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MAXIMAL ENTROPY MEASURES IN DIMENSION ZERO

BY

DAWID HUCZEK (Wrocław)

Abstract. We prove that an invertible zero-dimensional dynamical system has an
invariant measure of maximal entropy if and only if it is an extension of an asymptotically
h-expansive system of equal topological entropy.

1. Introduction. The variational principle is a result connecting the no-
tions of measure-theoretic and topological entropy—it states that the topo-
logical entropy of a dynamical system is the supremum of the entropies of all
invariant measures on that system. This supremum is not always attained
and a general criterion for deciding whether a maximal entropy measure
exists has been missing for many classes of systems. It has been known
for some time that maximal entropy measures exist on asymptotically h-
expansive systems (see [M])—in fact, in this case the entropy function is
upper semicontinuous on the space of invariant measures (hence it attains
its maximum). Trivially, any extension of an asymptotically h-expansive sys-
tem that does not increase the topological entropy also has a maximal en-
tropy measure. In this paper we prove that, in the zero-dimensional case, this
sufficient condition is also necessary, i.e. that any zero-dimensional system
that has a measure of maximal entropy is the extension of an asymptotically
h-expansive system with equal topological entropy.

2. Preliminaries

Dynamical systems. Throughout this work a dynamical system will be
a pair (X,T ), whereX is a compact metric space, and T is a homeomorphism
on X.

Measure-theoretic entropy. All entropy computations use logarithms
to base 2. The facts we recall are very standard and their proofs can be found
in most textbooks on entropy, e.g. [D].
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For a measurable partition A we define the entropy of A with respect to
an invariant measure µ by

H(µ,A) = −
∑
A∈A

µ(A) logµ(A).

Define also

Hn(µ,A) =
1

n
H(µ,An),

where

An =

n−1∨
j=0

T−j(A) =
{n−1⋂
j=0

Aj : Aj ∈ T−j(A)
}
.

The sequence Hn(µ,A) decreases and its limit is denoted by h(µ,A). Finally
define the measure-theoretical entropy of µ as

h(µ) = sup
A
h(µ,A).

All the notions introduced above depend on the transformation T ; the same
measure and partition can have different entropies for various transforma-
tions. Throughout this paper, however, we always consider only one trans-
formation on any given space, and all entropies are calculated with respect
to this transformation, so we need not be concerned by this issue.

Given two measurable partitions of X, say A and B, we denote the con-
ditional entropy of B given A as

(2.1) H(µ,B |A) =
∑
A∈A

µ(A)H(µA,B),

where µA is defined as µA(B) = µ(A ∩B)/µ(A). Define

Hn(µ,B |A) =
1

n
H(µ,Bn | An).

Again, this sequence decreases to a value called the dynamical conditional
entropy of B given A and denoted by h(µ,B |A). We say that B is a refine-
ment of A (denoted by A ≺ B) if each set from B is a subset of some set
from A. In this case we have

H(µ,B |A) = H(µ,B)−H(µ,A).

The following estimate is completely trivial, but we will use it several
times while proving the main result, so we mention it explicitly:

(2.2) H(µ,A) ≤ log#A,

where #A is the number of elements of A.
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In particular, this gives us the following

Lemma 2.1. If A and B are two measurable partitions of the same space
and every set of A intersects at most L sets of B, then for any measure µ
we have H(µ,B |A) < logL.

To prove this, simply apply estimate (2.2) to each term in the formula
(2.1) (for each A, H(µA,B) is equivalent to the entropy of a partition con-
sisting of at most L elements).

We will also use a corollary of the Shannon–McMillan–Breiman Theorem:

Corollary 2.2. For any ergodic measure µ, any finite partition A and
any positive ε and δ there exists a number N such that for any n > N there
exists a subset C of An of total measure µ at least 1− δ (i.e.

∑
C∈C µ(C) >

(1− δ)) such that

2−n(h(µ,A)+ε) < µ(C) < 2−n(h(µ,A)−ε) for every C ∈ C.

Topological and measure-theoretical entropy in topological dy-
namical systems. A topological dynamical system is a pair (X,T ), where
X is a compact metric space and T is a continuous map of X into itself.
Two such systems (X,T ) and (Y, S) are conjugate if there exists a homeo-
morphism π : X → Y such that π ◦ T = S ◦ π.

Let MT (X) denote the set of T -invariant measures on X. We can con-
sider measure-theoretical entropy as a function onMT (X) which takes pos-
itive values (including, possibly, infinity).

For any compact metric space X a function f : X → R is called upper
semicontinuous if it is the infimum of a family of continuous functions. Equiv-
alently, f is upper semicontinuous if for any convergent sequence xn → x
we have limf(xn) ≤ f(x). It is well-known (see e.g. [D]) that if (X,T ) is
a subshift then the entropy function µ 7→ h(µ) is upper semicontinuous on
MT (X).

The topological entropy of (X,T ) can be defined as

h(T ) = sup
µ∈MT (X)

h(µ, T ).

See [D] for the more usual definition and the proof of its equivalence with
the one presented here.

Entropy structure and asymptotic h-expansiveness in dimension
zero. Recall that a (two-sided) full shift is the space ΛZ (where Λ is some
finite set with discrete topology) with the shift transformation, i.e. the action
(Tx)n = xn+1, whereas a subshift (or a symbolic dynamical system) is any
closed, T -invariant subset X of ΛZ. It is well known that the entropy of any
invariant measure µ on a subshift is attained as the entropy of this measure
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with respect to the partition into cylinders of length one, i.e. h(µ) = h(µ,B),
where B is the family of sets of the form {x | x0 = l} for l ∈ Λ.

The space of invariant measures on any full shift (and therefore also a
subshift) with the weak-∗ topology is metrizable, and the metric can be
explicitly given as

d(µ, ν) =
∞∑
i=1

1

2i

∑
B∈Bi

|µ(B)− ν(B)|,

where Bi is the family of all cylinders of length i. An easy and useful corollary
of this definition is that for any ε > 0 there exist δ > 0 and n ∈ N such that
if two measures differ by no more than δ on all cylinders of length up to n,
then the distance between the measures is less than ε.

Let (X,T ) be a zero-dimensional dynamical system (i.e. one where X is
a zero-dimensional space). Any such system can be expressed as an inverse
limit

(X,T ) = lim←−
n→∞

(Xk, Tk),

where each (Xk, Tk) is a subshift. To see this, consider a sequence of partitions
Ak ofX such thatAk is a partition into clopen sets of diameter atmost 1/k, and
Ak ≺ Ak+1. Each Ak, as a finite set, can be endowed with discrete topology
and used as the alphabet of Xk. The system Xk itself will be the set of points
x ∈ AZ

k such that there exists x′ ∈ X with Tnx′ ∈ xn for all n ∈ Z (easily seen
to be closed and invariant under the shift transformation). The condition
Ak ≺ Ak+1 implies the existence of a natural factor map πk : Xk+1 → Xk

by requiring that πk(x)n be the set from Ak which contains xn (which is a
set of Ak+1. The inverse limit Y = lim←− n→∞(Xk, Tk) (where each Tk denotes
the shift transformation) is naturally a factor of X (since each system Xk is
such a factor), but on the other hand different points in X will necessarily
have different images in Y , since the diameters of the sets in Ak decrease.
Therefore we have a one-to-one continuous mapping between X and Y which
commutes with the transformations, and thus the systems are conjugate.

By the entropy structure of X we will understand the sequence of func-
tions on MT (X) (the set of T -invariant Borel probability measures on X)
given by

µ 7→ hk(µ) = h(µk),

where µk is the projection of µ onto Xk.
We will make use of two basic facts regarding the entropy structure.

Firstly, its elements converge to the dynamical entropy of the measure:
lim
k→∞

hk(µ) = h(µ).

Secondly, the notion of asymptotic h-expansiveness can be expressed in
terms of the entropy structure, which we will in fact adopt here as the defi-
nition of asymptotic h-expansiveness:
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Definition 2.3. A system (X,T ) with entropy structure (hk) is called
asymptotically h-expansive if the sequence of functions hk converges to h
uniformly onMT (X).

See [B-D] for proof that this definition is equivalent to the other com-
monly used ways of defining asymptotic h-expansiveness.

The fact below, proved originally by M. Misiurewicz [M], follows imme-
diately from this definition (which is not to say that it is trivial in itself,
the difficulties are simply moved into proving the equivalence of the two
definitions of asymptotic h-expansiveness):

Theorem 2.4. If (X,T ) is an asymptotically h-expansive system, then
there exists a measure µ∗ on X such that h(µ∗) = h(T ).

Indeed, h is the uniform limit of the functions hk, which are all upper
semicontinuous. Therefore h is also upper semicontinuous, and since it is a
function on a compact set, it attains its maximum.

3. The result. Before we formulate and prove the main theorem, we
introduce the following lemma which will be used in the proof:

Lemma 3.1. Let Zn be the symbolic dynamical system over the alphabet
{0, 1} in which every occurrence of the symbol 1 is within a block of at least N
consecutive 1’s. Then the topological entropy of Zn tends to 0 as n tends to
infinity.

Proof. For n ∈ N define the sequence z(n) = (z
(n)
k )k∈Z as follows: z(n)k = 0

if 1 ≤ k ≤ n and 1 otherwise. In other words, z(n) is the sequence consisting
almost entirely of ones, with just one block of zeros, which has length n. Let
Z be the closure of the union of the orbits of z(n) over n ∈ N. It is easy
to see that the topological entropy of Z is 0 (the system Z has only two
ergodic measures, each concentrated on one of its two fixed points). Since
Z and the Zn’s are all subsystems of the full binary shift, their invariant
measures are all elements of the same metric space (the set of all invariant
measures on the full shift), and thus the notion of proximity of measures on
different systems is well-defined. Since the measure-theoretic entropy is an
upper semicontinuous function on the set of invariant measures on a symbolic
dynamical system, this means that for any ε > 0 there is some δ > 0 such
that any measure within the δ-neighborhood of MT (Z) has entropy less
than ε.

Now, observe that the system Z is in a sense the “limit” of the Zn’s—for
large enough n the whole of Zn is in an arbitrarily small neighborhood of Z
(because all blocks of Zn up to a certain length, which increases with n, are
also blocks of Z). There exists a length k and a number η such that if two
measures differ by no more than η on all blocks of length less than k (by



60 D. HUCZEK

measure of a block we mean the measure of the cylinder defined by that
block), then the distance between them is less than δ. There also exists a
length N such that for any block B of length N in Z there exists an invariant
measure µ on Z such that any block A of length less than k occurs in B with
frequency differing by no more than η/3 from µ(A). As stated before, for
large enough n every point in Zn is can be expressed as a concatenation of
blocks of length N that all occur in Z. It follows that if B now denotes a long
enough block from Zn, then there exists an invariant measure µ on Z such
that any block A of length up to k occurs in B with frequency differing by
no more than 2η/3 from µ(A). This, however, means that for any invariant
measure ν on Zn there exists a measure µ on Z such that for any block A of
length up to k, ν(A) differs from µ(A) by less than η. In other words, ν is
in the δ-neighborhood ofMT (Z), and thus its entropy is less than ε, which
concludes the proof.

Main Theorem 3.2. Let (X,T ) be a zero-dimensional dynamical sys-
tem. The following two statements are equivalent:

(1) There exists a measure µ∗ ∈MT (X) such that h(µ∗, T ) = h(T ).
(2) There exists an asymptotically h-expansive system (Y, S), a factor of

(X,T ), such that h(T ) = h(S).

Proof. (2)⇒(1). This implication is trivial: (Y, S), being an asymptoti-
cally h-expansive system, has a measure ν∗ such that h(ν∗) = h(S). If we
set µ∗ to be any preimage of ν∗ on X, we see that h(T ) = h(S) = h(ν∗) ≤
h(µ∗) ≤ h(T ), so µ∗ is a measure of maximal entropy on X.

(1)⇒(2). Let µ∗ be the maximal entropy measure on X. As before, we
represent X in the form of an inverse limit

(X,T ) = lim←−
k→∞

(Xk, Tk),

where each system Xk is a subshift over a finite alphabet. Denote the pro-
jection from Xk onto Xk−1 by πk. Let µ∗k be the projection of µ∗ onto Xk

and let h∗k = h(µ∗k).
For each k we will define a subshift Yk such that each Yk is both a factor

of Xk (denote the factor map by ψk) and an extension of Yk−1 (by a map
we will call ρk), and the diagram

X1

ψ1

��

X2

ψ2

��

π2oo X3

ψ3

��

π3oo · · ·oo

Y1 Y2
ρ2oo Y3

ρ3oo · · ·oo

commutes. Once Yk is defined, we denote by ν∗k the projection of µ∗ under
ψk from Xk.



MAXIMAL ENTROPY MEASURES 61

Let εk be a fixed summable sequence of positive numbers. The sys-
tems and maps mentioned above will be constructed inductively, by setting
Y1 = X1 (with the map ψ1 being the identity) and describing how to con-
struct Yk given Yk−1. Furthermore, we will construct our systems in such a
way that h(ν∗k) > h(µ∗k)− εk+1.

Xk is an extension of Yk−1 (via the map ψk−1 ◦ πk), so it is conjugate to
a subsystem of the product Yk−1 ×Xk (with the product action) consisting
of points of the form (ψk−1 ◦ πk(x), x). For our purposes this subsystem is
best viewed as a two-row subshift that has sequences from Yk−1 in the first
row and their preimages from Xk in the second row.

Let Ak denote the partition into cylinders (of length 1) determined by
symbols in the first row only, and Bk the partition into cylinders of length 1
determined by symbols in both rows. Observe that h(µ∗k,Bk) = h(µ∗k) = h∗k
and h(µ∗k,Ak) = h(ν∗k−1).

Let Λk be the alphabet of Xk (in its new representation as a two-row sub-
shift) with one additional symbol, which we will label 0, in the second row—
we can naturally view Xk as a subshift over this extended alphabet (a sub-
shift in which 0 never occurs in the second row). Let δk = εk+1/log#Λk.
Apply Corollary 2.2, with the constants εk and δk, twice: first to the system
(Xk,Ak, µ∗k), and then to (Xk,Bk, µ∗k). That way we obtain a number Nk

and two collections of cylinders of length Nk: a collection A′k ⊂ A
Nk
k and a

collection B′k ⊂ B
Nk
k , such that the total measure µ∗k of both A′k and B′k is

at least 1− δk/2, and:
1. For any B ∈ B′k,

2−Nk(h
∗
k+εk) < µ∗k(B) < 2−Nk(h

∗
k−εk).

2. For any A ∈ A′k,

2−Nk(h(ν
∗
k−1)+εk) < µ∗k(A) < 2−Nk(h(ν

∗
k−1)−εk).

Using the fact that h∗k−1 > h(ν∗k−1) > h∗k−1 − εk, we can rewrite the latter
estimate as follows:

2−Nk(h
∗
k−1+εk) < µ∗k(A) < 2−Nk(h

∗
k−1−2εk).

Note that the cylinders A ∈ ANk correspond to blocks of length Nk occurring
in the first row of sequences from Xk, and similarly cylinders B ∈ BNk

correspond to two-row blocks of length Nk.
We can also require that Nk be so large that the topological entropy

of the system ZNk
(defined in Lemma 3.1) is less than εk, and also that

(logNk)/Nk < εk.
Now, pick any A in A′k and let Ck(A) denote the collection of cylinders

B ∈ B′k that are subsets of A, i.e. two-row blocks from B′k that have A in
the first row. Any set from Ck(A) has measure at least 2−Nk(h

∗
k+εk). They
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are all disjoint subsets of A, which has measure at most 2−Nk(h
∗
k−1−2εk),

therefore Ck(A) has at most Lk = 2Nk(h
∗
k−h

∗
k−1+3εk) elements. Now, let Ck =⋃

A∈A′k
Ck(A). Observe that Ck contains at most Lk different cylinders that

share the first row. Also observe that the total measure of Ck is at least 1−δk.
Now, define the map ψk onXk as follows: In any element x ofXk, at every

position that is not covered by an occurrence of a block from Ck, replace the
symbol in the second row with the symbol 0, otherwise make no change. In
other words, if for n ∈ Z there exist i ≤ n ≤ j such that x[i,j] ∈ Ck, then
(ψk(x))n = xn, otherwise (ψk(x))n = 0.

Let Yk be the image of Xk under ψk. Note that the projection ρk of Yk
onto the first row is a factor map onto Yk−1, and since ψk acts as identity
on the first row, the diagram

Xk−1

ψk−1

��

Xk
πkoo

ψk

��
Yk−1 Yk

ρkoo

commutes. Since Yk andXk are symbolic systems over the same alphabet Λk,
the partitions Ak and Bk defined above can apply to either of them, and we
will not make a distinction in notation (it will be obvious from the context).

Let C′k be the partition of Xk obtained from BNk
k by replacing all sets

which do not belong to Ck with their union, denoted as Ck (recall that
µ∗k(Ck) < δk). Observe that if two points belong to the same cylinder from Ck,
then ψk changes nothing on their first Nk coordinates, so their images belong
to the same cylinder from BNk

k . On the other hand, the image of any point
from Ck is also in Ck. Hence

C′k ≺ ψ−1k (BNk
k ),

and the two partitions are identical (and identical to BNk
k ) on the set Xk\Ck.

As a result we have the following calculation:

h(µ∗k)− h(ν∗k) = h(µ∗k,Bk)− h(ν∗k ,Bk)
= h(µ∗k,Bk)− h(µ∗k, ψ−1k (Bk))

≤ h(µ∗k,Bk |ψ−1k (Bk)) ≤
1

Nk
H(µ∗k,B

Nk
k |ψ

−1
k (BNk

k ))

≤ 1

Nk
H(µ∗k,B

Nk
k | C

′
k).

Since the partitions BNk
k and C′k are identical outside of Ck, all terms in

the conditional entropy formula (2.1) are zero, except the one corresponding
to Ck. Since BNk

k is a partition consisting of at most (#Λk)Nk elements, by
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applying estimate (2.2) we have
1

Nk
H(µ∗k,B

Nk
k | C

′
k) =

1

Nk
µ∗k(Ck)H((µ∗k)Ck

,BNk
k )

≤ 1

Nk
µ∗k(Ck) log (#Λk)

Nk

= µ∗k(Ck) log#Λk = δk log#Λk < εk+1.

Ultimately, we see that

h(ν∗k) > h(µ∗k)− εk+1.

We now set
Y = lim←−

k→∞
Yk.

It is obviously a factor of X; we need to show that it is asymptotically
h-expansive and has topological entropy equal to that of X. Let ν∗ be the
projection of µ∗ onto Y ; observe that ν∗k is the projection of ν∗ onto Yk. Since
h(µ∗k) ≥ h(ν∗k) > h(µ∗k)− εk+1, by passing to the limit (h(µ∗k) and h(ν

∗
k) are

functions from the entropy structure of X and Y respectively, and thus they
converge to entropies of their preimages in X and Y , i.e. to h(µ∗) and h(ν∗))
we obtain h(ν∗) = h(µ∗) = h(T ), therefore h(S) = h(T ).

It remains to show that Y is asymptotically h-expansive, i.e. the func-
tion sequence hk converges uniformly. To this end we will show that the
functions hk − hk−1 are bounded on MS(Y ) by terms of a summable se-
ries. Let k > 0, ν ∈ MS(Y ), and let νk be the projection of ν onto Yk.
Recalling the two-row representation (and notation) described above, we
see that hk(ν) = h(νk,Bk), hk−1(ν) = h(νk,Ak), and hk(ν) − hk−1(ν) =
h(νk,Bk | Ak). In other words, when estimating hk − hk−1 we can restrict
ourselves to the system Yk with these two partitions.

Fix M > 0. Assuming we know the first row of a block C of length M ,
we must calculate how many ways there are of filling the second row. The
second row contains two classes of symbols, zeros and non-zeros, the latter
constituting second rows of blocks from the collection Ck. We will first assume
we know the positions of zeros and count the number of possible versions of
the second row of C given these positions. Consider an interval of length Nk

in C, which we shall label D.
Suppose the second row of D contains no zeros. This means that D (a

block of length Nk) is entirely covered by blocks from Ck (also of length Nk).
Let D1 be the rightmost such block that ends within D and let D2 be
the leftmost block that begins within D. Together, D1 and D2 cover all
of D, so if we know their second rows, we know the second row of D. We
know the first row of both D1 and D2, so we are left with at most Lk
possibilities of completing the second row of each, and therefore no more
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than L2
k possibilities of completing the second row of D as a whole. By

looking at the first row alone, we can determine neither where exactly D1

ends, nor where D2 begins, but there are only Nk possible positions for each
of them. Therefore we can simply multiply the L2

k by N2
k to end up with

the maximum number of possible versions of the second row of D, which
is L2

kN
2
k .

Suppose, on the other hand, that D contains zeros. In this case, since
non-zeros occur in groups of at least Nk, D must begin with a sequence
of non-zeros (possibly empty), then have any number of zeros, and then
end with another (again, possibly empty) sequence of non-zeros. The two
sequences of non-zeros form (parts of) second rows of blocks from Ck, and
we know their first rows, so we have at most Lk ways of filling each sequence,
and thus at most L2

k ways of filling the second row of D.
In either case, we see that if we know the first row of C and the positions

of zeros in the second row, then any subinterval of length Nk in C admits
at most L2

kN
2
k versions of the second row. By dividing C into such disjoint

intervals (of which there are fewer than M/Nk + 1), we have the following
upper estimate on the number of possibilities in the second row:

N ′k,M = (L2
kN

2
k )
M/Nk+1.

To estimate the total number of possible versions of the second row, we need
to multiply the above by the number of possible patterns of zeros, which we
will denote by N ′′k,M—observe that, since non-zero symbols occur in groups
of length at least Nk, the number of possible patterns of zeros equals the
number of blocks of lengthM in the system ZNk

(recall that ZNk
was defined

as the symbolic dynamical system in which the symbol 1 occurred in groups
of length at least Nk). Since the topological entropy of ZNk

is strictly smaller
than εk, for large enough M we can assume that N ′′k,M < 2Mεk .

Therefore we have the following upper estimate for the number of possible
versions of the second row, given the first:

Nk,M ≤ N ′k,MN ′′k,M .

Passing to logarithms we have

logNk,M ≤ logN ′k,M + logN ′′k,M ≤ 2

(
M

Nk
+ 1

)
(logLk + logNk) +Mεk.

Recall that
Lk = 2Nk(h

∗
k−h

∗
k−1+3εk),

so
logLk = Nk(h

∗
k − h∗k−1 + 3εk).



MAXIMAL ENTROPY MEASURES 65

It follows that
1

M
logNk,M ≤

(
2

Nk
+

1

M

)
(Nk(h

∗
k − h∗k−1 + 3εk) + logNk) + εk.

The observation that every version of the first row admits at most Nk,M
versions of the second row is equivalent to stating that any set from AMk
intersects at most Nk,M sets from BMk . Applying Lemma 2.1, we see that for
any measure νk on Yk we have

1

M
H(νk,BMk | AMk ) <

1

M
logNk,M

≤
(

2

Nk
+

1

M

)
(Nk(h

∗
k − h∗k−1 + 3εk) + logNk) + εk,

and thus in the limit

h(νk,Bk | Ak) = lim
M→∞

1

M
H(νk,BMk | AMk )

≤ 2(h∗k − h∗k−1 + 3εk) +
2 logNk

Nk
+ εk

< 2(h∗k − h∗k−1) + 9εk.

Therefore

hk(ν)− hk−1(ν) = h(νk,Bk)− h(νk,Ak) = h(νk,Bk | Ak)
< 2(h∗k − h∗k−1) + 9εk.

Since the series h∗k − h∗k−1 and εk are both summable, we conclude that the
sequence hk(·) converges uniformly on MS(Y ) and thus the system Y is
asymptotically h-expansive.

On a final note, Theorem 3.2 also provides a method (albeit slightly un-
wieldy) of investigating whether a general dynamical system has a maximal
entropy measure. By the result of [D-H], any dynamical system Y has a
zero-dimensional extension X which is principal, i.e. the conditional entropy
of any measure on Y with respect to X is 0. Since X is zero-dimensional,
Theorem 3.2 applies, and if we can use it to establish that X has a maximal
entropy measure µ∗, then the image of µ∗ on X will be a maximal entropy
measure as well. This leaves us with

Theorem 3.3. A dynamical system X has a maximal entropy measure
if and only if its principal extension Y has an asymptotically h-expansive
factor of equal topological entropy.

Note that Theorem 3.2 itself does not apply to non-zero-dimensional
systems. Intuitively, this is because they generally do not have as many
factors. It is the zero-dimensionality (assumed in Theorem 3.2 and achieved
by the principal extension in the general case) that causes the factor structure
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to be rich enough to ensure the existence of an asymptotically h-expansive
factor of equal entropy.
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