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AND SCHUR MULTIPLIERS
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CÉDRIC ARHANCET (Besançon)

Abstract. Let G be an infinite locally compact abelian group and X be a Banach
space. We show that if every bounded Fourier multiplier T on L2(G) has the property
that T ⊗ IdX is bounded on L2(G,X) then X is isomorphic to a Hilbert space. Moreover,
we prove that if 1 < p < ∞, p 6= 2, then there exists a bounded Fourier multiplier on
Lp(G) which is not completely bounded. Finally, we examine unconditionality from the
point of view of Schur multipliers. More precisely, we give several necessary and sufficient
conditions for an operator space to be completely isomorphic to an operator Hilbert space.

1. Introduction. In [DJ, Theorem 1], M. Defant and M. Junge proved
the following (see also [AB, Theorem 1.5] and [PW, Theorem 8.4.11]).

Theorem 1.1. Let X be a Banach space. Suppose that there exists a
positive constant C such that for any n ∈ N, any complex numbers t−n, . . . , tn
and any x−n, . . . , xn ∈ X we have

(1.1)
∥∥∥ n∑
k=−n

tke
2πik ·⊗ xk

∥∥∥
L2(T,X)

≤ C sup
−n≤k≤n

|tk|
∥∥∥ n∑
k=−n

e2πik ·⊗ xk
∥∥∥
L2(T,X)

.

Then the Banach space X is isomorphic to a Hilbert space.

This result says that if every bounded Fourier multiplier T on L2(T) has
the property that T ⊗ IdX is bounded on L2(T, X) then the Banach space
X is isomorphic to a Hilbert space. The paper [DJ] contains a generalization
to infinite compact abelian groups. Our first main result is an extension of
this theorem to infinite arbitrary locally compact abelian groups.

Theorem 1.2. Let G be an infinite locally compact abelian group and X
be a Banach space. If every bounded Fourier multiplier T on L2(G) has the
property that T ⊗ IdX is bounded on L2(G,X) then the Banach space X is
isomorphic to a Hilbert space.

Our proof is independent of [DJ].
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Suppose 1 ≤ p ≤ ∞. We denote by Sp = Sp(`2) the Schatten space.
Let Ω be a measure space. Recall that a linear map T : Lp(Ω) → Lp(Ω) is
completely bounded if T ⊗ IdSp extends to a bounded operator T ⊗ IdSp :
Lp(Ω,Sp) → Lp(Ω,Sp) (see [P2]). In this case, the completely bounded
norm ‖T‖cb,Lp(Ω)→Lp(Ω) is defined by

(1.2) ‖T‖cb,Lp(Ω)→Lp(Ω) = ‖T ⊗ IdSp‖Lp(Ω,Sp)→Lp(Ω,Sp).

Let G be a locally compact abelian group. If p = 1, 2 or ∞, it is easy to
see that every bounded Fourier multiplier is completely bounded on Lp(G).
If 1 < p < ∞, p 6= 2, the situation is different. Indeed, G. Pisier showed
the following theorem (see [P2, Proposition 8.1.3], [P3, p. 181] and also [H,
Proposition 3.1]).

Theorem 1.3. Suppose 1 < p <∞, p 6= 2. Let G be an infinite compact
abelian group. There exists a bounded Fourier multiplier on Lp(G) which is
not completely bounded.

The author [A, Theorems 3.4 and 3.5] has given variants of this result by
proving the next theorem:

Theorem 1.4. Suppose 1 < p < ∞, p 6= 2. If G = R or G = Z,
there exists a bounded Fourier multiplier on Lp(G) which is not completely
bounded.

In this paper, we give an extension of both these theorems to arbitrary
infinite locally compact abelian groups. Our second principal result is the
following.

Theorem 1.5. Suppose 1 < p < ∞, p 6= 2. Let G be an infinite locally
compact abelian group. There exists a bounded Fourier multiplier on Lp(G)
which is not completely bounded.

The proof of this theorem and the one of Theorem 1.3 use a form of
conditionality (i.e. non-unconditionality).

If 1 < p < ∞ and E is an operator space, let Sp(E) denote the vector-
valued noncommutative Lp-space defined in [P2]. The readers are referred to
[P2] and [P3] for details on operator spaces and completely bounded maps.
For any index set I, we denote by OH(I) the associated operator Hilbert
space introduced by G. Pisier; see [P3] and [P4] for more information. For
any integers i, j ≥ 1, let eij be the element of Sp corresponding to the matrix
with coefficients equal to one at the (i, j) entry and zero elsewhere. In the
last section, we show some results linked with unconditionality in the spirit
of Theorem 1.1. In particular, the following result is proved.

Theorem 1.6. Let E be an operator space. The following assertions are
equivalent:
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• There exists a positive constant C such that∥∥∥ n∑
i,j=1

tijeij ⊗ xij
∥∥∥
S2(E)

≤ C sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

eij ⊗ xij
∥∥∥
S2(E)

for any n ∈ N, tij ∈ C and xij ∈ E.
• The operator space E is completely isomorphic to an operator Hilbert
space OH(I) for some index set I.

The paper is organized as follows. Section 2 gives preliminaries on prob-
ability theory, Fourier multipliers and groups. Section 3 contains the proof
of Theorem 1.2. In Section 4, we give a proof of Theorem 1.5. Section 5 is
devoted to unconditionality from the point of view of Schur multipliers. We
present a proof of Theorem 1.6.

We will use . to indicate an inequality up to a constant which does not
depend on the particular elements to which it applies. Moreover A(x) ≈ B(x)
will mean that both A(x) . B(x) and B(x) . A(x).

2. Preliminaries. Let us recall some basic notation. If A is a subset of
a set E, we let 1A be the characteristic function of A. Let T = {z ∈ C |
|z| = 1} and let Ω0 = {−1, 1}∞ be the Cantor group equipped with their
normalized Haar measure. For any integer i ≥ 1, we define εi by εi(ω) = ωi if
ω = (ωk)k≥1 ∈ Ω0. We can see the εi’s as independent Rademacher variables
on the probability space Ω0. Let X be a Banach space. Suppose 1 < p <∞.
We let Radp(X) ⊂ Lp(Ω0, X) be the closure of Span{εi ⊗ x | i ≥ 1, x ∈ X}
in the Bochner space Lp(Ω0, X). Thus, for any finite family x1, . . . , xn in X,
we have ∥∥∥ n∑

i=1

εi ⊗ xi
∥∥∥
Radp(X)

=
( �

Ω0

∥∥∥ n∑
i=1

εi(ω)xi

∥∥∥p
X
dω
)1/p

.

We let Rad(X) = Rad2(X). By Kahane’s inequalities (see e.g. [DJT, The-
orem 11.1]), the Banach spaces Rad(X) and Radp(X) are canonically iso-
morphic.

We say that a set F ⊂ B(X) is R-bounded provided that there exists a
constant C ≥ 0 such that for any finite families T1, . . . , Tn in F and x1, . . . , xn
in X, we have∥∥∥ n∑

i=1

εi ⊗ Ti(xi)
∥∥∥
Rad(X)

≤ C
∥∥∥ n∑
i=1

εi ⊗ xi
∥∥∥
Rad(X)

.

The notion of R-boundedness was introduced in [BG] and then developed in
the fundamental paper [CPSW]. We refer to the latter paper and to [KW,
Section 2] for a detailed presentation.

Recall that a Banach space X has property (α) if there exists a positive
constant C such that for any integer n, any tij ∈ C and any xij ∈ X we
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have∥∥∥ n∑
i,j=1

tijεi⊗εj⊗xij
∥∥∥
Rad(Rad(X))

≤ C sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

εi⊗εj⊗xij
∥∥∥
Rad(Rad(X))

.

If 1 < p < ∞, p 6= 2, it is well-known that the space Sp does not have
property (α). If the Banach space X has property (α) and if Ω is a σ-finite
measure space then, for any 1 < p <∞, the space Lp(Ω,X) also has prop-
erty (α). See [P1], [CPSW, p. 148] and [KW, p. 127] for more information
on this property.

Let Y be a Banach space and let u : Y → B(X) be a bounded map. We
say that u is R-bounded if the set {u(y) | ‖y‖Y ≤ 1} is R-bounded. We recall
a fact which is highly relevant for our paper. This result is [PR, Corollary
2.19] (see also [KLM, Corollary 4.5]).

Theorem 2.1. Let K be a compact topological space and X be a Banach
space with property (α). Any bounded homomorphism u : C(K) → B(X) is
R-bounded.

Now, we record the following elementary lemma for later use. The easy
proof is left to the reader.

Lemma 2.2. Suppose 1 < p < ∞. Let E be an operator space. For any
n ∈ N and xij ∈ E, we have∥∥∥ n∑

i,j=1

eij ⊗ xij
∥∥∥
Sp(E)

=
∥∥∥ n∑
i,j=1

εi ⊗ εj ⊗ eij ⊗ xij
∥∥∥
Rad(Rad(Sp(E)))

.

Let G be a locally compact abelian group with dual group Ĝ. If H is a
subgroup of G, we denote by H⊥ the annihilator of H. The group (H⊥)⊥

is equal to the closure H of H in G. If H is a closed subgroup of G and if
π : G → G/H denotes the canonical map, the mapping χ 7→ χ ◦ π is an
isomorphism of Ĝ/H onto H⊥. Note that if G is a locally compact abelian
group and if H is a closed subgroup of G, we have an isomorphism Ĝ/H⊥ =

Ĥ given by χ 7→ χ|H (see [HR, Theorem 24.11]). See [F] and [HR] for
background on abstract harmonic analysis.

Let G be a compact abelian group. A sequence (γi)i≥1 of Ĝ is a Sidon
set if there exists a positive constant C such that

n∑
i=1

|αi| ≤ C
∥∥∥ n∑
i=1

αiγi

∥∥∥
L∞(G)

, n ∈ N, α1, . . . , αn ∈ C.

A typical example for G = T is an Hadamard set, e.g. {2i : i ≥ 1}. See [HR]
and [LR] for more information on Sidon sets. Recall the following theorem
[P5, Theorem 2.1].
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Theorem 2.3. Let G be a compact abelian group and (γi)i≥1 a Sidon set
in Ĝ. Let X be a Banach space. Suppose 1 < p <∞. Then∥∥∥ n∑

i=1

εi ⊗ xi
∥∥∥
Rad(X)

≈
∥∥∥ n∑
i=1

γi ⊗ xi
∥∥∥
Lp(G,X)

, n ∈ N, x1, . . . , xn ∈ X.

Let (γi)i≥1 be a Sidon set in Ĝ where G is a compact abelian group. Let P
be the orthogonal projection from L2(G) onto the closed span of {γi | i ≥ 1}
in the Hilbert space L2(G). Suppose 1 < p < ∞. It is well-known that the
restriction of P to L2(G) ∩ Lp(G) extends to a bounded projection from
Lp(G) on the closure of Span{γi | i ≥ 1} in the space Lp(G).

For any integer q, we consider the abelian group
⊕∞

1 Z/qZ equipped with
the discrete topology. By [HR, Theorem 23.22 and p. 367], the dual group
of
⊕∞

1 Z/qZ is isomorphic to the compact group
∏∞

1 Z/qZ.
For any integer i ≥ 1, we define the character εi,q of the group

∏∞
1 Z/qZ

by εi,q(k1, . . . , kj , . . .) = e2π
√
−1 ki/q where (kj)j≥1 is a sequence of integers.

The compact group
∏∞

1 Z/qZ is an example of a Vilenkin group and the
set of all characters of this group is called the associated Vilenkin system.
For more information, we refer the reader to [SWS, Appendix 0.7] and the
references contained therein.

We will use the following lemma, with proof left to the reader.

Lemma 2.4. Let q ≥ 2 be an integer. The sequence (εi,q)i≥1 of characters
of the group

∏∞
1 Z/qZ is a Sidon set.

We remark that (εi,q)i≥1 can be regarded as a sequence of independent
complex random variables on the probability space

∏∞
1 Z/qZ. For any inte-

gers n and q, we introduce the compact finite group Ωn
q = Z/qZ×· · ·×Z/qZ.

Note that Ωn
q is a subgroup of

∏∞
1 Z/qZ. The restrictions εi,q|Ωn

q , where
1 ≤ i ≤ n, are characters of the group Ωn

q (see [HR, Theorem 23.21]), and
can also be regarded as a finite sequence of independent complex random
variables on the probability space Ωn

q .
We only require the use of averages of these random variables. Moreover,

if X is a Banach space and 1 < p <∞, these averages are identical: for any
n ∈ N, we have∥∥∥ n∑
i=1

εi,q|Ωn
q ⊗xi

∥∥∥
Lp(Ωn

q ,X)
=
∥∥∥ n∑
i=1

εi,q⊗xi
∥∥∥
Lp(

∏∞
1 Z/qZ,X)

, x1, . . . , xn ∈ X.

Thus, if n and q are integers and 1 ≤ i ≤ n, we will also use the notation
εi,q for the restriction εi,q|Ωn

q .
Suppose 1 < p < ∞. An operator T : Lp(G) → Lp(G) is a Fourier

multiplier if there exists a function ϕ ∈ L∞(Ĝ) such that for any f ∈
Lp(G) ∩ L2(G) we have F(T (f)) = ϕF(f) where F denotes the Fourier
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transform. In this case, we let T = Mϕ. We denote by Mp(G) the space of
bounded Fourier multipliers on Lp(G). See [LA] and [D] for more informa-
tion. Let X be a Banach space. Then Mp(G,X) is the space of bounded
Fourier multipliers Mϕ such that Mϕ ⊗ IdX extends to a bounded operator
Mϕ ⊗ IdX : Lp(G,X) → Lp(G,X). With these definitions and by (1.2), we
see that Mp(G,S

p) coincides with the space of completely bounded Fourier
multipliers.

If b ∈ L1(G), we define the convolution operator Cb by

Cb : L
p(G)→ Lp(G), f 7→ b ∗ f.

This operator is a completely bounded Fourier multiplier and we have Cb =
MF(b). We will use the following approximation result [LA, Theorem 5.6.1]
(see also [D, Corollary 4, p. 98]).

Theorem 2.5. Suppose 1 < p < ∞. Let G be a locally compact abelian
group. Let Mϕ : L

p(G)→ Lp(G) be a bounded Fourier multiplier. Then there
exists a net of continuous functions (bi)i∈I with compact support such that

‖Cbi‖Lp(G)→Lp(G) ≤ ‖Mϕ‖Lp(G)→Lp(G) and Cbi
so−→
i
Mϕ

(convergence for the strong operator topology).

We need the following vectorial extension of [D, Theorem 2, p. 113] (see
also [S, Theorem 3.3]). We can prove this result in a similar way.

Theorem 2.6. Let G be a locally compact abelian group, H be a closed
subgroup of G and X be a Banach space. We denote by π : Ĝ→ Ĝ/H⊥ the
canonical map. Then the linear map

Mp(H,X)→Mp(G,X), Mϕ 7→Mϕ◦π,

is an isometry.

The following proposition is well-known (see e.g. [F, p. 57]).

Proposition 2.7 (Weil’s formula). Let G be a locally compact abelian
group and H be a closed subgroup of G. For any Haar measures µG and
µH on G and H, respectively, there exists a Haar measure µG/H on the
group G/H such that for every continuous function f : G→ C with compact
support, �

G

f(x) dµG(x) =
�

G/H

�

H

f(xh) dµH(h) dµG/H(xH).

With this result, we can prove the next proposition.

Proposition 2.8. Suppose 1 < p < ∞. Let G be a locally compact
abelian group, H be a compact subgroup of G and X be a Banach space. If
ϕ : H⊥ → C is a complex function, we denote by ϕ̃ : Ĝ→ C the extension of
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ϕ on Ĝ which is zero off H⊥. Then the linear map

Mp(G/H,X)→Mp(G,X), Mϕ 7→Mϕ̃,

is an isometry.

Proof. We denote by π : G→ G/H the canonical map. We use the Haar
measures µH , given by Proposition 2.7, and suppose that µH(H) = 1. Using
Weil’s formula, it is not difficult to prove that the linear map

Φp : L
p(G/H)→ Lp(G), f 7→ f ◦ π

and its tensorisation Φp ⊗ IdX : Lp(G/H,X) → Lp(G,X) are isometries.
Note that the adjoint map Φ∗p∗ and the orthogonal projection of L2(G) onto
Φ2(L

2(G/H)) coincide on L2(G)∩Lp(G). Moreover, it is easy to see that the
linear map Φ∗p∗ ⊗ IdX is well-defined and contractive. The end of the proof
is straightforward and left to the reader.

Recall the following structure theorem for locally compact abelian groups
(see e.g. [HR, Theorem 24.30]).

Theorem 2.9. Any locally compact abelian group is isomorphic to a
product Rn × G0 where n ≥ 0 is an integer and G0 is a locally compact
abelian group containing a compact subgroup K such that G0/K is discrete.

Let (Gi)i∈I be a family of groups and let
∏
i∈I Gi be their cartesian

product. Recall that the direct sum
⊕

i∈I Gi is the set of all (xi)i∈I ∈
∏
i∈I Gi

such that xi = ei for all but a finite set of indices, where ei is the neutral
element of Gi. The group

⊕
i∈I Gi is a subgroup of

∏
i∈I Gi. Recall that a

group is of bounded order if every element has finite order and the order
of each element is less than some fixed positive integer. Note the following
result [HR, p. 449].

Theorem 2.10. Every abelian group G (without topology) of bounded
order is isomorphic to a direct sum

⊕
i∈I Z/q

ri
i Z of cyclic groups, where

only finitely many distinct primes qi and positive integers ri occur.

This theorem implies that an infinite abelian group G of bounded order
contains a direct sum

⊕∞
1 Z/qZ where q is a fixed prime.

3. Unconditionality and Fourier multipliers. Suppose 1 < p <∞.
Let G be a locally compact group and X a Banach space. If t ∈ G, we denote
by τt the translation operator on Lp(G) defined by τt(f)(s) = f(t−1s) for
f ∈ Lp(G) and s ∈ G. We start with the following result.

Lemma 3.1. Let G be an infinite locally compact group and X a Banach
space. If the set {τt ⊗ IdX | t ∈ G} is R-bounded in B(L2(G,X)) then X is
isomorphic to a Hilbert space.
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Proof. Let n ≥ 1 be an integer and t1, . . . , tn be distinct elements of G.
There exists a compact neighborhood V of the neutral element eG of G such
that the sets t1V, . . . , tnV are disjoint. We have µG(V ) > 0. For any integer
1 ≤ i ≤ n, we let Vi = tiV . First note that, for any x1, . . . , xn ∈ X, we have
(since the Vi’s are disjoint)( n∑

i=1

‖1Vi‖2L2(G)‖xi‖
2
X

)1/2
=
( �

Ω0

n∑
i=1

‖εi(ω)1Vi ⊗ xi‖2L2(G,X) dω
)1/2

(3.1)

=
( �

Ω0

∥∥∥ n∑
i=1

εi(ω)1Vi ⊗ xi
∥∥∥2
L2(G,X)

dω
)1/2

=
∥∥∥ n∑
i=1

εi ⊗ 1Vi ⊗ xi
∥∥∥
Rad(L2(G,X))

.

We deduce that( n∑
i=1

‖1Vi‖2L2(G)‖xi‖
2
X

)1/2
=
∥∥∥ n∑
i=1

εi ⊗ (τti ⊗ IdX)(1V ⊗ xi)
∥∥∥
Rad(L2(G,X))

.
∥∥∥ n∑
i=1

εi ⊗ 1V ⊗ xi
∥∥∥
Rad(L2(G,X))

= ‖1V ‖L2(G)

∥∥∥ n∑
i=1

εi ⊗ xi
∥∥∥
Rad(X)

.

For 1 ≤ i ≤ n, we have ‖1V ‖L2(G) = ‖1Vi‖L2(G). We infer that( n∑
i=1

‖xi‖2X
)1/2

.
∥∥∥ n∑
i=1

εi ⊗ xi
∥∥∥
Rad(X)

.

We deduce that X has cotype 2. Now, for any x1, . . . , xn ∈ X, we have

‖1V ‖L2(G)

∥∥∥ n∑
i=1

εi ⊗ xi
∥∥∥
Rad(X)

=
∥∥∥ n∑
i=1

εi ⊗ 1V ⊗ xi
∥∥∥
Rad(L2(G,X))

=
∥∥∥ n∑
i=1

εi ⊗ (τt−1
i
⊗ IdX)(τti ⊗ IdX)(1V ⊗ xi)

∥∥∥
Rad(L2(G,X))

.
∥∥∥ n∑
i=1

εi ⊗ 1Vi ⊗ xi
∥∥∥
Rad(L2(G,X))

=
( n∑
i=1

‖1Vi‖2L2(G)‖xi‖
2
X

)1/2
by (3.1).
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Using, one more time, the equality ‖1V ‖L2(G) = ‖1Vi‖L2(G) for 1 ≤ i ≤ n,
we deduce that ∥∥∥ n∑

i=1

εi ⊗ xi
∥∥∥
Rad(X)

.
( n∑
i=1

‖xi‖2X
)1/2

.

Thus X has type 2. Hence, by Kwapień’s theorem [K1, Proposition 3.1]
(or [DJT, Corollary 12.20]), the Banach space X is isomorphic to a Hilbert
space.

Let G be a locally compact abelian group and X be a Banach space.
If X is isomorphic to a Hilbert space, it is clear that we have a canonical
isomorphism M2(G,X) = M2(G). We will show the reverse implication for
infinite locally compact abelian groups.

We begin with the case of T. We give a proof which does not use [DF].
We will use the following elementary lemma, with proof left to the reader.

Lemma 3.2. Let g : T × T → C be a continuous complex function. We
have �

T

g(z, zk) dz −−−→
k→∞

�

T×T
g(z, z′) dz dz′.

Now, we can prove the following proposition.

Proposition 3.3. Let X be a Banach space. There is a canonical iso-
morphism M2(G,T) = M2(T) if and only if X is isomorphic to a Hilbert
space.

Proof. Suppose that M2(T, X) = M2(T). For any integer i ≥ 1, we let
ni = 22i and mi = 22i+1. The sequences (ni)i≥1 and (mj)j≥1 are Sidon sets
for the group T. We will use the fact that there exist arbitrarily large integers
k ≥ 1 such the map (i, j) 7→ ni + kmj is one-to-one. Note that, by Theorem
2.3, we have
(3.2)∥∥∥ n∑
i,j=1

εi⊗εj⊗xij
∥∥∥
Rad(Rad(X))

≈
∥∥∥ n∑
i,j=1

e2π
√
−1ni ·⊗e2π

√
−1mj ·⊗xij

∥∥∥
L2(T×T,X)

for all n ∈ N and xij ∈ X.
Now, suppose that the Banach space X does not have property (α). Let

C be a positive constant. Then there exist n ≥ 1, tij ∈ C with |tij | = 1 and
xij ∈ X such that ∥∥∥ n∑

i,j=1

εi ⊗ εj ⊗ xij
∥∥∥
Rad(Rad(X))

≤ 1

with arbitrarily large ‖
∑n

i,j=1 tijεi ⊗ εj ⊗ xij‖Rad(Rad(X)). Using the equiv-
alence (3.2), we deduce that there exist n ≥ 1, tij ∈ C with |tij | = 1 and
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xij ∈ X such that∥∥∥ n∑
i,j=1

e2π
√
−1ni · ⊗ e2π

√
−1mj · ⊗ xij

∥∥∥
L2(T×T,X)

≤ 1

2

and ∥∥∥ n∑
i,j=1

e2π
√
−1ni · ⊗ e2π

√
−1mj · ⊗ xij

∥∥∥
L2(T×T,X)

≥ 2C.

Moreover, by Lemma 3.2, we have∥∥∥ n∑
i,j=1

e2π
√
−1(ni+kmj) · ⊗ xij

∥∥∥
L2(T,X)

−−−−→
k→+∞

∥∥∥ n∑
i,j=1

e2π
√
−1ni · ⊗ e2π

√
−1mj · ⊗ xij

∥∥∥
L2(T×T,X)

.

For some k large enough, we deduce that∥∥∥ n∑
i,j=1

e2π
√
−1 (ni+kmj) · ⊗ xij

∥∥∥
L2(T,X)

≤ 1

and ∥∥∥ n∑
i,j=1

tije
2π
√
−1 (ni+kmj) · ⊗ xij

∥∥∥
L2(T,X)

> C.

We infer that (1.1) is not satisfied, a contradiction. Thus,X has property (α).
Hence L2(T, X) also has property (α).

Now, note that L∞(T) is a commutative unital C∗-algebra. By Gelfand’s
Theorem (see e.g. [F, Theorem 1.20]), the Banach algebra L∞(T) is isometri-
cally isomorphic to C(K) where K is a compact topological space. Moreover,
we have a bounded homomorphism

L∞(T)→ B(L2(T, X)), ϕ 7→Mϕ.

By Theorem 2.1, this linear map is R-bounded. For any t ∈ G, the map
τt is an isometric Fourier multiplier. Hence the set {τt ⊗ IdX | t ∈ T} is
R-bounded. By Lemma 3.1, we conclude that X is isomorphic to a Hilbert
space.

Now, we extend Proposition 3.3 to the groups R and Z. We use a method
similar to the one of [A, Theorems 3.4 and 3.5]. Since we need variants of
this method later (and also for the convenience of the reader), we include
some details. We need the following vectorial extension of [L, Proposition
3.3]; it can be proved as [CW, Theorem 3.4].

Theorem 3.4. Let X be a Banach space. Suppose 1 < p < ∞. Let ψ
be a continuous function on R which defines a bounded Fourier multiplier
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Mψ on Lp(R, X). Then ψ|Z defines a bounded Fourier multiplier Mψ|Z on
Lp(T, X).

Moreover, we need the following result of Jodeit [J, Theorem 3.5]. We
introduce the function Λ : R→ R defined by

Λ(x) =

{
1− |x| x ∈ [−1, 1],
0 |x| > 1.

Theorem 3.5. Suppose 1 < p <∞. Let ϕ be a complex function defined
on Z such that Mϕ is a bounded Fourier multiplier on Lp(T). Then the
complex function ψ : R→ C given by

(3.3) ψ(x) =
∑
k∈Z

ϕ(k)Λ(x− k), x ∈ R,

defines a bounded Fourier multiplier Mψ on Lp(R).

Now, we can prove the following proposition.

Proposition 3.6. Let X be a Banach space, and G = R or G = Z.
There is a canonical isomorphism M2(G,X) = M2(G) if and only if X is
isomorphic to a Hilbert space.

Proof. Suppose that X is not isomorphic to a Hilbert space. By Propo-
sition 3.3, there exists a bounded Fourier multiplier Mϕ : L

2(T) → L2(T)
such that Mϕ ⊗ IdX is not bounded on L2(T, X). Consider the function
ψ given by (3.3). By Theorem 3.5, ψ defines a bounded Fourier multiplier
Mψ : L

2(R)→ L2(R). Now, suppose that Mψ ⊗ IdX : L2(R, X)→ L2(R, X)
is bounded. Since ψ : R → C is continuous, by Theorem 3.4, the restriction
ψ|Z defines a bounded Fourier multiplier Mψ|Z on L2(T, X). Moreover, we
have ψ(k) = ϕ(k) for any k ∈ Z. Hence we deduce that Mϕ is bounded
on L2(T, X), a contradiction. Consequently, the Fourier multiplier Mψ is
bounded on L2(R) and Mψ ⊗ IdX is not bounded on L2(R, X). Hence, the
case G = R is completed.

We can suppose that the above multiplier Mψ satisfies ‖Mψ‖L2(R)→L2(R)
= 1. By Theorem 2.5, there exists a net (bi)i∈I of continuous functions with
compact support such that

‖Cbi‖L2(R)→L2(R) ≤ 1 and Cbi
so−→
i
Mψ.

Let C > 1. Then it is not difficult to deduce that there exists a continuous
function b : R→ C with compact support such that ‖Cb‖L2(R)→L2(R) ≤ 1 and
‖Cb⊗ IdX‖L2(R,X)→L2(R,X) ≥ 2C. Now, we consider the sequence (an)n≥1 of
complex sequences indexed by Z, defined by

(3.4) an,k =

1�

0

1�

0

1

n
b

(
t− s+ k

n

)
ds dt, k ∈ Z.
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For any n ≥ 1, we introduce the conditional expectation En : L2(R)→ L2(R)
with respect to the σ-algebra generated by the intervals [k/n, (k + 1)/n[,
k∈Z. For f ∈ L2(R) and n ≥ 1, we have

Enf = n
∑
k∈Z

( (k+1)/n�

k/n

f(t) dt
)
1[k/n,(k+1)/n[

(see [AA, p. 227]). Now, we define the linear map Jn : `2Z → En(L2(R)) by

Jn(u) = n1/2
∑
k∈Z

uk1[k/n,(k+1)/n[, u ∈ `2Z.

It is easy to check that Jn is an isometry of `2Z onto En(L2(R)). For any
u ∈ `2Z, mimicking the computation in the proof of [A, Theorem 3.5], we
obtain

EnCbJn(u) = JnCan(u).

Then it is easy to prove that there exists n ≥ 1 such that ‖Can‖`2Z→`2Z ≤ 1

and ‖Can ⊗ IdX‖`2Z(X)→`2Z(X) ≥ C. Finally, we conclude the case G = Z by
applying the closed graph theorem.

Now, we pass to discrete groups. We first prove the following result with
a method similar to that of Proposition 3.3.

Proposition 3.7. Let X be a Banach space and q ≥ 2 be an integer.
There is a canonical isomorphism M2(

⊕∞
1 Z/qZ, X) = M2(

⊕∞
1 Z/qZ) if

and only if X is isomorphic to a Hilbert space.
Proof. Assume that M2(

⊕∞
1 Z/qZ, X) = M2(

⊕∞
1 Z/qZ). Then there

exists a positive constant C such that for any ϕ ∈ L∞(
∏∞

1 Z/qZ),
‖Mϕ‖L2(

⊕∞
1 Z/qZ,X)→L2(

⊕∞
1 Z/qZ,X) ≤ C‖ϕ‖L∞(

∏∞
1 Z/qZ).

Moreover, since Ωn
q ×Ωn

q is a closed subgroup of
⊕∞

1 Z/qZ, for any n ≥ 1,
tij ∈ C and xij ∈ X, we deduce that∥∥∥ n∑
i,j=1

tijεi,q ⊗ εj,q ⊗ xij
∥∥∥
L2(Ωn

q ×Ωn
q ,X)

≤ C sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

εi,q ⊗ εj,q ⊗ xij
∥∥∥.

Now, by Theorem 2.3 and Lemma 2.4,∥∥∥ n∑
i,j=1

εi ⊗ εj ⊗ xij
∥∥∥
Rad(Rad(X))

≈
∥∥∥ n∑
i,j=1

εi,q ⊗ εj,q ⊗ xij
∥∥∥
L2(Ωn

q ×Ωn
q ,X)

for n ∈ N and xij ∈ X. Thus the Banach space X has property (α). The end
of the proof is similar to the end of the proof of Proposition 3.3.

Proposition 3.8. Let G be an infinite discrete abelian group and X a
Banach space. There is a canonical isomorphism M2(G,X) =M2(G) if and
only if X is isomorphic to a Hilbert space.
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Proof. We consider several cases.

Case 1: G is not a torsion group. Then G contains a copy of Z. Suppose
that M2(G,X) =M2(G). By Theorem 2.6, we have M2(Z, X) =M2(Z). By
Proposition 3.6, we deduce that X is isomorphic to a Hilbert space.

Case 2: G is a torsion group, but contains elements of arbitrarily large
order. We may therefore assume that there is a sequence G1, G2, . . . of cyclic
subgroups of G of orders n1, n2, . . . with nj →∞ as j →∞.

We will construct contractive Fourier multipliers Can on the cyclic group
Z/nZ with large ‖Can⊗IdX‖`2n(X)→`2n(X). We use a similar method to the one
in the proof of Proposition 3.6. By Proposition 3.3, there exists a bounded
Fourier multiplier Mψ : L

2(T)→ L2(T) such that Mψ ⊗ IdX is not bounded
on L2(T, X). By Theorem 2.5, there exists a net (bi)i∈I of continuous func-
tions such that

‖Cbi‖L2(T)→L2(T) ≤ ‖Mψ‖L2(T)→L2(T) and Cbi
so−→
i
Mψ.

Let C > 1. It is not difficult to deduce that there exists a continuous function
b : T→ C such that

‖Cb‖L2(T)→L2(T) ≤ 1 and ‖Cb ⊗ IdX‖L2(T,X)→L2(T,X) ≥ 2C.

Now, we use the identification L2(T) = L2([0, 1]). We consider b as a 1-
periodic function b : R → C. Then, we define by (3.4) the sequence (an)n≥1
of complex sequences indexed by {0, . . . , n}. For each n ≥ 1, Can is a convo-
lution operator on `2n. For n ≥ 1, we introduce the conditional expectation
En : L2([0, 1]) → L2([0, 1]) with respect to the σ-algebra generated by the
intervals [k/n, (k + 1)/n[, k ∈ {0, . . . , n}. For n ≥ 1 and f ∈ L2([0, 1]), we
have

(3.5) Enf = n
n−1∑
k=0

( (k+1)/n�

k/n

f(t) dt
)
1[k/n,(k+1)/n[.

Now, we define the linear map Jn : `2n → En(L2([0, 1])) by

Jn(u) = n1/p
n−1∑
k=0

uk1[k/n,(k+1)/n[ if u ∈ `2n.

It is easy to check that Jn is an isometry of `2n onto En(L2([0, 1])). For any
u ∈ `np , by a computation similar to the one in the proof of [A, Theorem 3.5],
we show that

EnCbJn(u) = JnCan(u).

Thus, it is not difficult to deduce that there exists N ≥ 1 such that for any
n ≥ N we have

‖Can‖`2n→`2n ≤ 1 and ‖Can ⊗ IdX‖`2n(X)→`2n(X) ≥ C.
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Now, recall that nj →∞ as j →∞. Hence, there exists an integer j ≥ 1
and a convolution operator Ca : L2(Gnj )→ L2(Gnj ) such that

‖Ca‖L2(Gnj )→L2(Gnj )
≤ 1 and ‖Ca ⊗ IdX‖L2(Gnj ,X)→L2(Gnj ,X) ≥ C.

We conclude by using Theorem 2.6 and the closed graph theorem.

Case 3: G is a group of bounded order. In this case, the remark following
Theorem 2.10 allows us to claim that G contains a subgroup isomorphic to⊕∞

1 Z/qZ where q is a prime. We conclude by invoking Theorem 2.6 and
Proposition 3.7.

We now recall a particular case of [DJ, Theorem 1]. We give an indepen-
dent proof of this result.

Proposition 3.9. Let G be an infinite compact abelian group and X be
a Banach space. There is a canonical isomorphism M2(G,X) = M2(G) if
and only if X is isomorphic to a Hilbert space.

Proof. Let G be an infinite compact group. Suppose that M2(G,X) =
M2(G).

Case 1: The discrete group Ĝ is not a torsion group. Then Ĝ contains a
copy of Z. Note that we have G/Z⊥ = Ẑ = T isomorphically. By Proposition
2.8, we deduce thatM2(T, X) =M2(T). By Proposition 3.3, X is isomorphic
to a Hilbert space.

Case 2: Ĝ is a torsion group, but contains elements of arbitrarily large
order. We may therefore assume that there is a sequence G1, G2, . . . of cyclic
subgroups of Ĝ of orders n1, n2, . . . with nj → ∞ as j → ∞. Note that for
any j ≥ 1, we have group isomorphisms

G/G⊥j = Ĝj = Z/njZ.
Using Proposition 2.8, we conclude as in Case 2 of the proof of Proposition
3.8.

Case 3: Ĝ is a group of bounded order. In this case, the remark following
Theorem 2.10 shows that Ĝ contains a subgroup isomorphic to

⊕∞
1 Z/qZ

where q is a prime. Observe that we have group isomorphisms

G/
(⊕∞

1 Z/qZ
)⊥

= ̂⊕∞
1 Z/qZ =

∏∞
1 Z/qZ.

Using the fact that
⊕∞

1 Z/qZ is a subgroup of
∏∞

1 Z/qZ, the result follows
by applying Proposition 2.8, Theorem 2.6 and Proposition 3.7.

The next theorem is the principal result of this section.

Theorem 3.10. Let G be an infinite locally compact abelian group and
X a Banach space. We have a canonical isomorphism M2(G,X) = M2(G)
if and only if X is isomorphic to a Hilbert space.
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Proof. By Theorem 2.9, G is isomorphic to a product Rn×G0 where G0

is a locally compact abelian group containing a compact subgroup K such
that G0/K is discrete. Suppose n ≥ 1. If M2(G,X) = M2(G), Theorem 2.6
yields a canonical isomorphism M2(R, X) = M2(R). Hence, by Proposition
3.6, X is isomorphic to a Hilbert space. If the group K is infinite, we apply
a similar reasoning by using Proposition 3.9 instead of Proposition 3.6. If
n = 0 and K is finite then it is not difficult to see that G is discrete. In this
case we use Proposition 3.8.

4. Bounded but not completely bounded Fourier multipliers. In
this section, we prove that if 1 < p <∞, p 6= 2, then there exists a bounded
Fourier multiplier on Lp(G) which is not completely bounded, where G is
an infinite locally compact abelian group. The cases of R, Z and infinite
compact abelian groups are already known. We start by extending these
results to the discrete group

⊕∞
1 Z/qZ, where q ≥ 2 is an integer. In the

proof, we will use the notation introduced before Proposition 3.7.

Proposition 4.1. Suppose 1 < p < ∞, p 6= 2. Let q ≥ 2 be an integer.
There exists a bounded Fourier multiplier on Lp(

⊕∞
1 Z/qZ) which is not

completely bounded.

Proof. By Theorem 2.6 and the closed graph theorem, it suffices to prove
that there exist contractive Fourier multipliers on the group Ωn

q × Ωn
q =

(Z/qZ×· · ·×Z/qZ)× (Z/qZ×· · ·×Z/qZ) with arbitrarily large completely
bounded norms in n. By Theorem 2.3 and Lemma 2.4, we have∥∥∥ n∑

i,j=1

εi ⊗ εj ⊗ xij
∥∥∥
Rad(Rad(Sp))

≈
∥∥∥ n∑
i,j=1

εi,q ⊗ εj,q ⊗ xij
∥∥∥
Lp(Ωn

q ×Ωn
q ,S

p)

where n ∈ N and xij ∈ Sp. We let Rp2,q denote the closed span of the
εi,q ⊗ εj,q’s in Lp(Ωn

q ×Ωn
q ) where 1 ≤ i, j ≤ n. For any family τ = (tij)i,j≥1

of complex numbers we consider the linear map

Tτ : Rp2,q → Lp(Ωn
q ×Ωn

q ), εi,q ⊗ εj,q 7→ tijεi,q ⊗ εj,q.

Note that for any n ∈ N and αij ∈ C, we have∥∥∥ n∑
i,j=1

αijεi,q ⊗ εj,q
∥∥∥
Lp(Ωn

q ×Ωn
q )
≈
∥∥∥ n∑
i,j=1

αijεi ⊗ εj
∥∥∥
Lp(Ω0×Ω0)

≈
( n∑
i,j=1

|αij |2
)1/2
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(see [P1, Lemma 2.1] or [DF, p. 455]). Then, for any αij ∈ C,∥∥∥Tτ( n∑
i,j=1

αijεi,q ⊗ εj,q
)∥∥∥

Lp(Ωn
q ×Ωn

q )
=
∥∥∥ n∑
i,j=1

tijαijεi,q ⊗ εj,q
∥∥∥
Lp(Ωn

q ×Ωn
q )

≈
( n∑
i,j=1

|tijαij |2
)1/2

. sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

αij ⊗ εi,q ⊗ εj,q
∥∥∥
Lp(Ωn

q ×Ωn
q )
.

Consequently, ‖Tτ‖Rp
2,q→Lp(Ωn

q ×Ωn
q )

. ‖τ‖∞. Since Sp does not have prop-
erty (α) there exist tij ∈ C with |tij | = 1 and large ‖Tτ ⊗ IdSp‖. Now, using
the canonical bounded projection from Lp(

∏∞
1 Z/qZ) onto the closure of

Span{εi,q | i ≥ 1} in Lp(
∏∞

1 Z/qZ), we see that there exists a bounded pro-
jection from Lp(

∏∞
1 Z/qZ ×

∏∞
1 Z/qZ) onto Rp2,q. Applying the inclusion

map Lp(Ωn
q ×Ωn

q )→ Lp(
∏∞

1 Z/qZ×
∏∞

1 Z/qZ) we obtain a bounded pro-
jection from Lp(Ωn

q ×Ωn
q ) onto R

p
2,q with norm bounded independently of n.

Finally, by composing with this projection, we obtain contractive Fourier
multipliers on the group Ωn

q ×Ωn
q with arbitrary completely bounded norms

in n.

Now, we can prove the second main result of this paper.

Theorem 4.2. Suppose 1 < p < ∞, p 6= 2. Let G be an infinite locally
compact abelian group. There exists a bounded Fourier multiplier on Lp(G)
which is not completely bounded.

Proof. The proof is similar to the ones of Proposition 3.8 and Theorem
3.10. The case of a discrete group of torsion needs some minor modifica-
tions. We prove it by a reasoning similar to the one used in the proof of
Proposition 3.8 using the conditional expectation defined by (3.5) as an op-
erator En : Lp([0, 1]) → Lp([0, 1]) and using the isometric map Jn : `

p
n →

En(Lp([0, 1])) defined by

Jn(u) = n1/p
n−1∑
k=0

uk1[k/n,(k+1)/n[, u ∈ `pn.

Remark 4.3. Using the fact that the space Sp does not have prop-
erty (α) if 1 < p < ∞, p 6= 2, and the method used at the beginning of the
proof of Proposition 3.3, one can give a proof of Theorem 4.2 for the case
G = T. The more general case where G is an infinite compact abelian group
can also be obtained with the method of the proof of Proposition 3.9.

Remark 4.4. Recall the following classical result of S. Kwapień [K2].
Suppose 1 < p < ∞. A Banach space X is isomorphic to an SQLp-space,
i.e. a subspace of a quotient of an Lp-space, if and only if for any measure
space Ω and any bounded operator T : Lp(Ω) → Lp(Ω), the operator T ⊗
IdX : Lp(Ω,X) → Lp(Ω,X) is bounded. The results of Section 3 and of
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this section lead to the following general open question. Let X be a Banach
space and G be an infinite locally compact abelian group. Suppose we have a
canonical isomorphismMp(G,X) =Mp(G); does there exist an isomorphism
from the Banach space X onto an SQLp-space?

5. Unconditionality and Schur multipliers. Suppose 1 < p <∞. In
this section, we use the notation SpZ = Sp(`2Z) and S

p
Z×N = Sp(`2Z×N). Recall

that a Schur multiplier on Sp is a linear map MA : S
p → Sp defined by a

scalar matrix A such that MA(B) = [aijbij ] belongs to Sp for any B ∈ Sp.
We have a similar notion for SpZ. Below, (εij)i,j≥1 denotes a doubly indexed
family of independent Rademacher variables.

The paper [LE] contains the following result:

Theorem 5.1. Let E be an operator space. Then E is completely iso-
morphic to the operator Hilbert space OH(I) for some index set I if and only
if ∥∥∥ n∑

i,j=1

eij ⊗ xij
∥∥∥
S2(E)

≈
∥∥∥ n∑
i,j=1

εij ⊗ xij
∥∥∥
Rad(E)

, n ∈ N, xij ∈ E.

First, we show a link between a property of the Banach space S2(E) and
a property of the operator space E.

Proposition 5.2. Let E be an operator space. The following assertions
are equivalent:

• The Banach space S2(E) is isomorphic to a Hilbert space.
• The operator space E is completely isomorphic to the operator Hilbert
space OH(I) for some index set I.

Proof. Suppose that S2(E) is isomorphic to a Hilbert space. By Lemma
2.2 we have∥∥∥ n∑
i,j=1

eij⊗xij
∥∥∥
S2(E)

=
∥∥∥ n∑
i,j=1

εi⊗εj⊗eij⊗xij
∥∥∥
Rad(Rad(S2(E)))

, n ∈ N, xij∈E.

Moreover, the Banach space Rad(S2(E)) is also isomorphic to a Hilbert
space. Hence, for any n ∈ N and xij ∈ E,∥∥∥ n∑

i,j=1

eij ⊗ xij
∥∥∥
S2(E)

≈
( n∑
i,j=1

‖eij ⊗ xij‖2S2(E)

)1/2
=
( n∑
i,j=1

‖xij‖2E
)1/2

.

The space E is a closed subspace of S2(E). Hence it is isomorphic to a
Hilbert space. Then we conclude that∥∥∥ n∑

i,j=1

eij ⊗ xij
∥∥∥
S2(E)

≈
∥∥∥ n∑
i,j=1

εij ⊗ xij
∥∥∥
Rad(E)

, n ∈ N, xij ∈ E.
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By Theorem 5.1, we deduce that E is completely isomorphic to OH(I) for
some index set I. The reverse implication is obvious.

We need the next theorem [NR, Remark 3.1].

Theorem 5.3. Let E be an operator space and ϕ : Z→ C be a function.
Consider the infinite matrix A = [ϕi−j ]i,j∈Z. If the map MA⊗IdE is bounded
on S2

Z(E) then Mϕ ⊗ IdE is bounded on L2(T, E) and

‖Mϕ ⊗ IdE‖L2(T,E)→L2(T,E) ≤ ‖MA ⊗ IdE‖S2
Z(E).

The following result shows that if the matrix units form an ‘unconditional
system’ of S2(E) then the operator space E is completely isomorphic to an
operator Hilbert space.

Theorem 5.4. Let E be an operator space. The following assertions are
equivalent:

• The Banach space S2(E) has property (α).
• There exists a positive constant C such that

(5.1)
∥∥∥ n∑
i,j=1

tijeij ⊗ xij
∥∥∥
S2(E)

≤ C sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

eij ⊗ xij
∥∥∥
S2(E)

for any n ∈ N, tij ∈ C and xij ∈ E.
• The operator space E is completely isomorphic to the operator Hilbert
space OH(I) for some index set I.

Proof. Suppose that S2(E) has property (α). For any n ∈ N, yij ∈ S2(E)
and tij ∈ C we have∥∥∥ n∑

i,j=1

tijεi ⊗ εj ⊗ yij
∥∥∥
Rad(Rad(S2(E)))

. sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

εi ⊗ εj ⊗ yij
∥∥∥.

For any 1 ≤ i, j ≤ n, choose xij ∈ E. Using yij = eij ⊗ xij , we obtain∥∥∥ n∑
i,j=1

tijεi⊗εj⊗eij⊗xij
∥∥∥
Rad(Rad(S2(E)))

. sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

εi⊗εj⊗eij⊗xij
∥∥∥.

By Lemma 2.2, we conclude that∥∥∥ n∑
i,j=1

tijeij ⊗ xij
∥∥∥
S2(E)

. sup
1≤i,j≤n

|tij |
∥∥∥ n∑
i,j=1

eij ⊗ xij
∥∥∥
S2(E)

.

Now suppose that inequality (5.1) is true. Using the completely isometric
isomorphisms

S2
Z(S

2(E)) = S2
Z×N(E) = S2(E),
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it is easy to see that

(5.2)
∥∥∥ n∑
i,j=−n

tijeij ⊗ xij
∥∥∥
S2
Z(S

2(E))

≤ C sup
−n≤i,j≤n

|tij |
∥∥∥ n∑
i,j=−n

eij ⊗ xij
∥∥∥
S2
Z(S

2(E))

for any integer n and any tij ∈ C and xij ∈ S2(E). Let ϕ : Z → C be a
function with finite support. By (5.2), the map MA ⊗ IdS2(E) on S2

Z(S
2(E))

associated with the matrix A = [ϕi−j ]i,j∈Z is bounded with
‖MA ⊗ IdS2(E)‖S2

Z(S
2(E))→S2

Z(S
2(E)) ≤ C.

Then, by Theorem 5.3, the map Mϕ ⊗ IdS2(E) is bounded on L2(T, S2(E))
and

‖Mϕ ⊗ IdS2(E)‖L2(T,S2(E))→L2(T,S2(E))

≤ ‖MA ⊗ IdS2
Z(E)‖S2

Z(S
2(E))→S2

Z(S
2(E)) ≤ C.

For any sequence (xk) of elements of E, we deduce that∥∥∥ ∞∑
k=−∞

ϕ(k)e2πik · ⊗ xk
∥∥∥
L2(S2(E))

≤ C sup
k∈Z
|ϕ(k)|

∥∥∥ ∞∑
k=−∞

e2πik · ⊗ xk
∥∥∥
L2(S2(E))

.

By Theorem 1.1, the Banach space S2(E) is isomorphic to a Hilbert space.
Finally, by Theorem 5.2, the operator space E is completely isomorphic to
OH(I) for some index set I.

The remaining implication is trivial.
Remark 5.5. The results of Section 4 raise the question of proving an

analogous result for Schur multipliers. Indeed, in this context, G. Pisier con-
jectured that there exists a Schur multiplier which is bounded on Sp but not
completely bounded if 1 < p <∞, p 6= 2 (see [P2, Conjecture 8.1.12]).
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