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NECESSARY CONDITION FOR KOSTYUCHENKO TYPE SYSTEMS
TO BE A BASIS IN LEBESGUE SPACES

BY

AYDIN SH. SHUKUROV (Baku)

Abstract. A necessary condition for Kostyuchenko type systems and system of pow-
ers to be a basis in Lp (1 ≤ p < +∞) spaces is obtained. In particular, we find a necessary
condition for a Kostyuchenko system to be a basis in Lp (1 ≤ p < +∞).

1. Introduction. The system S+
α ≡ {eiαnt sinnt}n∈N (where α ∈ C is,

in general, a complex number), usually called a Kostyuchenko system, arises
in connection with the spectral problem

−y′′(t) + 2αλy′(t) + (α2 + 1)λ2y(t) = 0, t ∈ (0, π),

y(0) = y(π) = 0.

Beginning from the paper [Dz] many papers have been dedicated to the
investigation of basis properties of the system S+

α in Lp(0, π), 1 ≤ p < +∞
([Le], [LyT], [Ly1], [Ly2], [Shk1], [Shk2], [B1], [K]). The following results
have been obtained in this direction: for α ∈ C \ {(−∞,−1) ∪ (1,+∞)} a
criterion for the completeness and minimality of the system S+

α in L2(0, π)
has been obtained ([Ly1], [Ly2]); in particular, the system is complete and
minimal in L2(0, π) for all α ∈ iR. For α ∈ (−1, 1) a criterion for this system
to be a Riesz basis in L2(0, π) has been found (see [B1]). It is shown in [K]
that when Imα 6= 0 the system S+

α is not uniformly minimal in L2(0, π) and
therefore is not a basis in L2(0, π).

2. Necessary condition for Kostyuchenko type systems to be a
basis in Lp spaces. In this note we consider the most general system

(2.1) {ϕn(t) sinnt}n∈N
where ϕ : [a, b] → C is a measurable, a.e. finite function and a, b are some
reals. A necessary condition for this system to be a basis in Lp = Lp(a, b),
1 ≤ p < +∞, will be obtained. In particular, it follows from this result that
S+
α is not a basis in Lp, 1 ≤ p < +∞, when Imα 6= 0.
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Theorem 2.1. If the system (2.1) is a basis in Lp (1 ≤ p < +∞), then
|ϕ(t)| = const a.e. on [a, b].

To prove this theorem we need the following lemma.

Lemma 2.2. Let E ⊂ [a, b] be a Lebesgue measurable subset of [a, b].
If there exists a sequence {nk} of natural numbers and a number p (1 ≤ p
< +∞) such that

�

E

|sinnkt|p dt→ 0 as k →∞,(2.2)

then mesE = 0.

Proof. Assume the contrary: there exists p0 with 1 ≤ p0 < +∞, a se-
quence {nk} of natural numbers and a set E ⊂ [a, b] of positive measure for
which (2.2) holds. Then there exists a subsequence {sinmkt} of {sinnkt}
which converges to zero a.e. on E, i.e. there is a set E′ ⊂ E such that
sinmkt→ 0 on E′ as k →∞ and mesE′ = mesE > 0. This contradicts the
Cantor–Lebesgue theorem.

The next proposition is proved in the same way.

Lemma 2.3. Let E ⊂ [a, b] be a Lebesgue measurable subset of [a, b]. If
there exists a sequence {nk} of natural numbers and a number p (1≤p<+∞)
such that �

E

|cosnkt|pdt→ 0 as k →∞,

then mesE = 0.

Proof of Theorem 2.1. Since ϕ is a measurable function on [a, b], by
Denjoy’s theorem [N, p. 247], it is approximately continuous a.e. on [a, b].
Denote by A′ the set of points of approximate continuity and put A =
A′ \ {a, b}.

Every function f ∈ Lp has an expansion (in Lp norm)

f(t) =

∞∑
n=1

anϕ
n(t) sinnt.(2.3)

Consider the power series
∑∞

n=1 anz
n. Let R0 be its radius of convergence.

We assert that R0 ≥ R, where R = supA |ϕ(t)|. Suppose R0 < R. Then
there exists t0 ∈ A such that |ϕ(t0)| > R0. Since ϕ is approximately con-
tinuous at t0, there is a set E0 ⊂ [a, b] and a number δ0 > 0 such that
mesE(t0, δ0)>0 and

|ϕ(t)| > R′ > R0 for t ∈ E(t0, δ0),(2.4)

where E(t0, δ0) = E0 ∩ [t0 − δ0, t0 + δ0] and R′ is some fixed number.
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There exists a sequence {nk} of natural numbers for which

R0 = lim
k→∞

1

|ank |1/nk
.

Taking into account (2.4), we have

|ϕ(t)| > 1

|ank |1/nk
,

i.e.

|ankϕ
nk(t)| > 1, t ∈ E(t0, δ0),(2.5)

for sufficiently large k.
It is obvious that ‖anϕn(t) sinnt‖Lp(a,b) → 0 as n → ∞. Then we also

have ‖anϕn(t) sinnt‖Lp(E(t0,δ0)) → 0, as n → ∞. Therefore, according to
(2.5), ‖sinnkt‖Lp(E(t0,δ0)) → 0 as k → ∞. This contradicts Lemma 2.2. So
R0 ≥ R.

We write the system (2.1) in the form

ϕn(t) sinnt =
1

2i
(ϕ(t)eit)n − 1

2i
(ϕ(t)e−it)n.

Thus

f(t) =
1

2i

∞∑
n=1

an((ϕ(t)eit)n − (ϕ(t)e−it)n).

To prove the theorem it suffices to show that

R = sup
A
|ϕ(t)| = inf

A
|ϕ(t)|.

Assume the contrary: R = supA |ϕ(t)| > infA |ϕ(t)|. Then there exist t1 ∈ A
and R′′ > 0 such that |ϕ(t1)| < R′′ < R0 (since R ≤ R0). Since ϕ is
approximately continuous at t1, there exists a set E1 ⊂ [a, b] and δ1 > 0
such that mesE(t1, δ1) > 0 and |ϕ(t)| < R′′ < R0 for t ∈ E(t1, δ1) =
E1 ∩ [t1 − δ1, t1 + δ1]. Thus

|ϕ(t)e±it| < R′′ < R0 for t ∈ E(t1, δ1).

Therefore the series
∑∞

n=1 an(ϕ(t)eit)n and
∑∞

n=1 an(ϕ(t)e−it)n are uni-
formly convergent on E(t1, δ1) and so the function

F (t) =
1

2i

∞∑
n=1

an((ϕ(t)eit)n − (ϕ(t)e−it)n)

=
1

2i

∞∑
n=1

an(ϕ(t)eit)n − 1

2i

∞∑
n=1

an(ϕ(t)e−it)n

is continuous at t1 along the set E(t1, δ1). Since uniform convergence implies
convergence in Lp, f(t) = F (t) a.e. on E(t1, δ1). So we find that the restric-
tion of every function f ∈ Lp is equivalent to a function that is continuous
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at t1 along E(t1, δ1) (note that the choice of E(t1, δ1) does not depend on
f ∈ Lp). This is a contradiction, since the restriction of the function

f0(t) =

{
0 for t ∈ [a, t1],

1 for t ∈ [t1, b]

is not equivalent to a function that is continuous at t1 along E(t1, δ1).

Using Lemma 2.3 instead of Lemma 2.2, it is easy to see that a similar
proposition is true for the system

(2.6) {ϕn(t) cosnt}n∈N∪{0}.
Theorem 2.4. If the system (2.6) is a basis in Lp (1 ≤ p < +∞), then

|ϕ(t)| = const a.e. on [a, b].

3. Necessary condition for Kostyuchenko systems to be a basis.
In particular, for the systems S+

α and C+
α ≡ {eiαnt cosnt}n∈N∪{0} we obtain

the following

Corollary 3.1. If Imα 6= 0, then the systems S+
α and C+

α are not
bases in Lp, 1 ≤ p < +∞.

Proof. Indeed, if Imα 6= 0, then it is obvious that |eiαt| 6≡ const and the
corollary follows directly from Theorems 2.1 and 2.4.

4. Necessary condition for a system of powers to be a basis. The
proof of Theorem 2.1 with minor changes allows us to prove the following

Theorem 4.1. If the system {ϕn(t)}n∈N (or {ϕn(t)}n∈N∪{0}) is a basis
in Lp (1 ≤ p < +∞), then |ϕ(t)| = const a.e. on [a, b].

A similar result for double systems of powers was obtained in [B2]. But
the result there is proved under strong restrictions on ϕ and is not applicable
to Lp spaces when p 6= 2; a similar result for double systems of powers is
also obtained in [Sh] under the condition that ϕ is continuous.

Note that Theorem 4.1 generalizes a result from [AG, p. 52].
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