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ON THE NONLINEAR NEUMANN PROBLEM AT RESONANCE
WITH CRITICAL SOBOLEV NONLINEARITY

BY

J. CHABROWSKI (Brisbane) and SHUSEN YAN (Sydney)

Abstract. We consider the Neumann problem for the equation —Au — Au =
Q(m)|u\2*72u, u € HY(R), where Q is a positive and continuous coefficient on 2 and
A is a parameter between two consecutive eigenvalues A1 and Ag. Applying a min-max
principle based on topological linking we prove the existence of a solution.

1. Introduction. In this paper we are concerned with the semilinear
Neumann problem
—Au— X u = Q(z)|ul*2u in £,
(1.1) o
— =0 o0
8Vu(x) on 012,
where 2 ¢ RY is a bounded domain with a smooth boundary 942 and
v is the unit outward normal at the boundary 0f2. The coefficient @ is
continuous and positive on 2 and 2* = 2N/(N —2), N > 3, denotes the
critical Sobolev exponent. The parameter A satisfies the inequality

(1.2) Am1 <A< Mg

for some k > 2. Here {\t}, k = 1,2,..., denotes the sequence of eigenvalues
for the Neumann problem
—Au=Au  in {2,
{ %u(x) =0 on 012

Each eigenvalue is repeated according to its multiplicity. It is well known
that A\; = 0 < A2 < A3 < ... and the eigenspace corresponding to A\; = 0
consists of constant functions.

If the parameter A does not interfere with the spectrum of the opera-
tor —A, then problem (1.1) can be written in the form

—Au+ = Q(z)|u* 2u  in £,
(1:3) 2 (x)=0 on 02
oy T ’
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where A > 0. Problem (1.3) has an extensive literature, specially in the case
Q(z) = 1 on £2; we refer to papers [1]-[6], [12], [19], [20]—[24], [16]-[18].
Solutions of (1.3) were obtained as minimizers of the variational problem

(14)  my = mf{ {(Vul? + \a?) do; w e HY(R), | Q(@)]ul* da = 1}.
02 2

A suitable multiple of a minimizer for my is a solution of problem (1.3).
These solutions are called the least energy solutions. The least energy solu-
tions can be chosen to be positive and have a tendency to concentrate at
the most curved part of the boundary of 32 as A — o0o. Some extensions of
these results to problem (1.3) with Q(z) # const can be found in [8]-[10].

To describe these results and supply some motivation for our paper we
need some notations. Let Qp = max, 5 Q(z) and @, = max,con Q(x).
By H(y) we denote the mean curvature of 0f2 at y € 92 with respect to
the inner normal to df2. The existence of least energy solutions has been
examined in papers [10] and [8]. In particular, if Qy < 2%/(N=2Q,, and
Qm = Q(y) with y € 012 satisfying

(1.5) [Q(z) = Qy)| = o(jz —y[)  for x near y,

then problem (1.1) has a least energy solution for every A > 0. If Qas >
22/(N=2)), . then there exists A > 0 such that problem (1.1) has a least
energy solution for each 0 < A < A and no least energy solution for A > A.
A similar situation occurs if

{y; ¥y €092, Qy) = Qm} C {y; y € 002, H(y) < 0}.

In this case, if Qu < 22/(N=2)Q,, . there exists a constant A > 0 such that
problem (1.1) has a least energy solution for each 0 < A < A and no least
energy solution for each A > A. The existence of positive solutions in the case
A = 0 has been established in the paper [9]. In this case positive solutions
exist provided @ changes sign and o Q(z)dx < 0. If X interferes with the
spectrum of —A, then the method of the constrained minimization (1.4)
breaks down as the quadratic functional appearing in m) changes sign. To
obtain the existence of solutions in this case we apply a min-max method
based on topological linking [25]. The main existence results of this paper
are contained in Section 3: Theorems 3.3 and 3.4. To apply the topological
linking we need to investigate Palais—Smale sequences of the variational
functional for problem (1.1).

We recall that a C! functional ¢ : X — R on a Banach space X satisfies
the Palais—Smale condition at a level ¢ ((PS). condition for short) if each
sequence {z,} C X such that

(*) ¢(zn) — ¢,
(x%) ¢'(xy) — 0 in X*

is relatively compact in X.
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Finally, any sequence {x,} satisfying (%) and (xx) is called a Palais—
Smale sequence at level ¢ (a (PS). sequence for short).

Throughout this paper we denote strong convergence by “—” and weak
convergence by “—”. The norms in the Lebesgue spaces L4({2) are denoted
by || - |lg- By H(£2) we denote the standard Sobolev space on (2 equipped
with the norm

Jull® = § (Vul? + u?) da-
0

The paper is organized as follows. In Section 2 we determine the energy
level of the variational functional for (1.1) below which the Palais—Smale
condition holds. The approach is based on the P. L. Lions concentration-
compactness principle. Section 3 is devoted to the existence results for (1.1).
First we verify that the variational functional for (1.1) has the geometry of
topological linking. We use instantons to show that at a min-max level the
Palais—Smale condition holds. This restricts the validity of the existence
results to dimensions N > 5 in Theorem 3.3 and N > 7 in Theorem 3.4.

2. The Palais—Smale condition. Solutions to problem (1.1) will be
found as critical points of the variational functional

I(u) = % [(1Vul? = Mi2) do — 21 | Q@) [l d
(0] 2

for u € H'(£2).

LEMMA 2.1. Let {un} C HY(£2) be such that Jx(um) — c and J5(um)
— 0 in H=1(£2). Then the sequence {uy,} is bounded in H'(£2).

Proof. We argue by contradiction. Assume that [|u,| — oco. We set
Um = U /||tm]]. Then

(2.1) V (Vum Ve — Xume) dz — | Q) um|* Pum¢ dz — 0
Q Q
as m — oo for each ¢ € HY(§2). Since ||v,| = 1 for each m, we may

assume that v, — v in H'(£2) and v,, — v in LP(£2) for each 2 < p < 2*.
Consequently, we deduce from (2.1) that

(2.2) S Q(x)|v)* 2vpdr =0
9]

for each ¢ € H'(2). This implies that v = 0 a.e. on §2. Since {uy,} is a
Palais—Smale sequence we see that

1 1 . *
(2.3) 5S(\va\2—)\v,2n)dx—§\\um\\2 21 Q@) |vm[* dz — 0
2 2
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and
(2.4) V(IVoml? = xo2) do = [JumI* 2 | Q@) vm|* da — 0
Q2 Q
as m — oo. Since v, — 0 in L2(£2), (2.3) and (2.4) can be rewritten as

5§ Ve d = 2 a2 § Q@) d — 0
2 2
and
| Voml? d — [jum [~ § Q(a)lom|*" dz — 0.
n 2

This is only possible when {, [V, [2dz — 0 and |[un||* 2§, Q(z)|vm|*" dx
— 0, which is impossible. =

PROPOSITION 2.2. (i) Let Quy < 22WN=2)Q,,. Then J\ satisfies the
(PS). condition with

SIN/2
aNQ D)
(ii) Let Qpr > 2 N=2Q,,,. Then Jy satisfies the (PS). condition with
SAUQ

NQE‘]/}/—Q)/T

Proof. (i) Let {um} be a (PS). sequence with
SN/2

c <

c <

c < 3

aNQE
and J4 (um) — 0in H~'(2). By Lemma 2.1, {uy, } is bounded in H'(£2) and
we may assume that u,, — u in H'(£2) and u,, — u in LP(£2), 2 < p < 2*.
By the concentration-compactness principle [14], we may assume that

lum > — u* + Zyjéx]. and  |Vun,|* = |Vul> + Zujéx].

jeJ jedJ

in the sense of measure, where v; > 0, 1; > 0 are constants and the set J is
at most countable. Moreover,

it xz;€ (2, then Sl/f/r < uj,
2/2*
V.

if x; €02, then 2;# < pj.

Fix x;. Using a family of test functions concentrating at z; we check that
Q(z;)vj = pj, j € J. Hence, if v; > 0, then
SN/2
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SN/2

(2.6) W <

Vj if T € 012.

We now write

1 *
I (um) — §<J§\(Um)vum> = > dw

| Q@) lun

n

1
N
and letting m — oo we get

1 * 1
ez 7\ Q@ do+ 5> Qa;)v;.
(9} jeJ

If v; > 0 for some j € J, then

SN/2 SN/2 SN/2
“Z NQaye ) 2 NQ§ I “ongyar et
SN/2 SN/2
> N> — if z; € 002.
c = QNQ(;L‘])N/Q Q(-:U]) - 2NQ7(7]1V_2)/2 Iz S

We see that in both cases we obtain a contradiction. This yields u,, — u in
L¥(2) and in L2(£2). Using the fact that J} (u,,,) — 0 in H~1(£2), it is easy
to show that Vu,, — Vu in L?(£2) and the result follows.

In a similar manner we prove (ii). m

3. Existence of solutions of problem (1.1). Throughout this section
we assume that A satisfies (1.2). Let {e;} be the sequence of eigenfunctions
corresponding to {\;} and set E~ = span{ey,...,ez_1}. We have the or-
thogonal decomposition of H!(12),

HY(2)=E @ E™".
Let zo € ET — {0} and define the set
M={uec H (2);u=v+s2, vEE, s>0and |ul| <R}
(see [25, Section 2.7]).
The proof of the following result is standard.

PROPOSITION 3.1. There exist a > 0, 0 > 0 and R > o (R depending
on z,) such that
>a forall ue ETNAB(0, o),
Ia(u)
<0 forall ue oM.
Let
U(x) = en/(1+ |2)N=272,

where cy = (N(N — 2))N=2/4 Tt is known that |VU|3 = |U|j3 = SN/2.
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For e > 0 and y € RY we set
(N-2)/2

B r—y\ CNE
Chat) =0 (22) - e
Our argument is based on topological linking. Towards this end we define

Z.=E" ®RU., = E- ®RUS,,

where U;“y denotes the projection of U, onto ET. From now on we use
Zo = U;ry in the definition of M.

PROPOSITION 3.2. (i) Let N > 5. Suppose that Qpr < 22/(N=2), . and
that Q(y) = Qm for some y € 952 with H(y) > 0 and

Q) = Q)| = o(|x —yl)  for x near y.

Then
SN/2
(3.1) sup Ia(u) < SNQEDE

for e > 0 sufficiently small.
(ii) Let N > 7. Suppose that Qpr > 22/\N=2)Q,,, and that D;Q(y) = 0,
D%Q(y) =0,4,j=1,...,N, for somey € {x; Q(x) = Qp}. Then

SN/2
3.2 sup Jy(v) < —=—7-
( ) uGJ\IZI )\( ) NQE\]}/_Q)/Q

Proof. (i) We follow, with some modifications, the argument on pp. 52—
53 in [25]. If w # 0, then
1 {S (|Vul? = Au?) dz}N/?
N {§,Q@)[ul dz}N-272
whenever the integral in the numerator is positive, and the maximum is

0 otherwise. In what follows we always denote by C; positive constants
independent of e. It is clear that if

max Ia(tu) =

S
(33)  me= s (IVuf ~ M) do < ——2 e
U€Ze, ||lullox =1 RSN 22/NQ 2)/N
then
SN/2
sup Jy(u) < — o7
Ze 2NQm,

and this obviously implies (i). For simplicity we assume that y = 0 and set
U. =U.p. If ue Z, and |Ju|2 g = 1, then

u=u"+sU: = (u +sU.)+sUT,
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where U denotes the projection of U, onto E~. We now observe that

V(IVUZ 1P = MUD)?) da < 0,
2
SO

VIVOZPde < M(UD)2dae < A U2 do = O(E?).
2 2 2
Therefore
1UZ M2 < Co(IVUZ |2 + U l2) — 0.
From this we deduce that there exists a constant C3 > 0 such that

0 < s <Csand |[u]2» < Cs. Since all norms in E~ are equivalent, we
have [|[u™ ||oo < C|lu™ |2+ < C’. It follows from the convexity of || - H%:Q that

1= 3 g > lIsUe

50+ 2° | Q)u (sU)* T da
02
> ||sUcl3+ g — CallU:]l3. 1.
This implies that
(3-4) IsUL|3: o < 1+ CseN=2/2,

Since all norms in £~ are equivalent we see that

(3.5) V(Vu VU = \uUz) da < C5(IIVUe[|r + U1l 2
9]
= 0N Ju 2.

It follows from the regularity of @ at 0 that
(3.6) IUelI3" g = @m | UZ" da + o(e).
2
By (3.5) we have
3.7 [(vuP =) de < (N = A) | [u™ P de + 0N 7272)|lu~ |,
2 (9]

+5° {(IVUP? = AU2) d
9}

= — (A= M)l 5+ O0ENT22) a2
+5* [(IVU]? = AU2) da
2
= — (A= M)l 5+ O0EN22) a2

2 2 *
SoVUL ZNE) b o2 ).
2

(o Q)UZ" da)?/>"
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To proceed further, we use the following asymptotic formula: if we let
§o(IVul? = Au?) d

B = G, Q@ @

then

S

(3.8) E\U:) = 22/

— ANH(y)e — anAe? + O(%) + o(\e?)  if N > 5,

where Ay > 0 and ay > 0 are constants depending on N. It follows from
(3.6)—(3.8) that if N > 5 then

me < — (A= Ne—n) [ |3 + O™ 22 lul2)

+ —QSN Q%V—Q)/N —ANQ;%(N_m/NH(y)Eﬂ-O(S) (1 +C48(N_2)/2)
S

< 22/NQ7(7]1V_2)/N

for € sufficiently small.
(ii) The only change is in the estimation of m.. We have

me < — (A= M) llu |3+ O™ 22 lu ||z

2 2 *
[, VU2 = AU2) da ( [ Q)07 dx) 2/2
2

(o Q@)U dx)?/>
= (A= Nemn)l[u” I3 + OEN 22 [u |2

(IISQ—FMO%(EO(&??)))(N{Z;N (}232 Q(x)U? dm) /
= — (A= M)l [+ OEN 22 [u ||
0N ) = 2ee) (Ko@)~ N o) (1+CacV27)
<5
= Qg\zj—z)ﬂv

IN

+0(eWN=2/2) — exe?,

where ¢ > 0 is a constant independent of ¢, K1 = SRN |VU|? dx and Ky =

S U? dx. Since S = Kl/KéN_m/Q, by taking e sufficiently small the result
follows. =

Applying a min-max theorem based on topological linking [25], we derive
the following existence result:

THEOREM 3.3. Under assumptions (i) and (ii) of Proposition 3.2 prob-
lem (1.1) admits a nontrivial solution.
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By a similar argument we can establish the existence result in the case
when 942 has a flat part. We need the following assumption:

(F)  D(a,0) C 912 for some a > 0, where D(a,0) = B(0,a) N {zy = 0}
and {x; z € 992, Q(z) = Qn} C D(a,0).

THEOREM 3.4. Let N > 5. Suppose that (F) holds and that D;Q(y) = 0,
DijQ(y) =0, i, = 1,...,N, for some y € 02 with Qn, = Q(y). Then
problem (1.1) admits a nontrivial solution.

Proof. Without loss of generality we may assume that y = 0. It is suffi-
cient to notice that

[ (VU2 = AU2) dx K3/2 4+ O(eN"2) = \{, U2 da

(§o Q@)UZ" dx)2/  ((K2/2)Qum + O(eN) + o(e2)) N =2)/N

As is easy to see, the above expression is strictly less than S/(22/N Q%V -2/ N)
for € sufficiently small. The remaining part of the proof is the same as in
Theorem 3.3. =
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