bFm) of the admissible matrix E , which
is the matrix of α−1, is defined by

∑

{bEi | i ∈ Fj} = b{j} for all j ∈ I; we

will denote it by E −1.

If an automorphism α of V is represented over a linear base by a matrix
M , we obtain the admissible matrix E representing α over the associated
redundant base B by liningM with a row of zeros and with a corresponding
column which is the sum of all columns of M ; conversely, if we have E , to
get a traditional invertible matrix we first switch zeros and ones in columns
until we have a row of zeros, then cancel it together with the corresponding
column.

In particular, if α is a non-identical transvection fixing a (redundant
base) coordinate hyperplane, its matrix S (which is admissible and self-
inverse) has exactly two columns different from base vectors, and it is easy
to verify that they look like this:

S = S (r, s,X)

= (b{1}, . . . , b{r−1}, b{r}∪X , b{r+1}, . . . , b{s−1}, b{s}∪X , b{s+1}, . . . , b{m})

for suitable r, s ∈ I and X ⊆ {r, s}\I. For example, if X = ∅, then S is the
identity; if X = {r, s} \ I, then S is the transposition permuting vr and vs.

We recall that partitions on a set form a lattice, with the order “≤” =
“finer”; if {Aλ | λ ∈ Λ} is a family of partitions of a set I, then

∧

λ∈ΛAλ is
the coarsest partition ≤ Aλ, while

∨

λ∈ΛAλ is the finest partition ≥ Aλ, for
all λ ∈ Λ. In particular, for E,F ⊆ I,

(∗) bE ∧ bF = {E ∩ F,E
−1 ∩ F,E ∩ F−1, E−1 ∩ F−1}

is in general a quadripartition, which reduces to a tripartition if one of E,
E−1 contains one of F , F−1; and to a bipartition iff bE = bF . For example,
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b{i} ∧ bF is a tripartition whenever b{i} 6= bF . Moreover

(∗∗)

bE + bF = b(E∩F )∪(E−1∩F−1) = bE∩F + bE−1∩F−1 ,

bE = b(E∩F ) + b(E∩F−1) = bE−1∩F + bE−1∩F−1 ,

bF = b(E∩F ) + b(E−1∩F ) = bE∩F−1 + bE−1∩F−1 .

3. The algorithm. Here we outline the algorithm; proofs will follow in
the next section. Let E = (bE1 , . . . , bEm) be an admissible matrix.

Proposition A. If bEr ∧ bEs is a tripartition for all s ∈ {r} \ I, then
bEr = b{k} for some k ∈ I.

Start then with r = 1. If all bE1 ∧ bE2 , bE1 ∧ bE3 , . . . , bE1 ∧ bEm are
tripartitions, then bE1 = b{k1}; possibly performing a transposition, with-
out loss of generality k1 = 1, and we proceed with r = 2, 3, . . . until
we find an s > r such that bEr ∧ bEs is a quadripartition; we then have
E = (b{1}, b{2}, . . . , b{r−1}, bEr , . . . , bEs , . . . , bEm).

Proposition B. If bEr ∧ bEs is a quadripartition, then exactly one (call
it E1) of the two matrices obtained from E by replacing bEr , bEs either with
bEr∩Es , bE−1r ∩E−1s , or with bE−1r ∩Es , bEr∩E−1s , is admissible; in fact S1 =

E1E
−1 is a transvection.

We thus have E = S1E1, and proceed with E1. Finite induction is ensured
by

Proposition C. The number of quadripartitions of E1 is strictly smal-
ler than the one of E .

Observation. The construction of E1 and S1, as shown in the proof
of B and in the example, does not require the computation of the inverse
E −1 = (bF1 , . . . , bFm) of E , which would mean solving m − 1 equations
b{i} =

∑

{bEj | j ∈ Fi} in the unknowns Fi ⊆ I; it requires the solution of
only one equation (per induction step).

4. The proofs

Proof of A. For each s 6= r we have (possibly switching the names of Es
and E−1s ) either Er ⊆ Es or E

−1
r ⊆ Es. If, say, each Es contains Er, then

Er must be a singleton, otherwise the matrix would have two equal rows
(of zeros), hence would not be admissible. Say then by contradiction that
some of the Es contain Er, some E

−1
r . Observe that the partition

∧

{bEs |
Er ⊆ Es} has Er as a block, while

∧

{bEs | E
−1
r ⊆ Es} has E

−1
r in a block;

therefore

(
∧

{bEs | Er ⊆ Es}) ∨ (
∧

{bEs | E
−1
r ⊆ Es}) ≥ bEr .
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On the other hand
∧

{bEs | Er ⊆ Es} ≤
∑

{bEs | Er ⊆ Es} (this is a
bipartition!), and

∧

{bEs | E
−1
r ⊆ Es} ≤

∑

{bEs | E
−1
r ⊆ Es}; but by the

zero-sum condition on the bEi the two sums are equal; hence bEr ≤
∑

{bEs |
Er ⊆ Es}. Thus the sum is either the bipartition bEr or zero (= bI). It cannot
be zero, because the columns it adds would then be linearly dependent, and
by the initial observation they are less than m in number. If it is bEr , then
∑

{bEs | Er ⊂ Es} = 0, against admissibility.

Proof of B. Without loss of generality let {r, s} = {1, 2}. Note that the
bipartitions we choose as replacements are made from the blocks of bE1∧bE2 .
By the zero-sum condition, we may only pick pairs whose sum is equal to
bE1 + bE2 ; in the following we make repeated use of (∗∗).
Since E is a generating set there is a subset X of I such that

bE1∩E2 =
∑

{bEi | i ∈ X};

by zero-sum, we may choose X not containing 1. Then

b
E1∩E

−1

2

= bE1 + bE1∩E2 =
∑

{bEi | i ∈ X ∪ {1}}.(1)

Note trivially that exactly one of bX , bX∪{1} separates 1 and 2; suppose it
is bX∪{1}, that is, X ∩ {1, 2} = ∅. We also have

b
E−1
1
∩E−1
2

= bE1∩E2 + bE1 + bE2 =
∑

{bEi | i ∈ X ∪ {1, 2}},

b
E−1
1
∩E2
= b
E1∩E

−1

2

+ bE1 + bE2 =
∑

{bEi | i ∈ X ∪ {2}}.

The matrix

E
′ = (bE1∩E2 , bE−1

1
∩E−1
2

, bE3 , . . . , bEm)

= (
∑

{bEi | i ∈ X},
∑

{bEi | i ∈ X ∪ {1, 2}}, bE3 , . . . , bEm)

is not admissible, because the sum of its first vector with those indexed in
X is zero (and 1 6∈ X). On the other hand

E1 = (bE1∩E−12
, b
E−1
1
∩E2
, bE3 , . . . , bEm)

= (
∑

{bEi | i ∈ X ∪ {1}},
∑

{bEi | i ∈ X ∪ {2}}, bE3 , . . . , bEm)

is admissible, being the product of E by

S1 = S (1, 2, X) = (b{1}∪X , b{2}∪X , b{3}, . . . , b{m}).

If it had been bX separating 1 and 2, the proof would hold for the matrix
E ′1 obtained by replacing X with X

′ = X \ {2}.

Proof of C. Together with the trivial observation that for α, β, ε, η = ±1
all of (b

Eαr ∩E
β
s
) ∧ (bEεr∩E

η
s
) are at most tripartitions, while bEr ∧ bEs is a

quadripartition, the result rests on the following, easily (if cumbersomely)
verifiable assertions for subsets C, D, E of I (here C stands for Er, D stands
for Es, E for the variable Ei (i ∈ {r, s} \ I)):
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a) If bE ∧ bC is a tripartition, then one of bE ∧ bC−1∩D, bE ∧ bC∩D−1 is
a tripartition. Hence if both bE ∧ bC−1∩D, bE ∧ bC∩D−1 are quadripartitions
then both bE ∧ bC and bE ∧ bD are quadripartitions.
b) If both bE ∧ bC , bE ∧ bD are tripartitions while bC ∧ bD is a quadri-

partition, then both bE ∧ bC∩D−1 and bE ∧ bC∩D−1 are tripartitions.

Example. Consider the 5× 5 matrix over Z2:

M =











0 1 0 1 1
1 0 0 1 1
1 1 0 1 0
0 0 1 1 1
1 1 1 0 0











.

Then

E = (bE1 , . . . , bE6) =















0 1 0 1 1 1
1 0 0 1 1 1
1 1 0 1 0 1
0 0 1 1 1 1
1 1 1 0 0 1
0 0 0 0 0 0















= (b235, b135, b45, b1234, b124, b12345) = (b235, b135, b45, b56, b124, b6).

The first quadripartition we meet is

bE1 ∧ bE2 = {{2, 3, 5}, {1, 4, 6}} ∧ {{1, 3, 5}, {2, 4, 6}}

= {{3, 5}, {2}, {1}, {4, 6}}.

The bipartitions on its blocks are b35, b2, b1, b46. We must choose as sub-
stitutes of bE1 and bE2 either b1, b2 or b35, b46 (both have sum equal to
bE1 + bE2 = b12). But clearly, if we put b46 in bE1 or in bE2 , then its sum
with b45 and b56, the terms in the third and fourth places, is 0, against
admissibility; so the right choice is (up to permutation)

E1 = (bE′
1
, . . . , bE′

6
) = (b1, b2, b45, b56, b124, b6).

The transvection S1 is obtained by expressing bE′
1
= b1 as a sum of bEi ’s:

that is, b1 =
∑

{bEi | i ∈ X1∪{1}}; since b1 = b235+b45+b56 = bE1+bE3+bE4
we have X1 = {3, 4}, hence

S1 = S (1, 2, {3, 4}) = (b134, b234, b3, b4, b5, b6), E = S1E1.

In E1 the first quadripartition we meet is

bE′
3
∧ bE′

4
= b45 ∧ b56 = {{1, 2, 3}, {4}, {5}, {6}},

hence the candidate substitutes are b123, b5 or b4, b6. But if we put b6 in the
third (or fourth) place of E1, then its sum with the sixth term is 0, violating
admissibility. Thus

E2 = (bE′′
1
, . . . , bE′′

6
) = (b1, b2, b123, b5, b124, b6),
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and since bE′′
3
= b123 = b45 + b6 = bE′

3
+ bE′

6
=
∑

{bE′i | i ∈ {3, 6}}, we have
X2 = {6}, hence

S2 = S (3, 4, {6}) = (b1, b2, b36, b46, b5, b6), E1 = S2E2.

In E2 we put b5 in its rightful fifth place by the transposition

S3 = (b1, b2, b3, b5, b4, b6) = S (4, 5, {1, 2, 3, 6}),

so E2 = S3E3 (for b5 = b12346 = b4∪{1236}).
But E3 = (b1, b2, b123, b124, b5, b6) is the transvectionS4 = S (3, 4, {1, 2}).

Thus E = S1S2S3S4.

5. Tents. Let V1, . . . , Vn be subspaces of V generated by subsets of the
redundant base B; we will say they are generated fromB. The representation
R = (V ;V1, . . . , Vn) (see [1]) is then called a tent on B. Tents are structures
involved in the study of a class of torsionfree Abelian groups of finite rank
called Butler B(1)-groups. Tents and their transformations are investigated
in depth in [3, 5].
If V ′ is generated from B, that is, V ′ = 〈vj | j ∈ A〉 with A ⊆ I, we

will write V ′ = V (A), with 0 = V (∅); for suitable subsets Ar of I we set
Vr = V (Ar) for each r = 1, . . . , n. Observe that if ≥ m−1 then V (Ar) = V ;
while if < m− 1 then (vj | j ∈ Ar) is a (non-redundant) base of Vr.
An automorphism α of V is called a base change for R if α(R) =

(V ;α(V1), . . . , α(Vn)) is again a tent on B, or equivalently if R is a tent on
α(B). If α = βγ is a base change, then β and γ need not be base changes:
e.g., even if β is not a base change (see R′′ in the next example), the iden-
tity ββ−1 is. We will show that if α is a base change for R, the transvection
decomposition described in Section 3 is a base change decomposition of α.
We start by determining all transvections that are base changes for a tent

R. This is a first step into the main unsolved problem on tents, which is the
determination of all base changes of a given tent. The converse problem, of
determining all tents for which a given automorphism is a base change, has
been solved in [4], and the solution will be used in the proof of Proposition 1.

Lemma. Let A ⊆ I, V ′ = V (A). The automorphism α induced by the
transvection S = S (r, s,X) is a base change for R′ = (V ;V ′) if and only
if one of the following occurs:

(i) {r, s} ∩A = ∅;
(ii) X ⊆ A;
(iii) X = ({r, s} ∪X) \ I ⊆ A.

Proof. Recall that α fixes all vectors of B (in particular, all vi with
i ∈ X) except for vr, vs which are transformed into b{r}∪X , b{s}∪X .
For sufficiency we need to show that in the given cases α(V ′) is generated

from B. If (i) holds this is true, for α(V ′) = V ′. If vr ∈ V
′, hence b{r}∪X ∈



A TRANSVECTION DECOMPOSITION 57

α(V ′), in case (ii) α(V ′) contains α(vi) = vi for all i ∈ X, hence also vr;
case (iii) works similarly because b{r}∪X = b{s}∪X . An analogous argument

for vs ∈ V
′ lets us conclude that α(V ′) is generated from B.

For necessity, let r ∈ A; then α(vr) = b{r}∪X ∈ α(V
′), hence it must be a

sum of elements of B contained in α(V ′). This can only occur if either {vi |
i ∈ {r} ∪X} ⊆ α(V ′), in which case X ⊆ A, or {vi | i ∈ {s} ∪X} ⊆ α(V

′),
in which case X ⊆ A.

Set now, for each A ⊆ I, Aˆ = A \ {r, s}. For J ⊆ I ,̂ let pJ be the
“pointed” partition consisting of all the singletons in J plus the block Iˆ\J .
Then the previous lemma can be reworded as follows:

Lemma 1. The transvection S = S (r, s,X) is a base change for R′ =
(V ;V ′) if and only if either A = Aˆ or for the partition {X,X} of Iˆ we
have {X,X} ≥ pÂ .

Example. Let m = 6, I = {1, . . . , 6}, S = S (1, 5, {2, 6}), so X =
{2, 6}, X = {3, 4}, Iˆ = {2, 3, 4, 6}. Then

V ′ = 〈v1, v3, v4〉 = V (A), V ′′ = 〈v1, v2, v3〉 = V (C)

for A = {1, 3, 4} and C = {1, 2, 3}, and

Aˆ = {3, 4}, pÂ = p{3,4} = {{3}, {4}, {2, 6}},

Cˆ = {2, 3}, pCˆ = p{2,3} = {{2}, {3}, {4, 6}}.

Thus if α is the automorphism of V induced by S we have

α(V ′) = 〈b{1,2,6}, v3, v4〉 = 〈b{3,4,5}, v3, v4〉 = 〈v5, v3, v4〉,

hence α is a base change for R′ = (V ;V ′); in fact,

{X,X} = {{2, 6}, {3, 4}} ≥ p{3,4} = {{3}, {4}, {2, 6}};

while
α(V ′′) = 〈b{1,2,6}, v2, v3〉 = 〈v1 + v6, v2, v3〉

is not generated from B, hence α is not a base change for R′′ = (V ;V ′′); in
fact, {X,X} = {{2, 6}, {3, 4}} 6≥ p{2,3} = {{2}, {3}, {4, 6}}.

Clearly, α is a base change for R = (V ;V1, . . . , Vn) if and only if it is a
base change for each Ri = (V ;Vi). Introducing the partition

A =
∨

{pAî | Ai ∩ {r, s} 6= ∅, i = 1, . . . , n}

we can apply Lemma 1 to conclude with the following

Theorem 1. The automorphism α induced by the transvection S =
S (r, s,X) is a base change for the tent R = (V ;V1, . . . , Vn) if and only if
{X,X} ≥ A .

This computation becomes very simple if we describe the tent by its
incidence table, as is shown in the next example.
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Example. Let m = 6, R = (V ;V1, . . . , V5), given in the obvious way by
the following incidence table (e.g., V2 = 〈v2, v3, v4, v6〉):

V1 V2 V3 V4 V5

v1 0 0 0 1 1

v2 0 1 1 0 1

v3 1 1 1 1 0

v4 0 1 0 1 0

v5 0 0 1 0 1

v6 1 1 1 1 1

In order to compute all exchangesS (1, 2, X) that are base changes forR, to
comply with (i) eliminate the first column. Then, on the last four rows, string
together zeros horizontally and vertically. Then pull: rows strung together
constitute blocks of A : here A = {{3, 4}, {5}, {6}}. X can be any union
of blocks of A ; for instance, S (1, 2, {3, 4}) and S (1, 2, {3, 4, 5}) are base
changes for R.

6. Transvection decomposition of base changes. Let E = (bE1 , . . .
. . . , bEm) be the matrix of an automorphism α of V performing a base change
of the tent R = (V ;V1, . . . , Vn). Let E = S1E1, where S1 is a transvection
computed as in Proposition B of the algorithm in Section 3. Then we have

Proposition 1. S1 is a base change for R.

Proof. Without loss of generality let S1 = S (1, 2, X). By Theorem 1,
we need to prove that {X,X} ≥ pÂi whenever Ai ∩ {1, 2} 6= ∅.

Let F = (bF1 , . . . , bFm) be the matrix of α
−1, that is,

∑

{bEi | i ∈ Fj} =
b{j} for all j ∈ I. From (1) in the proof of Proposition B we have

bE1∩E2 =
∑

{bEi | i ∈ X} = α(bX),

hence

bX = α
−1(bE1∩E2) =

∑

{bFi | i ∈ E1 ∩ E2};

thus, since X ∩ {1, 2} = ∅,

bX ∧ b{1} ∧ b{2} = {{1}, {2}, X,X}.(2)

Setting
∧

{bFi | i ∈ Ej} = Aj,
∧

{bFi | i ∈ E
−1
j } = Cj , we have

∑

{bFi | i ∈ E1 ∩ E2} ≥
∧

{bFi | i ∈ E1 ∩ E2} ≥
∧

{bFi | i ∈ E1} = A1,

and A1 ≥ A1 ∧ b{1} ∧ b{2}; analogously
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∑

{bFi | i ∈ E1 ∩E
−1
2 } ≥

∧

{bFi | i ∈ E1 ∩ E
−1
2 } ≥

∧

{bFi | i ∈ E
−1
2 }

= C2 ≥ C2 ∧ b{1} ∧ b{2}.

Since
∑

{bFi | i ∈ E1 ∩ E2}+
∑

{bFi | i ∈ E1 ∩E
−1
2 }

=
∑

{bFi | i ∈ E1} = b{1},

the two vectors
∑

{bFi | i ∈ E1 ∩E2} and
∑

{bFi | i ∈ E1 ∩E
−1
2 } differ only

on the first coordinate, thus also
∑

{bFi | i ∈ E1 ∩ E2} ≥ C2 ∧ b{1} ∧ b{2},

hence

bX =
∑

{bFi | i ∈ E1 ∩E2} ≥ (A1 ∧ b{1} ∧ b{2}) ∨ (C2 ∧ b{1} ∧ b{2}).

If we repeat the process with E−11 ∩E2, E
−1
1 ∩ E

−1
2 , we get

bX ≥ (A1 ∧ b{1} ∧ b{2}) ∨ (C1 ∧ b{1} ∧ b{2})(3)

∨(A2 ∧ b{1} ∧ b{2}) ∨ (C2 ∧ b{1} ∧ b{2})

= L = {{1}, {2}, L1, . . . , Lk}.

Let Lˆ = {L1, . . . , Lk}, a partition of Iˆ = {1, 2} \ I; then from (2)
and (3) we have {X,X} ≥ L .̂ Thus for Ai∩{1, 2} 6= ∅ we will get {X,X} ≥
pÂi if we show Lˆ≥ pÂi . This inequality follows from [4, Rule 3.3], which,
applied to our case (our Aj is called C1j there, our Cj is C2j there) states
that if E is a base change for R = (V ;V (A1), . . . , V (An)) and if j ∈ Ai,
then A−1i is contained in a block either of Aj or of Cj . We apply it to
j = 1, 2. Since A−1i is the non-singleton block of pÂi , this means pÂi ≥ Aj

or pÂi ≥ Cj , hence pÂi ≥ L ,̂ as desired.

Theorem 2. The algorithm described in Section 3 yields a transvection
decomposition of α into base changes.

Proof. The composite of two base changes is a base change. Since the
transvection S1 of Proposition 1 is self-inverse, E1 = S1E is a base change.
Finite induction yields the required result.
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Università Federico II di Napoli
80126 Napoli, Italy
E-mail: devivo@matna2.dma.unina.it

cmetelli@math.unipd.it

Received 3 October 2001;

revised 26 February 2002 (4123)


