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ON SELF-INJECTIVE ALGEBRAS OF
FINITE REPRESENTATION TYPE
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Abstract. We describe the structure of finite-dimensional self-injective algebras of
finite representation type over a field whose stable Auslander–Reiten quiver has a sectional
module not lying on a short chain.

Introduction. Throughout the paper, by an algebra we mean a basic
indecomposable finite-dimensional associative K-algebra with an identity
over a (fixed) field K. For an algebra A, we denote by modA the cate-
gory of finite-dimensional right A-modules, and by D the standard duality
HomK(−,K) on modA. We denote by ΓA the Auslander–Reiten quiver of A,
and by τA and τ−1A the Auslander–Reiten translations DTr and TrD, respec-
tively. We will not distinguish between an indecomposable module in modA
and the vertex of ΓA corresponding to it. An algebra A is called self-injective
if A ∼= D(A) in modA, that is, the projective modules in modA are injec-
tive. In the representation theory of self-injective algebras an important role
is played by the self-injective algebras A which admit Galois coverings of the
form B̂ → B̂/G = A, where B̂ is the repetitive category of an algebra B and
G is an admissible group of automorphisms of B̂ (see [22], [29]).

We are concerned with the problem of describing the Morita equiva-
lence classes of self-injective algebras of finite representation type, that is,
the self-injective algebras A for which modA admits only finitely many in-
decomposable modules up to isomorphism. For K algebraically closed, the
problem was solved in the early 1980’s by Riedtmann (see [4], [16], [17],
[18]) via the combinatorial classification of the Auslander–Reiten quivers
of self-injective algebras of finite representation type over K. Equivalently,
Riedtmann’s classification can be presented as follows (see [22, Section 3]):
a non-simple self-injective algebra A over an algebraically closed field K is
of finite representation type if and only if A is a socle deformation of an
orbit algebra B̂/G, where B is a tilted algebra of Dynkin type An (n ≥ 1),
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Dn (n ≥ 4), E6, E7, E8, and G is an admissible infinite cyclic group of
automorphisms of B̂. It was conjectured in [29, Problem 2.4] that a non-
simple self-injective algebra A over an arbitrary field K is of finite represen-
tation type if and only if A is a socle deformation of an orbit algebra B̂/G,
where B is a tilted algebra of Dynkin type An (n ≥ 1), Bn (n ≥ 2), Cn
(n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4 or G2. This is currently an exciting
open problem. An important known result towards solution of this problem
is the Riedtmann–Todorov description of the stable Auslander–Reiten quiv-
ers of self-injective algebras of finite representation type over an arbitrary
field (see [16], [31], [30, Section IV.15]). We also refer to [28] for related re-
sults on stable equivalences of self-injective algebras of finite representation
type.

The main aim of the paper is to show that a non-simple self-injective al-
gebra A of a finite representation type whose stable Auslander–Reiten quiver
admits a section with good behaviour in the module category modA is iso-
morphic to an orbit algebra B̂/G, where B is a tilted algebra of Dynkin type
and G is an infinite cyclic group of automorphisms of B̂.

For basic background on the representation theory applied in this paper
we refer to [1] and [30].

1. The main result and related background. Let B be an algebra
and 1B = e1 + · · · + en a decomposition of the identity of B into a sum of
pairwise orthogonal primitive idempotents. We associate to B a self-injective
locally bounded K-category B̂, called the repetitive category of B (see [11],
[20]). The objects of B̂ are em,i, m ∈ Z, i ∈ {1, . . . , n}, and the morphism
spaces are defined as follows:

B̂(em,i, er,j) =


ejBei, r = m,
D(eiBej), r = m+ 1,
0, otherwise.

Observe that ejBei = HomB(eiB, ejB), D(eiBej) = ejD(B)ei and⊕
(r,i)∈Z×{1,...,n}

B̂(em,i, er,j) = ejB ⊕D(Bej)

for any r ∈ Z and j ∈ {1, . . . , n}. We denote by ν
B̂
the Nakayama automor-

phism of B̂ defined by

ν
B̂
(em,i) = em+1,i for all (m, i) ∈ Z× {1, . . . , n}.

An automorphism ϕ of the K-category B̂ is said to be:

• positive if for each pair (m, i) ∈ Z× {1, . . . , n} we have ϕ(em,i) = ep,j
for some p ≥ m and some j ∈ {1, . . . , n};
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• rigid if for each pair (m, i) ∈ Z× {1, . . . , n} there exists j ∈ {1, . . . , n}
such that ϕ(em,i) = em,j ;
• strictly positive if it is positive but not rigid.

Then the automorphisms νr
B̂
, r ≥ 1, are strictly positive automorphisms

of B̂.
A group G of automorphisms of B̂ is said to be admissible if G acts

freely on the set of objects of B̂ and has finitely many orbits. Then we may
consider the orbit category B̂/G of B̂ with respect to G whose objects are
the G-orbits of objects in B̂, and the morphism spaces are given by

(B̂/G)(a, b) =
{
fy,x ∈

∏
(x,y)∈a×b

B̂(x, y)
∣∣∣ gfy,x = fgy,gx, ∀g∈G, (x,y)∈a×b

}
for all objects a, b of B̂/G. Since B̂/G has finitely many objects and the mor-
phism spaces in B̂/G are finite-dimensional, we have the associated finite-
dimensional, self-injective K-algebra

⊕
(B̂/G) which is the direct sum of all

morphism spaces in B̂/G, called the orbit algebra of B̂ with respect to G.
We will identify B̂/G with

⊕
(B̂/G). For example, for each positive inte-

ger r, the infinite cyclic group (νr
B̂
) generated by the rth power νr

B̂
of ν

B̂

is an admissible group of automorphisms of B̂, and we have the associated
self-injective orbit algebra

T (B)(r) = B̂/(νr
B̂
) =





b1 0 0 . . . 0 0 0

f2 b2 0 . . . 0 0 0

0 f3 b3 . . . 0 0 0
...

...
. . . . . .

...
...

...
...

...
...

. . . . . .
...

...
0 0 0 . . . fr−1 br−1 0

0 0 0 . . . 0 f1 b1


b1, . . . , br−1 ∈ B, f1, . . . , fr−1 ∈ D(B)



,

called the r-fold trivial extension algebra of B. In particular, T (B)(1) ∼=
T (B) = B n D(B) is the trivial extension of B by the injective cogener-
ator D(B).

LetH be a hereditary algebra and QH its valued quiver. Following [3], [9],
a module T in modH is called a tilting module if Ext1H(T, T ) = 0 and T is a
direct sum of n pairwise non-isomorphic, indecomposable modules, where n
is the rank of the Grothendieck group K0(H) of H (equivalently, the number
of vertices of QH). Then the endomorphism algebra B = EndH(T ) is called
a tilted algebra of H. Further, the images HomH(T, I) of indecomposable in-
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jective modules I in modH via the functor HomH(T,−) : modH → modB
form a section ∆T of a connected component CT of ΓB, called the con-
necting component of ΓB determined by T , which connects the torsion-
free part Y(T ) = {Y ∈ modB | TorB1 (Y, T ) = 0} and the torsion part
X (T ) = {X ∈ modB | X ⊗B T = 0} (see [9]). Moreover, by a crite-
rion of Liu–Skowroński (see [14], [21]), an algebra B is a tilted algebra of
a hereditary algebra H if and only if the Auslander–Reiten quiver ΓB of
B admits a connected component C having a faithful section ∆ such that
HomB(U, τBV ) = 0 for all modules U, V from ∆.

Assume now that H is a hereditary algebra of finite representation type,
or equivalently, QH is a Dynkin quiver (see [5], [6], [7]). Then for any tilting
module T in modH, the associated tilted algebra B = EndH(T ), called a
tilted algebra of Dynkin type, is of finite representation type, and ΓB = CT .
Further, it follows from [10], [11] that the repetitive category B̂ of a tilted
algebra B of Dynkin type is locally representation-finite in the sense of [8].
In particular, by a theorem of Gabriel [8, Theorem 3.6] the orbit algebra
A = B̂/G of B̂, with respect to an admissible infinite cyclic group G of
automorphisms of B̂, is a self-injective algebra of finite representation type,
and the stable Auslander–Reiten quiver Γ sA of A is the orbit quiver Z∆/G,
where ∆ = QH .

Let A be a non-simple self-injective algebra of finite representation type.
Then by the Riedtmann–Todorov theorem (see [16], [31]) the stable Aus-
lander–Reiten quiver Γ sA of A is isomorphic to the orbit quiver Z∆/G, where
∆ is a Dynkin quiver and G is an infinite cyclic group of automorphisms of
the translation quiver Z∆. Therefore, we may associate to any self-injective
algebra A of finite representation type a Dynkin graph ∆(A), called the
Dynkin type of A, such that Γ sA = Z∆/G for a quiver ∆ having ∆(A) as
underlying graph. We also note that Z∆ = Z∆′ for any quivers ∆ and
∆′ having ∆(A) as underlying graph. A module M in modA is said to be
sectional if M is a direct sum of pairwise non-isomorphic indecomposable
non-projective modules forming a connected full-valued subquiver ∆ of Γ sA
with ∆(A) as underlying graph. Finally, a sectional module M in modA is
said to be pure if no direct summand of M is the radical of a projective
module in modA.

Let A be an algebra. Following [2], [15], a sequence N → M → τAN of
non-zero homomorphisms in modA with N indecomposable is called a short
chain, andM is the middle of this chain. We mention that, ifM is a module
inmodA which is not the middle of a short chain, then every indecomposable
direct summand Z of M is uniquely determined (up to isomorphism) by the
simple composition factors (see [15, Corollary 2.2]). It has been recently
proved in [12, Theorem] that an algebra B is a tilted algebra if and only if
modB contains a sincere moduleM which is not the middle of a short chain.



SELF-INJECTIVE ALGEBRAS 115

Recall that M is called sincere if every simple module in modB occurs as
a composition factor of M . We also refer to [13] for a description of finite-
dimensional modules over algebras which are not the middle of a short chain
of modules, using injective and tilting modules over hereditary algebras.

The aim of this paper is to prove the following theorem.

Theorem 1.1. Let A be a non-simple finite-dimensional basic indecom-
posable self-injective algebra of finite representation type over a field K. The
following statements are equivalent:

(i) modA admits a pure sectional module M which is not the middle of
a short chain.

(ii) A is isomorphic to a self-injective orbit algebra B̂/(ρν2
B̂
), where B

is a tilted algebra of the form B = EndH(T ) with H a hereditary
algebra of Dynkin type and T is a tilting module in modH with-
out indecomposable projective direct summands, and ρ is a positive
automorphism of B̂.

We note that the module category modH of a hereditary algebra H of
Dynkin type admits a tilting module T without indecomposable projective
direct summands if and only ifH is not a Nakayama algebra, or equivalentely,
the quiver QH of H is not an equioriented quiver

• → • → • → · · · → • → • → •
of type An (n ≥ 1).

2. Self-injective algebras of Dynkin type. Let B be a triangular
algebra (the quiver QB has no oriented cycles) and e1, . . . , en be pairwise
orthogonal primitive idempotents of B with 1B = e1 + · · ·+ en. We identify
B with the full subcategory B0 of the repetitive category B̂ given by the
objects e0,i, 1 ≤ i ≤ n. For a sink i of QB, the reflection S+

i B of B at i is
the full subcategory of B̂ given by the objects

e0,j , 1 ≤ j ≤ n, j 6= i, and e1,i = ν
B̂
(e0,i).

Then the quiver QS+
i B

of S+
i B is the reflection σ+i QB of QB at i (see [11]).

Observe that B̂ = Ŝ+
i B. By a reflection sequence of sinks of QB we mean a

sequence i1, . . . , it of vertices of QB such that is is a sink of σ+is−1
. . . σ+i1QB

for all s in {1, . . . , t}. Moreover, for a sink i of QB, we denote by T+
i B the

full subcategory of B̂ given by the objects

e0,j , 1 ≤ j ≤ n, and e1,i = ν
B̂
(e0,i).

Observe that T+
i B is the one-point extension B[IB(i)] of B by the indecom-

posable injective B-module IB(i) at the vertex i. By a finite-dimensional



116 M. BŁASZKIEWICZ AND A. SKOWROŃSKI

B̂-module we mean a contravariant K-linear functor M from B̂ to the cate-
gory ofK-vector spaces such that

∑
x∈ob B̂ dimKM(x) is finite. We denote by

mod B̂ the category of all finite-dimensional B̂-modules. Finally, for a mod-
ule M in modB̂, we denote by supp(M) the full subcategory of B̂ formed
by all objects x with M(x) 6= 0, and call it the support of M.

The following consequence of results proved in [10], [11] describes the
supports of finite-dimensional indecomposable modules over the repetitive
categories B̂ of tilted algebras B of Dynkin type.

Theorem 2.1. Let B be a tilted algebra of Dynkin type and n the rank
of K0(B). Then there exists a reflection sequence i1, . . . , in of sinks of QB
such that the following statements hold:

(i) S+
in
. . . S+

i1
= ν

B̂
(B).

(ii) For every indecomposable non-projective module M in mod B̂,
supp(M) is contained in one of the full subcategories of B̂ given
by

νm
B̂
(S+
ir
. . . S+

i1
B), r ∈ {1, . . . , n}, m ∈ Z.

(iii) For every indecomposable projective module P in mod B̂, supp(P )
is contained in one of the full subcategories of B̂ given by

νm
B̂
(T+
ir
S+
ir−1

. . . S+
i1
B), r ∈ {1, . . . , n}, m ∈ Z.

The aim of this section is to prove the following theorem playing a promi-
nent role in the proof of Theorem 1.1.

Theorem 2.2. Let B be a tilted algebra EndH(T ) of Dynkin type, ∆T

the canonical section of ΓB given by the images HomH(T, I) of indecompos-
able injective H-modules I via the functor HomH(T,−) : modH → modB,
and MT the direct sum of indecomposable B-modules lying on ∆T . More-
over, let ϕ be a strictly positive automorphism of B̂, A = B̂/(ϕ), and
Fϕλ : mod B̂ → modA the associated push-down functor. The following state-
ments are equivalent:

(i) Fϕλ (MT ) is not the middle of a short chain in modA.
(ii) ϕ = ρν2

B̂
for a positive automorphism ρ of B̂.

Proof. It follows from Theorem 2.1 that B̂ is a locally representation-
finite locally bounded category [8], that is, for any indecomposable module
N in mod B̂ the number of objects x in B̂ with N(x) 6= 0 is finite. Then,
applying [8, Theorem 3.6], the push-down functor Fϕλ : mod B̂ → modA
is a Galois covering of module categories preserving almost split sequences.
In particular, for any indecomposable modules X and Y in mod B̂, Fϕλ (X)
and Fϕλ (Y ) are indecomposable modules in modA, and Fϕλ induces K-linear
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isomorphisms⊕
r∈Z

Hom
B̂
(X,ϕrY )

∼−→ HomA(F
ϕ
λ (X), Fϕλ (Y )),⊕

r∈Z
Hom

B̂
(ϕrX,Y )

∼−→ HomA(F
ϕ
λ (X), Fϕλ (Y )).

Here, ϕrX and ϕrY denote the shifts of X and Y by the automorphism of
mod B̂ induced by ϕr.

Assume that Fϕλ (MT ) is the middle of a short chain in modA. Then there
is an indecomposable non-projective moduleN inmodA, indecomposable di-
rect summands U and V of Fϕλ (MT ), and non-zero homomorphisms N → U
and V → τAN . Therefore, there exist indecomposable direct summands X
and Y of MT , an indecomposable non-projective module Z in mod B̂, and
non-zero homomorphisms Y → τ

B̂
Z and Z → ϕrX in mod B̂ with r ≥ 1

such that Fϕλ (X) = Fϕλ (ϕ
rX) = U , Fϕλ (Y ) = V , and Fϕλ (Z) = N . Observe

that for modules L, L′ in mod B̂, Hom
B̂
(L,L′) 6= 0 implies that supp(L)

and supp(L′) have a common object. Since supp(MT ) = B = B0 and Y
is a direct summand of MT , we conclude that supp(Y ) is contained in B.
Similarly, ϕrX is a direct summand of ϕrMT and supp(ϕrMT ) = ϕrB, and
so supp(ϕrX) is contained in ϕrB. Applying now Theorem 2.1, we infer that
supp(τ

B̂
Z) is contained in B or one of the full subcategories S+

ip
. . . S+

i1
B for

some p ∈ {1, . . . , n− 1} and the corresponding reflection sequence i1, . . . , in
of sinks of QB. Note that B = ν−1

B̂
(ν
B̂
(B)) = ν−1

B̂
(S+
in
. . . S+

i1
B). Then it

follows that supp(Z) is contained in S+
ip
. . . S+

i1
B or in S+

in
. . . S+

i1
B = ν

B̂
(B)

(if p = n−1). Hence Hom
B̂
(Z,ϕrX) 6= 0 forces that supp(ϕrX) is contained

in a full subcategory of B̂ of one of the forms S+
ir
. . . S+

i1
B for r ∈ {1, . . . , n},

or ν
B̂
(S+
iq
. . . S+

i1
B) for q ∈ {1, . . . , n− 1}. This shows that supp(ϕrX) =

ϕr(supp(X)) is contained in the full subcategory T+
in
. . . T+

i1
B of B̂ given by

the objects of B and ν
B̂
(B). Summing up, we have proved that if ϕ = ρν2

B̂

for a positive automorphism ρ of B̂, then Fϕλ (MT ) is not the middle of a
short chain in modA. Therefore, (ii) implies (i).

Assume now that ϕ is not of the form ρν2
B̂

for a positive automorphism
ρ of B̂. Then ϕB is a full subcategory of T+

in
. . . T+

i1
B of B̂ given by the

objects of B and ν
B̂
(B). Take an indecomposable direct summand X

of MT . Then ϕX is an indecomposable direct summand ϕMT , and so
supp(ϕX) is a full subcategory of supp(ϕMT ) = ϕ(suppMT ) = ϕB. Thus
supp(ϕX) is a full subcategory of T+

in
. . . T+

i1
B. We have two cases to

consider.
Assume first that supp(ϕX) contains an object j which is not in B.

Then j = ν
B̂
(i) for some object i of B. Take the indecomposable projective-
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injective B̂-module P
B̂
(j) at j. Clearly, we have Hom

B̂
(P

B̂
(j), ϕX) 6= 0. In

fact, since X is not a projective-injective B̂-module, ϕX is not a projective-
injective B̂-module, and hence Hom

B̂
(P

B̂
(j)/socP

B̂
(j), ϕX) 6= 0. Clearly

then Hom
B̂
(P

B̂
(j)/socP

B̂
(j), ϕMT ) 6=0. Observe also that we have inmodB

a canonical almost split sequence

0→ radP
B̂
(j)→ (radP

B̂
(j)/socP

B̂
(j))⊕ P

B̂
(j)→ P

B̂
(j)/socP

B̂
(j)→ 0,

and then radP
B̂
(j) = τ

B̂
(P

B̂
(j)/socP

B̂
(j)). Since j = ν

B̂
(i) for some vertex

i of QB, we conclude that socP
B̂
(j) is the simple B̂-module S

B̂
(i) at i,

and consequently Hom
B̂
(MT , radPB̂(j)) 6= 0. This shows that Fϕλ (MT ) =

Fϕλ (ϕMT ) is the middle of a short chain

Fϕλ (PB̂(j)/socPB̂(j))→ Fϕλ (MT )→ τAF
ϕ
λ (PB̂(j)/socPB̂(j))

since τAF
ϕ
λ (L)

∼= Fϕλ (τB̂L) for any indecomposable non-projective module L
in mod B̂.

Assume now that supp(ϕX) is contained in B. Since ϕ is a strictly posi-
tive automorphism of B̂, the support supp(τ

B̂
ϕX) of τ

B̂
ϕX is also contained

in B. Clearly, ϕX is an indecomposable B̂-module which is a successor of
an indecomposable direct summand of MT , because X is an indecompos-
able direct summand of MT . Moreover, every indecomposable module in
modB is cogenerated or generated by MT . Hence Hom

B̂
(MT , τB̂ϕX) =

HomB(MT , τB̂ϕX) 6= 0. This shows that Fϕλ (MT ) is the middle of a short
chain in modA of the form

Fϕλ (X)→ Fϕλ (MT )→ τAF
ϕ
λ (X)

because Fϕλ (X) is an indecomposable direct summand of Fϕλ (MT ) and
Fϕλ (τB̂ϕX) ∼= τAF

ϕ
λ (ϕX) ∼= τAF

ϕ
λ (X). Therefore, (i) implies (ii).

3. Self-injective algebras with deforming ideals. In this section we
present criteria for self-injective algebras to be orbit algebras of the repetitive
categories of algebras with respect to infinite cyclic automorphism groups,
playing a fundamental role in the proof of the main theorem.

Let A be a self-injective algebra. For a subset X of A, we may consider
the left annihilator lA(X) = {a ∈ A | ax = 0} of X in A and the right
annihilator rA(X) = {a ∈ A | xa = 0} of X in A. Then by a theorem due to
Nakayama (see [30, Theorem IV.6.10]) the annihilator operation lA induces
a Galois correspondence from the lattice of right ideals of A to the lattice
of left ideals of A, and rA is the inverse Galois correspondence to lA. Let I
be an ideal of A, B = A/I, and e an idempotent of A such that e+ I is the
identity of B. We may assume that 1A = e1+ · · ·+er with e1, . . . , er pairwise
orthogonal primitive idempotents of A, e = e1 + · · · + en for some n ≤ r,
and {ei | 1 ≤ i ≤ n} is the set of all idempotents in {ei | 1 ≤ i ≤ r} which
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are not in I. Then such an idempotent e is uniquely determined by I up to
an inner automorphism of A, and is called a residual identity of B = A/I.
Observe also that B ∼= eAe/eIe.

We have the following lemma from [27, Lemma 5.1].

Lemma 3.1. Let A be a self-injective algebra, I an ideal of A, and e an
idempotent of A such that lA(I) = Ie or rA(I) = eI. Then e is a residual
identity of A/I.

We also recall the following proposition proved in [23, Proposition 2.3].

Proposition 3.2. Let A be a self-injective algebra, I an ideal of A,
B = A/I, e a residual identity of B, and assume that IeI = 0. The following
conditions are equivalent:

(i) Ie is an injective cogenerator in modB.
(ii) eI is an injective cogenerator in modBop.
(iii) lA(I) = Ie.
(iv) rA(I) = eI.

Moreover, under these equivalent conditions, we have socA ⊆ I and leAe(I)
= eIe = reAe(I).

The following theorem proved in [25, Theorem 3.8] (sufficiency part) and
[27, Theorem 5.3] (necessity part) will be fundamental for our considerations.

Theorem 3.3. Let A be a self-injective algebra. The following conditions
are equivalent:

(i) A is isomorphic to an orbit algebra B̂/(ϕν
B̂
), where B is an algebra

and ϕ is a positive automorphism of B̂.
(ii) There is an ideal I of A and an idempotent e of A such that

(1) rA(I) = eI;
(2) the canonical algebra epimorphism eAe → eAe/eIe is a retrac-

tion.
Moreover, in this case, B is isomorphic to A/I.

Let A be an algebra, I an ideal of A, and e a residual identity of A/I.
Following [23], I is said to be a deforming ideal ofA if the following conditions
are satisfied:

(D1) leAe(I) = eIe = reAe(I);
(D2) the valued quiver QA/I of A/I is acyclic.

Assume I is a deforming ideal of A. Then we have a canonical isomorphism
of algebras eAe/eIe → A/I and I can be considered as an (eAe/eIe)-
(eAe/eIe)-bimodule. Denote by A[I] the direct sum of K-vector spaces
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(eAe/eIe)⊕ I with the multiplication

(b, x) · (c, y) = (bc, by + xc+ xy)

for b, c ∈ eAe/eIe and x, y ∈ I. Then A[I] is a K-algebra with the identity
(e + eIe, 1A − e), and, by identifying x ∈ I with (0, x) ∈ A[I], we may
consider I as an ideal of A[I]. Observe that e = (e + eIe, 0) is a residual
identity of A[I]/I = eAe/eIe

∼→ A/I, eA[I]e = (eAe/eIe) ⊕ eIe and the
canonical algebra epimorphism eA[I]e→ eA[I]e/eIe is a retraction.

The following properties of the algebra A[I] were established in [23, The-
orem 4.1] and [24, Theorem 3].

Theorem 3.4. Let A be a self-injective algebra and I a deforming ideal
of A. The following statements hold.

(i) A[I] is a self-injective algebra with the same Nakayama permutation
as A and I is a deforming ideal of A[I].

(ii) A and A[I] are socle equivalent.
(iii) A and A[I] are stably equivalent.

We note that if A is a self-injective algebra, I an ideal of A, B = A/I, e
an idempotent of A such that rA(I) = eI, and the valued quiver QB of B is
acyclic, then by Lemma 3.1 and Proposition 3.2, I is a deforming ideal of A
and e is a residual identity of B.

The following theorem proved in [25, Theorem 4.1] shows the importance
of the algebras A[I].

Theorem 3.5. Let A be a self-injective algebra, I an ideal of A, B = A/I
and e an idempotent of A. Assume that rA(I) = eI and QB is acyclic. Then
A[I] is isomorphic to the orbit algebra B̂/(ϕν

B̂
) for some positive automor-

phism ϕ of B̂.

We point out that there are self-injective algebras A with deforming
ideals I such that the algebras A and A[I] are not isomorphic (see [25,
Example 4.2]).

The following result proved in [26, Proposition 3.2] describes a situation
when the algebras A and A[I] are isomorphic.

Theorem 3.6. Let A be a self-injective algebra with a deforming ideal
I, B = A/I, e be a residual identity of B and ν the Nakayama permutation
of A. Assume that IeI = 0 and ei 6= eν(i), for any primitive summand ei of e.
Then the algebras A and A[I] are isomorphic. In particular, A is isomorphic
to the orbit algebra B̂/(ϕν

B̂
) for some positive automorphism ϕ of B̂.

4. Proof of Theorem 1.1. Let A be a non-simple, finite-dimensional,
basic, indecomposable, self-injective K-algebra over a field K.
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AssumemodA admits a pure sectional moduleM which is not the middle
of a short chain. We will show first that A is socle equivalent to the self-
injective orbit algebra B̂/(ϕν

B̂
), where B is a tilted algebra of the form

B = EndH(T ) for a hereditary algebra H of Dynkin type and a tilting mod-
ule T in modH without indecomposable projective direct summands, and
ϕ is a positive automorphism of B̂. Let ∆ be the full-valued subquiver of
the stable Auslander–Reiten quiver Γ s

A of given by the indecomposable di-
rect summands of M . We recall that then Γ s

A
∼= Z∆/G for an infinite cyclic

group G of automorphisms of the translation quiver Z∆, and ∆ is a Dynkin
quiver whose underlying graph is the Dynkin type∆(A) of A. Let I = rA(M)
and B = A/I. Then M is a faithful, hence sincere, right B-module which
is not the middle of a short chain in modB, because M is not the middle
of a short chain in modA (see [15, Proposition 2.3]). So B is a tilted al-
gebra, by the main result of [12]. Further, H = EndA(M) = EndB(M) is
the hereditary algebra, by [13, Corollary 1.2]. Clearly, H is then a hered-
itary algebra of Dynkin type with QH = ∆op. Observe also that M is a
faithful B-module with HomB(M, τBM) = 0, and hence pdB(M) ≤ 1 and
Ext1B(M,M) ∼= DHomB(M, τB(M)) = 0 (see [1, Lemma VIII.5.1 and The-
orem IV.2.13]). Therefore, M is a partial tilting B-module. Since the rank
of K0(B) coincides with the number of indecomposable direct summands
of M , we conclude that M is a tilting B-module. Hence, by the Brenner–
Butler theorem [1, Theorem VI.3.8], M is a tilting module in modHop,
T = D(M) is a tilting module in modH, B ∼= EndH(T ), and M is iso-
morphic to the right B-module HomH(T,D(H)). In particular, we conclude
that the indecomposable direct summands of M form the canonical section
∆T = ∆ of the connecting component CT = ΓB. Moreover, since M is a
pure sectional module in modA, we find that no indecomposable injective
B-module is a direct summand of M , or equivalently, the indecomposable
direct summands of τ−1B M form another section τ−1B ∆T of CT = ΓB. Finally,
we note that T is a splitting tilting module in modH, since H is a hereditary
algebra [1, Corollary VI.5.7]. Then, invoking the description of the indecom-
posable injective modules in modB, given in [1, Proposition VI.5.8], and
M ∼= HomH(T,D(H)), we conclude that T has no indecomposable projec-
tive direct summand.

Let e1, . . . , er be a set of pairwise orthogonal, primitive idempotents of A
such that 1A = e1 + · · ·+ er and that e = e1 + · · ·+ en, for some n ≤ r, is a
residual identity of B. We claim that I is a deforming ideal of A satisfying
IeI = 0. Observe that the valued quiver QB of B = A/I is acyclic, because
B is a tilted algebra. Therefore, by Proposition 3.2, it remains to show that
rA(I) = eI.

Denote by J the trace ideal of M in A, that is, the ideal of A generated
by the images of all homomorphisms from M to A in modA, and by J ′
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the trace ideal of the left A-module D(M) in A. Observe that I is the left
annihilator of D(M) in A.

Lemma 4.1. We have J ∪ J ′ ⊆ I.
Proof. First we show that J ⊆ I. By definition, there exists an epi-

morphism ϕ : M r → J for some integer r ≥ 1. Suppose that there exists
a homomorphism f : A → M in modA with f(J) 6= 0. Since M has no
projective-injective indecomposable direct summands, the homomorphism f
factors through A/socA. Hence we have in modA a sequence of homomor-
phisms

M r ϕ→ J
ω→ A

π→ A/socA
g→M

with gπωϕ 6= 0, where ω : J → A is the canonical inclusion homomor-
phism, π : A→ A/socA is the canonical epimorphism, and f = gπ. Observe
that gπωϕ factors through a module from add(τ−1A M), and consequently
HomA(τ

−1
A M,M) 6= 0. This is a contradiction because M is not the middle

of a short chain in modA. Hence we conclude

J ⊆
⋂

f : AA→M
Ker f = I.

Suppose now that there is a homomorphism f ′ : A→ D(M) in modAop

such that f ′(J ′) 6= 0. Then f ′ factors through A/socA, because D(M) has
no projective-injective indecomposable direct summands. Moreover, we have
in modAop an epimorphism ϕ′ : D(M)s → J ′ for some integer s ≥ 1. Hence
we obtain in modAop a sequence of homomorphisms

D(M)s
ϕ′→ J ′

ω′→ A
π→ A/socA

g′→ D(M)

with g′πω′ϕ′ 6= 0, where ω′ : J ′ → A is the canonical inclusion homomor-
phism and f ′ = g′π. Observe also that g′πω′ϕ′ factors through a module from
add(τ−1AopD(M)), and consequently HomAop(τ−1AopD(M), D(M)) 6= 0. Since
τ−1AopD(M) = TrM = D(τAM), we conclude that HomA(M, τAM) 6= 0. This
is again a contradiction, because M is not the middle of a short chain in
modA. Therefore we obtain

J ′ ⊆
⋂

f ′ : AA→D(M)

Ker f ′ = I.

Lemma 4.2. We have lA(I) = J , rA(I) = J ′ and I = rA(J) = lA(J
′).

Proof. We prove the lemma only for J , the proof for J ′ being dual. Since
J is a rightB-module, we have JI = 0, and hence I ⊆ rA(J). In order to show
the converse inclusion, take a monomorphism u : M → AtA for some integer
t ≥ 1, and let ui : M → A be the composite of u with the projection of AtA on
the ith component. Then there is a monomorphism v : M →

⊕t
i=1 Imui in-

duced by u. Moreover, by definition of J ,
⊕t

i=1 Imui is contained in
⊕t

i=1 J .
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This leads to the inclusions

rA(J) = rA

( t⊕
i=1

J
)
⊆ rA(M) = I.

Hence I = rA(J). Finally, applying a theorem by Nakayama (see [30, The-
orem IV.6.10]), we obtain J = lArA(J) = lA(I).

Lemma 4.3. We have eIe = eJe = eJ ′e. In particular, (eIe)2 = 0.

Proof. Since e is a residual identity of B = A/I, we have B ∼= eAe/eIe.
Thus M is a faithful right eAe/eIe-module and the direct sum of inde-
composable modules forming a section of ΓeAe/eIe. Further, it follows from
Lemma 4.1 that eJe = eJ is an ideal of eAe with eJe ⊆ eIe. Consider the
algebra B′ = eAe/eJe. Then M is a sincere right B′-module which is not
the middle of a short chain in modB′, because B′ is a factor algebra of B
and M is not the middle of a short chain in modB [15, Proposition 2.3].
Applying [15, Corollary 3.2] we conclude that M is a faithful B′-module.
This implies that eIe/eJe = rB′(M) = 0, and hence eIe = eJe. In a sim-
ilar way we show that eIe = eJ ′e. Finally, it follows from Lemma 4.2 that
(eIe)2 = (eJe)(eIe) = eJIe = 0.

We shall also use the following general lemma on almost split sequences
over triangular matrix algebras (see [19, (2.5)], [23, Lemma 5.6]).

Lemma 4.4. Let R and S be algebras and N be an (S,R)-bimodule. Let
Λ =

(
S N
0 R

)
be the matrix algebra defined by the bimodule SNR. Then an

almost split sequence 0 → X → Y → Z → 0 in modR is an almost split
sequence in modΛ if and only if HomR(N,X) = 0.

Lemma 4.5. Let f be a primitive idempotent in I such that fJ 6= fAe.
Then K = fAeAf + fJ + fAeAfAe + eAf + eIe is an ideal of F =
(e+ f)A(e+ f), and N = fAe/fKe is a B-module such that HomB(N,M)
= 0 and HomB(M,N) 6= 0.

Proof. It follows from Lemma 4.3 that fAeIe ⊆ fJ . Then the fact that
K is an ideal of F is a direct consequence of f ∈ I. Observe also that
fKe = fJ + fAeAfAe, fKf ⊆ rad(fAf), eKe = eIe and eKf = eAf . We
have N 6= 0. Indeed, if fAe = fKe then, since eAfAe ⊆ rad(eAe), we ob-
tain fAe = fJ + fAe(rad(eAe)), and so fAe = fJ (Nakayama lemma, [30,
Lemma I.3.3]), which contradicts our assumption. Further, B = eAe/eIe and
(fAe)(eIe) = fAeJ ⊆ fJ ⊆ fKe, and hence N is a B-module. Moreover,
N is also a left module over S = fAf/fKf and Λ = F/K is isomorphic
to the triangular matrix algebra

(
S N
0 R

)
. Invoking now our assumption that

M is a pure sectional module in modA, we conclude that, for any inde-
composable direct summand X of M , we have in modB an almost split
sequence 0 → X → Y → Z → 0 which is also an almost split sequence in
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modA, and so an almost split sequence in modΛ. Applying Lemma 4.4, we
obtain HomB(N,M) = 0. On the other hand, since every indecomposable
module in modB is either generated or cogenerated by M , we conclude that
HomB(M,N) 6= 0.

Proposition 4.6. We have Ie = J and eI = J ′.

Proof. This follows exactly as [23, Proposition 5.9] by applying Lem-
mas 4.1, 4.2, 4.3, 4.5.

The following direct consequence of Lemma 4.2 and Proposition 4.6 com-
pletes the proof that I is a deforming ideal of A with IeI = 0.

Corollary 4.7. We have rA(I) = eI and lA(I) = Ie.

Applying Theorems 3.4 and 3.5 we conclude that:

(1) A is socle equivalent to A[I];
(2) A is stably equivalent to A[I];
(3) A[I] is isomorphic to a self-injective orbit algebra B̂/(ϕν

B̂
) for some

positive automorphism ϕ of B̂.

Since A and A[I] are socle equivalent, the quotient algebras A/socA and
A[I]/socA[I] are isomorphic, and consequently there is a canonical isomor-
phism Φ : mod(A/socA) → mod(A[I]/socA[I]) of their module categories.
Observe also that the indecomposable modules in mod(A/socA) (respec-
tively, mod(A[I]/socA[I])) are precisely the indecomposable non-projective
modules in modA (respectively, modA[I]). Further, for any non-projective
indecomposable modules L,N in modA and non-projective indecomposable
modules U, V in modA[I] we have the equalities of homomorphism spaces
HomA(L,N)=HomA/socA(L,N) and HomA[I](U, V )=HomA[I]/socA[I](U, V ).
We also note that the Auslander–Reiten quiver ΓA/socA of A/socA (respec-
tively, ΓA[I]/socA[I] of A[I]/socA[I]) is obtained from ΓA (respectively, ΓA[I])
by removing all indecomposable projective modules P , making their radi-
cals radP injective modules and the socle factors P/socP projective mod-
ules, and keeping the indecomposable non-projective modules as well their
Auslander–Reiten translations unchanged. Finally, the functor Φ induces a
canonical isomorphism of the stable Auslander–Reiten quivers Γ sA

∼→ Γ sA[I].
Summing up, we conclude that the image Φ(M) of the pure sectional module
in modA is a pure sectional module M in modA[I] and is not the middle of
a short chain. Applying Theorem 2.2, we conclude that ϕν

B̂
= ρν2

B̂
for some

positive automorphism ρ of B̂. Since, by Theorem 3.4, the Nakayama permu-
tations of A and A[I] are the same, an isomorphism A[I] ∼= B̂/(ρν2

B̂
) forces

that ei 6= eν(i) for any primitive direct summand ei of the common residual
identity e of A/I ∼= A[I]/I. Applying now Theorem 3.6, we conclude that
the algebras A and A[I] are isomorphic. Therefore, A is isomorphic to the
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orbit algebra B̂/(ρν2
B̂
). This proves the implication (i)⇒(ii) of Theorem 1.1.

The converse implication (ii)⇒(i) follows from Theorem 2.2.
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