COLLOQUIUM MATHEMATICUM

VOL. 127 2012 NO. 1

ON SELF-INJECTIVE ALGEBRAS OF
FINITE REPRESENTATION TYPE

BY

MARTA BLASZKIEWICZ and ANDRZEJ SKOWRONSKI (Toruii)

Abstract. We describe the structure of finite-dimensional self-injective algebras of
finite representation type over a field whose stable Auslander—Reiten quiver has a sectional
module not lying on a short chain.

Introduction. Throughout the paper, by an algebra we mean a basic
indecomposable finite-dimensional associative K-algebra with an identity
over a (fixed) field K. For an algebra A, we denote by mod A the cate-
gory of finite-dimensional right A-modules, and by D the standard duality
Homp (—, K) on mod A. We denote by I'4 the Auslander—Reiten quiver of A,
and by 74 and Tgl the Auslander—Reiten translations DTr and TrD, respec-
tively. We will not distinguish between an indecomposable module in mod A
and the vertex of I'4 corresponding to it. An algebra A is called self-injective
if A= D(A) in mod A, that is, the projective modules in mod A are injec-
tive. In the representation theory of self-injective algebras an important role
is played by the self-injective algebras A which admit Galois coverings of the
form B — B/G A, where B is the repetitive category of an algebra B and
G is an admissible group of automorphisms of B (see [22], [29]).

We are concerned with the problem of describing the Morita equiva-
lence classes of self-injective algebras of finite representation type, that is,
the self-injective algebras A for which mod A admits only finitely many in-
decomposable modules up to isomorphism. For K algebraically closed, the
problem was solved in the early 1980’s by Riedtmann (see [4], [16], [17],
[18]) via the combinatorial classification of the Auslander-Reiten quivers
of self-injective algebras of finite representation type over K. Equivalently,
Riedtmann’s classification can be presented as follows (see [22, Section 3]):
a non-simple self-injective algebra A over an algebraically closed field K is
of finite representation type if and only if A is a socle deformation of an
orbit algebra B/G, where B is a tilted algebra of Dynkin type A, (n > 1),
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D, (n > 4), Eg, E7, Eg, and G is an admissible infinite cyclic group of
automorphisms of B. Tt was conjectured in [29, Problem 2.4] that a non-
simple self-injective algebra A over an arbitrary field K is of finite represen-
tation type if and only if A is a socle deformation of an orbit algebra B/G,
where B is a tilted algebra of Dynkin type A, (n > 1), B, (n > 2), C,
(n > 3), D, (n > 4), Eg, E7, Eg, F4 or Gy. This is currently an exciting
open problem. An important known result towards solution of this problem
is the Riedtmann—Todorov description of the stable Auslander—Reiten quiv-
ers of self-injective algebras of finite representation type over an arbitrary
field (see [16], [31], [30, Section IV.15]). We also refer to [28] for related re-
sults on stable equivalences of self-injective algebras of finite representation
type.

The main aim of the paper is to show that a non-simple self-injective al-
gebra A of a finite representation type whose stable Auslander—Reiten quiver
admits a section with good behaviour in the module category mod A is iso-
morphic to an orbit algebra B/G, where B is a tilted algebra of Dynkin type
and G is an infinite cyclic group of automorphisms of B.

For basic background on the representation theory applied in this paper
we refer to [1] and [30].

1. The main result and related background. Let B be an algebra
and 1p = e; + - -+ + e, a decomposition of the identity of B into a sum of
pairwise orthogonal primitive idempotents. We associate to B a self-injective
locally bounded K-category B, called the repetitive category of B (see [11],
[20]). The objects of B are €m,i,» m € Z, i € {1,...,n}, and the morphism
spaces are defined as follows:

ejBe;, r=m,
B(em,i,erj) =< D(ejBej), r=m+1,
0, otherwise.

Observe that e;Be; = Homp(e; B, e;B), D(e;Be;) = e;D(B)e; and
@ é(emﬂ-, em-) = €jB @ D(Bej)
(rg)ezZx{1,...,n}

for any r € Z and j € {1,...,n}. We denote by vz the Nakayama automor-
phism of B defined by

vg(em,) = emy1,;  for all (m,i) € Z x {1,...,n}.
An automorphism ¢ of the K-category B is said to be:

e positive if for each pair (m,i) € Z x {1,...,n} we have p(emi) = ep;
for some p > m and some j € {1,...,n};
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o rigid if for each pair (m,i) € Z x {1,...,n} there exists j € {1,...,n}
such that @(em i) = em
e strictly positive if it is positive but not rigid.

Then the automorphisms IJ%, r > 1, are strictly positive automorphisms
of B.

A group G of automorphisms of B is said to be admissible if G acts
freely on the set of objects of B and has finitely many orbits. Then we may
consider the orbit category B /G of B with respect to G whose objects are
the G-orbits of objects in §, and the morphism spaces are given by

(B/&)ab) = {fae T[] By

(z,y)€axb

9fyz = foyg2> Vgea, (x,y)eaxb}

for all objects a, b of B /G. Since B /G has finitely many objects and the mor-
phism spaces in B /G are finite-dimensional, we have the associated finite-
dimensional, self-injective K-algebra @(B/G) which is the direct sum of all
morphism spaces in B\/G, called the orbit algebra of B with respect to G.
We will identify B/G with @(E /G). For example, for each positive inte-
ger r, the infinite cyclic group (I/]%) generated by the rth power 1/% of vg

is an admissible group of automorphisms of B , and we have the associated
self-injective orbit algebra

[ b 0 0 ... 0 |
fo b O ... 0
0 f3 by ... 0
T(B)") = B/(vy) = ,
0 0 0 ... frq by O
000 0 ... 0 fi b
L bl)"'abr‘—leBa fla"'vf’r‘—le-D(B)

called the r-fold trivial extension algebra of B. In particular, T(B)(l) =
T(B) = B x D(B) is the trivial extension of B by the injective cogener-
ator D(B).

Let H be a hereditary algebra and Q 7 its valued quiver. Following [3], [9],
a module T in mod H is called a tilting module if Extt(T,T) =0 and T is a
direct sum of n pairwise non-isomorphic, indecomposable modules, where n
is the rank of the Grothendieck group Ko(H) of H (equivalently, the number
of vertices of Q). Then the endomorphism algebra B = Endg (7)) is called
a tilted algebra of H. Further, the images Homp (7, I) of indecomposable in-
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jective modules I in mod H via the functor Homg (7', —): mod H — mod B
form a section Ar of a connected component Cr of I'p, called the con-
necting component of I'p determined by T, which connects the torsion-
free part Y(T) = {Y € mod B | Tor?(Y,T) = 0} and the torsion part
X(T) = {X € modB | X ®p T = 0} (see [9]). Moreover, by a crite-
rion of Liu-Skowronski (see [14], [21]), an algebra B is a tilted algebra of
a hereditary algebra H if and only if the Auslander—Reiten quiver I'p of
B admits a connected component C having a faithful section A such that
Hompg(U,78V) = 0 for all modules U,V from A.

Assume now that H is a hereditary algebra of finite representation type,
or equivalently, @z is a Dynkin quiver (see [5], [6], [7]). Then for any tilting
module 7" in mod H, the associated tilted algebra B = Endy(7T), called a
tilted algebra of Dynkin type, is of finite representation type, and I'y = Cr.
Further, it follows from [I0], [II] that the repetitive category B of a tilted
algebra B of Dynkin type is locally representation-finite in the sense of [§].
In particular, by a theorem of Gabriel [8, Theorem 3.6] the orbit algebra
A=D /G of E, with respect to an admissible infinite cyclic group G of
automorphisms of B , is a self-injective algebra of finite representation type,
and the stable Auslander-Reiten quiver I'§ of A is the orbit quiver ZA/G,
where A = Qy.

Let A be a non-simple self-injective algebra of finite representation type.
Then by the Riedtmann—Todorov theorem (see [16], [31]) the stable Aus-
lander—Reiten quiver I} of A is isomorphic to the orbit quiver ZA/G, where
A is a Dynkin quiver and G is an infinite cyclic group of automorphisms of
the translation quiver ZA. Therefore, we may associate to any self-injective
algebra A of finite representation type a Dynkin graph A(A), called the
Dynkin type of A, such that I'j = ZA/G for a quiver A having A(A) as
underlying graph. We also note that ZA = ZA’ for any quivers A and
A’ having A(A) as underlying graph. A module M in mod A is said to be
sectional if M is a direct sum of pairwise non-isomorphic indecomposable
non-projective modules forming a connected full-valued subquiver A of I'}
with A(A) as underlying graph. Finally, a sectional module M in mod A is
said to be pure if no direct summand of M is the radical of a projective
module in mod A.

Let A be an algebra. Following [2], [15], a sequence N — M — 74N of
non-zero homomorphisms in mod A with N indecomposable is called a short
chain, and M is the middle of this chain. We mention that, if M is a module
in mod A which is not the middle of a short chain, then every indecomposable
direct summand Z of M is uniquely determined (up to isomorphism) by the
simple composition factors (see [I5, Corollary 2.2]). It has been recently
proved in [I2] Theorem]| that an algebra B is a tilted algebra if and only if
mod B contains a sincere module M which is not the middle of a short chain.
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Recall that M is called sincere if every simple module in mod B occurs as

a composition factor of M. We also refer to [13] for a description of finite-

dimensional modules over algebras which are not the middle of a short chain

of modules, using injective and tilting modules over hereditary algebras.
The aim of this paper is to prove the following theorem.

THEOREM 1.1. Let A be a non-simple finite-dimensional basic indecom-
posable self-injective algebra of finite representation type over a field K. The
following statements are equivalent:

(i) mod A admits a pure sectional module M which is not the middle of
a short chain. R

(ii) A is isomorphic to a self-injective orbit algebra B/(pV%), where B
is a tilted algebra of the form B = Endg(T) with H a hereditary
algebra of Dynkin type and T is a tilting module in mod H with-
out indecomposable projective direct summands, and p is a positive
automorphism of B.

We note that the module category mod H of a hereditary algebra H of
Dynkin type admits a tilting module T without indecomposable projective
direct summands if and only if H is not a Nakayama algebra, or equivalentely,
the quiver Qg of H is not an equioriented quiver

e e e -—>e—>e—>e

of type A, (n > 1).

2. Self-injective algebras of Dynkin type. Let B be a triangular
algebra (the quiver @p has no oriented cycles) and ey, ..., e, be pairwise
orthogonal primitive idempotents of B with 1z =e; +---+ en. We identify
B with the full subcategory By of the repetitive category B given by the
objects eg i, 1 < i < n. For a sink 7 of @p, the reflection SjB of B at 17 is

the full subcategory of B given by the objects
e, 1<j<n, j#i, and e; = Z/E(eo,i).
Then the quiver Qg+ 5 of S; B is the reflection ;' Qp of Qp at i (see [11]).

Observe that B = SZTFB. By a reflection sequence of sinks of Qp we mean a
sequence i1, .. .,% of vertices of (Qp such that i4 is a sink of O‘Z_l .. O'ZQB
for all s in {1,...,t}. Moreover, for a sink i of Qp, we denote by T;" B the
full subcategory of B given by the objects

eoj, 1<j<n, and e; = I/B(EO’Z').

Observe that T;" B is the one-point extension B[Ig(i)] of B by the indecom-
posable injective B-module Ip(i) at the vertex i. By a finite-dimensional



116 M. BLASZKIEWICZ AND A. SKOWRONSKI

B-module we mean a contravariant K-linear functor M from B to the cate-
gory of K-vector spaces such that ) _ = dimg M (z) is finite. We denote by

mod B the category of all finite-dimensional B-modules. Finally, for a mod-
ule M in modB, we denote by supp(M) the full subcategory of B formed
by all objects x with M (x) # 0, and call it the support of M.

The following consequence of results proved in [I0], [II] describes the
supports of finite-dimensional indecomposable modules over the repetitive
categories B of tilted algebras B of Dynkin type.

THEOREM 2.1. Let B be a tilted algebra of Dynkin type and n the rank
of Ko(B). Then there exists a reflection sequence iy, ..., i, of sinks of Qp
such that the following statements hold:

N + _

(i) Si ...S8T =va(B). ~

(ii) For every indecomposable non-projective module M in mod B,
supp(M) is contained in one of the full subcategories of B given
by

yg(S;:...S;B), red{l,...,n}, meZ.

(iii) For every indecomposable projective module P in mod E, supp(P)
1s contained in one of the full subcategories of B given by

ug(T;S;:_l...S:B), red{l,...,n}, meZ.

The aim of this section is to prove the following theorem playing a promi-
nent role in the proof of Theorem [I.1]

THEOREM 2.2. Let B be a tilted algebra Endg(T) of Dynkin type, Ar
the canonical section of I'g given by the images Hompy (T, I) of indecompos-
able injective H-modules I via the functor Hompg (T, —): mod H — mod B,
and My the direct sum of indecomposable B-modules lying on Arp. More-
over, let ¢ be a strictly positive automorphism of B\, A = E/(gp), and
Ff: mod B — mod A the associated push-down functor. The following state-
ments are equivalent:

(i) FY(Mry) is not the middle of a short chain in mod A.
(il) p = pV% for a positive automorphism p of B.

Proof. It follows from Theorem . 1| that B is a locally representation-
finite locally bounded category [§], that is, for any indecomposable module
N in mod B the number of objects  in B with N(z) # 0 is finite. Then,
applying [8, Theorem 3.6, the push-down functor FY : mod B — mod A
is a Galois covering of module categories preserving almost split sequences.
In particular, for any indecomposable modules X and Y in mod B, FY (X)
and FY (Y') are indecomposable modules in mod A, and FY induces K-linear
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isomorphisms

P Homp(X, ¢"Y) = Homa(FY (X), FY(Y)),

rEZ

P Homp(¢" X, Y) = Homa(FY (X), FY(Y)).

reZ
Here, " X and ¢"Y denote the shifts of X and Y by the automorphism of
mod B induced by .

Assume that FY'(Mry) is the middle of a short chain in mod A. Then there

is an indecomposable non-projective module /N in mod A, indecomposable di-
rect summands U and V of FY'(Mr), and non-zero homomorphisms N — U
and V' — 74 N. Therefore, there exist indecomposable direct summands X
and Y of My, an indecomposable non-projective module Z in mod B, and
non-zero homomorphisms Y — 757 and Z — ¢"X in mod B with r > 1
such that FY(X) = FY(¢"X) =U, FY(Y) =V, and F{(Z) = N. Observe
that for modules L, L' in mod B, Homg(L,L') # 0 implies that supp(L)
and supp(L’) have a common object. Since supp(Mr) = B = By and Y
is a direct summand of M7, we conclude that supp(Y’) is contained in B.
Similarly, ¢" X is a direct summand of ¢" My and supp(¢"Mr) = ¢" B, and
so supp(p" X) is contained in ¢" B. Applying now Theorem we infer that
supp(757) is contained in B or one of the full subcategories S;I; . SZ B for
some p € {1,...,n — 1} and the corresponding reflection sequence i1, ...,1i,
of sinks of @p. Note that B = uél(ué(B)) = uél(S;:L...S:B). Then it
follows that supp(Z) is contained in S;; . S;;B or in S;; . S;;B =vg(B)
(if p =n—1). Hence Homg(Z, ¢" X) # 0 forces that supp(¢"X) is contained
in a full subcategory of B of one of the forms S;: e S{;B forr € {1,...,n},
or yé(S;g...S;;B) for ¢ € {1,...,n—1}. This shows that supp(¢"X) =
©" (supp(X)) is contained in the full subcategory TZ’; . T:B of B given by
the objects of B and v5(B). Summing up, we have proved that if ¢ = pl/%

for a positive automorphism p of B\, then F;\p(MT) is not the middle of a
short chain in mod A. Therefore, (ii) implies (i).
Assume now that ¢ is not of the form pyj?§ for a positive automorphism

p of B. Then @B is a full subcategory of Tl: .. T:B of B given by the
objects of B and vz(B). Take an indecomposable direct summand X
of Mp. Then X is an indecomposable direct summand M7, and so
supp(pX) is a full subcategory of supp(epMr) = ¢(supp Mr) = ¢B. Thus
supp(pX) is a full subcategory of TZ':T:B We have two cases to
consider.

Assume first that supp(¢X) contains an object j which is not in B.
Then j = vz(i) for some object i of B. Take the indecomposable projective-
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injective B-module P3(j) at j. Clearly, we have Homgz(Pg(j), ¢X) # 0. In
fact, sinceAX is not a projective-injective é—module, X is not a projective-
injective B-module, and hence Homgz(Pg(j)/soc Pg(j), »X) # 0. Clearly
then Hom g(Pg(j)/soc P5(j), pMr)#0. Observe also that we have in mod B
a canonical almost split sequence

0 — rad P3(j) — (rad Pg(j)/soc P5(j)) @ Pg(j) — Pg(j)/soc P5(j) — 0,
and then rad Pg(j) = 75(Pg5(j)/soc Pg(j)). Since j = v5(i) for some vertex
i of @p, we conclude that soc Pg(j) is the simple B-module Sg(i) at i,

and consequently Homz(My,rad P5(j)) # 0. This shows that FY (Mr) =
F{(oMry) is the middle of a short chain

F{(Pg(j)/soc P5(5)) — FY(Mr) — TaFY (P5(j)/soc P5(j))
since T4 FY (L) = FY (75L) for any indecomposable non-projective module L
in mod B.
Assume now that supp(¢X) is contained in B. Since ¢ is a strictly posi-
tive automorphism of B , the support supp(75¢X) of 750X is also contained

in B. Clearly, X is an indecomposable B-module which is a successor of
an indecomposable direct summand of My, because X is an indecompos-
able direct summand of M. Moreover, every indecomposable module in
mod B is cogenerated or generated by M. Hence Homg(Mr,750X) =
Homp(Mr,759X) # 0. This shows that FY (Mr) is the middle of a short
chain in mod A of the form

F{(X) = F{(Mr) — TaF{(X)

because FY(X) is an indecomposable direct summand of FY(Mrp) and
FY(150X) = 1o F{(pX) = 7AFY (X). Therefore, (i) implies (ii). m

3. Self-injective algebras with deforming ideals. In this section we
present criteria for self-injective algebras to be orbit algebras of the repetitive
categories of algebras with respect to infinite cyclic automorphism groups,
playing a fundamental role in the proof of the main theorem.

Let A be a self-injective algebra. For a subset X of A, we may consider
the left annihilator [4(X) = {a € A | az = 0} of X in A and the right
annihilator r4(X) = {a € A | za =0} of X in A. Then by a theorem due to
Nakayama (see [30, Theorem IV.6.10]) the annihilator operation 4 induces
a Galois correspondence from the lattice of right ideals of A to the lattice
of left ideals of A, and r4 is the inverse Galois correspondence to 4. Let I
be an ideal of A, B = A/I, and e an idempotent of A such that e + I is the
identity of B. We may assume that 14 = e;+---+e, with eq, ..., e, pairwise
orthogonal primitive idempotents of A, e = e; + --- + €, for some n < 7,
and {e; | 1 <i < n} is the set of all idempotents in {e; | 1 <1 < r} which
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are not in I. Then such an idempotent e is uniquely determined by I up to
an inner automorphism of A, and is called a residual identity of B = A/I.
Observe also that B = eAe/ele.

We have the following lemma from [27, Lemma 5.1].

LEMMA 3.1. Let A be a self-injective algebra, I an ideal of A, and e an
idempotent of A such that la(I) = Ie or ra(I) = el. Then e is a residual
identity of A/I.

We also recall the following proposition proved in [23, Proposition 2.3].

PROPOSITION 3.2. Let A be a self-injective algebra, I an ideal of A,
B = A/I, e a residual identity of B, and assume that Iel = 0. The following
conditions are equivalent:

(i) Ie is an injective cogenerator in mod B.
(ii) el is an injective cogenerator in mod BP.
(iii) la(I) = Ie.

(iv) ra(l) =el.

Moreover, under these equivalent conditions, we have soc A C I and leac(I)
=ele=rcac(I).

The following theorem proved in [25, Theorem 3.8] (sufficiency part) and
[27, Theorem 5.3] (necessity part) will be fundamental for our considerations.

THEOREM 3.3. Let A be a self-injective algebra. The following conditions
are equivalent:

(i) A is isomorphic to an orbit algebra E/((pug), where B is an algebra
and @ s a positive automorphism of B.
(ii) There is an ideal I of A and an idempotent e of A such that
(1) ra(l) =el;
(2) the canonical algebra epimorphism eAe — eAe/ele is a retrac-
tion.

Moreover, in this case, B is isomorphic to A/I.

Let A be an algebra, I an ideal of A, and e a residual identity of A/I.
Following [23], I is said to be a deforming ideal of A if the following conditions
are satisfied:

(D1) leae(I) =ele = repe(l);
(D2) the valued quiver @ 4,5 of A/I is acyclic.
Assume [ is a deforming ideal of A. Then we have a canonical isomorphism

of algebras eAe/ele — A/I and I can be considered as an (eAe/ele)-
(eAe/ele)-bimodule. Denote by A[I] the direct sum of K-vector spaces
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(eAe/ele) @ I with the multiplication

(b7 :U) ’ (C) y) = (bC, by + xc+ xy)
for b,c € eAe/ele and x,y € I. Then A[I] is a K-algebra with the identity
(e + ele,14 — e), and, by identifying x € I with (0,z) € A[I], we may
consider I as an ideal of A[I]. Observe that e = (e + ele,0) is a residual
identity of A[I]/I = eAe/ele = A/I, eA[lle = (eAe/ele) ® ele and the
canonical algebra epimorphism eA[I]le — eA[l]e/ele is a retraction.

The following properties of the algebra A[I] were established in [23, The-
orem 4.1] and [24, Theorem 3|.

THEOREM 3.4. Let A be a self-injective algebra and I a deforming ideal
of A. The following statements hold.

(i) A[l] is a self-injective algebra with the same Nakayama permutation
as A and I is a deforming ideal of A[I].
(ii) A and A[I] are socle equivalent.
(iii) A and A[I] are stably equivalent.

We note that if A is a self-injective algebra, I an ideal of A, B=A/I, e
an idempotent of A such that r4 (/) = el, and the valued quiver Qp of B is
acyclic, then by Lemma [3.1] and Proposition [3.2] I is a deforming ideal of A
and e is a residual identity of B.

The following theorem proved in |25, Theorem 4.1] shows the importance
of the algebras A[I].

THEOREM 3.5. Let A be a self-injective algebra, I an ideal of A, B = A/I
and e an idempotent of A. Assume that ro(I) = el and Qp is acyclic. Then
All] is isomorphic to the orbit algebra B/(pvg) for some positive automor-

phism ¢ of B.

We point out that there are self-injective algebras A with deforming
ideals I such that the algebras A and A[I] are not isomorphic (see [25]
Example 4.2]).

The following result proved in [26, Proposition 3.2] describes a situation
when the algebras A and A[I] are isomorphic.

THEOREM 3.6. Let A be a self-injective algebra with a deforming ideal
I, B=A/I, e be a residual identity of B and v the Nakayama permutation
of A. Assume that Iel = 0 and e; # e, ), for any primitive summand e; of e.
Then the algebras A and A[I] are isomorphic. In particular, A is isomorphic
to the orbit algebra B\/(cpyg) for some positive automorphism ¢ of B.

4. Proof of Theorem Let A be a non-simple, finite-dimensional,
basic, indecomposable, self-injective K-algebra over a field K.
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Assume mod A admits a pure sectional module M which is not the middle
of a short chain. We will show first that A is socle equivalent to the self-
injective orbit algebra B/(¢vg), where B is a tilted algebra of the form
B = Endg(T) for a hereditary algebra H of Dynkin type and a tilting mod-
ule 7" in mod H without indecomposable projective direct summands, and
@ is a positive automorphism of B. Let A be the full-valued subquiver of
the stable Auslander-Reiten quiver I} of given by the indecomposable di-
rect summands of M. We recall that then I'} = ZA/G for an infinite cyclic
group G of automorphisms of the translation quiver ZA, and A is a Dynkin
quiver whose underlying graph is the Dynkin type A(A) of A. Let I = r4(M)
and B = A/I. Then M is a faithful, hence sincere, right B-module which
is not the middle of a short chain in mod B, because M is not the middle
of a short chain in mod A (see [15, Proposition 2.3]). So B is a tilted al-
gebra, by the main result of [12]. Further, H = End4(M) = Endp(M) is
the hereditary algebra, by [I3 Corollary 1.2]. Clearly, H is then a hered-
itary algebra of Dynkin type with Qg = A°P. Observe also that M is a
faithful B-module with Homp(M,75M) = 0, and hence pdg(M) < 1 and
ExtL(M, M) = DHomg(M,75(M)) = 0 (see [I, Lemma VIIL.5.1 and The-
orem IV.2.13|). Therefore, M is a partial tilting B-module. Since the rank
of Ko(B) coincides with the number of indecomposable direct summands
of M, we conclude that M is a tilting B-module. Hence, by the Brenner—
Butler theorem [I, Theorem VI.3.8], M is a tilting module in mod HP,
T = D(M) is a tilting module in mod H, B = Endy(T), and M is iso-
morphic to the right B-module Homg (7, D(H)). In particular, we conclude
that the indecomposable direct summands of M form the canonical section
Ar = A of the connecting component Cr = ['g. Moreover, since M is a
pure sectional module in mod A, we find that no indecomposable injective
B-module is a direct summand of M, or equivalently, the indecomposable
direct summands of TglM form another section 75 YAp of Cp = I's. Finally,
we note that 7' is a splitting tilting module in mod H, since H is a hereditary
algebra [I, Corollary VI.5.7]. Then, invoking the description of the indecom-
posable injective modules in mod B, given in [I, Proposition VI.5.8|, and
M = Hompg (T, D(H)), we conclude that 7" has no indecomposable projec-
tive direct summand.

Let eq, ..., e, be a set of pairwise orthogonal, primitive idempotents of A
such that 14 =e; +---+e¢. and that e=¢e; +--- + ¢e,, for some n < r, is a
residual identity of B. We claim that I is a deforming ideal of A satisfying
Iel = 0. Observe that the valued quiver Qp of B = A/I is acyclic, because
B is a tilted algebra. Therefore, by Proposition it remains to show that
ra(l) =el.

Denote by J the trace ideal of M in A, that is, the ideal of A generated
by the images of all homomorphisms from M to A in mod A, and by J’
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the trace ideal of the left A-module D(M) in A. Observe that [ is the left
annihilator of D(M) in A.

LEMMA 4.1. We have JU J' C I.

Proof. First we show that J C I. By definition, there exists an epi-
morphism ¢: M" — J for some integer r > 1. Suppose that there exists
a homomorphism f: A — M in mod A with f(J) # 0. Since M has no
projective-injective indecomposable direct summands, the homomorphism f
factors through A/soc A. Hence we have in mod A a sequence of homomor-
phisms

M 57545 AJsocAS M
with gmrwe # 0, where w: J — A is the canonical inclusion homomor-
phism, m: A — A/soc A is the canonical epimorphism, and f = gm. Observe
that gmrwy factors through a module from add(TXlM ), and consequently
Hom (7'M, M) # 0. This is a contradiction because M is not the middle
of a short chain in mod A. Hence we conclude
JC (] Kerf=1I
frAx—M

Suppose now that there is a homomorphism f': A — D(M) in mod A°P
such that f/(J) # 0. Then f’ factors through A/soc A, because D(M) has
no projective-injective indecomposable direct summands. Moreover, we have
in mod A°P an epimorphism ¢’': D(M)* — J’ for some integer s > 1. Hence
we obtain in mod A°P a sequence of homomorphisms

DM)* & J % AT AJsoc A% D(M)
with ¢'mw’¢’ # 0, where w’: J' — A is the canonical inclusion homomor-
phism and f’ = ¢’7. Observe also that ¢'ww’¢’ factors through a module from
add(7 o, D(M)), and consequently Hom gop (70 D(M), D(M)) # 0. Since
Thoo D(M) = TrM = D(74M), we conclude that Hom (M, 74 M) # 0. This
is again a contradiction, because M is not the middle of a short chain in
mod A. Therefore we obtain

J' C ﬂ Kerf =1.u
7 aA—D(M)

LEMMA 4.2. We have lga(I) =J, ra(I) =J and I =ra(J) = 1a(J").

Proof. We prove the lemma only for J, the proof for J’ being dual. Since
J is aright B-module, we have JI = 0, and hence I C r4(J). In order to show
the converse inclusion, take a monomorphism u: M — A% for some integer
t > 1, and let u;: M — A be the composite of u with the projection of A’ on
the ¢th component. Then there is a monomorphism v: M — @;1 Im u; in-
duced by u. Moreover, by definition of J, @le Im u; is contained in @le J.
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This leads to the inclusions
t
ra(J) = T'A(@J> Cra(M)=1.
i=1

Hence I = r4(J). Finally, applying a theorem by Nakayama (see [30, The-
orem IV.6.10]), we obtain J = lgra(J) =1a(l). m

LEMMA 4.3. We have ele = eJe = eJ'e. In particular, (ele)? = 0.

Proof. Since e is a residual identity of B = A/I, we have B = eAe/ele.
Thus M is a faithful right eAe/ele-module and the direct sum of inde-
composable modules forming a section of I, 4¢/c1e- Further, it follows from
Lemma that eJe = eJ is an ideal of eAe with eJe C ele. Consider the
algebra B’ = eAe/eJe. Then M is a sincere right B’-module which is not
the middle of a short chain in mod B’, because B’ is a factor algebra of B
and M is not the middle of a short chain in mod B [I5, Proposition 2.3].
Applying [I5, Corollary 3.2] we conclude that M is a faithful B’-module.
This implies that ele/eJe = rp/(M) = 0, and hence ele = eJe. In a sim-
ilar way we show that ele = eJ'e. Finally, it follows from Lemma that
(ele)? = (eJe)(ele) = eJIe =0. u

We shall also use the following general lemma on almost split sequences
over triangular matrix algebras (see [19, (2.5)], [23, Lemma 5.6]).

LEMMA 4.4. Let R and S be algebras and N be an (S, R)-bimodule. Let
A= (*g%) be the matriz algebra defined by the bimodule sNgr. Then an
almost split sequence 0 - X — Y — Z — 0 in mod R is an almost split
sequence in mod A if and only if Homgp(N, X) = 0.

LEMMA 4.5. Let f be a primitive idempotent in I such that fJ # fAe.
Then K = fAeAf + fJ + fAecAfAe + c¢Af + ele is an ideal of F =
(e+ f)A(e+ f), and N = fAe/fKe is a B-module such that Homp(N, M)
=0 and Homp(M,N) # 0.

Proof. 1t follows from Lemma that fAele C fJ. Then the fact that
K is an ideal of F' is a direct consequence of f € I. Observe also that
fKe= fJ+ fAeAfAe, fKf Crad(fAf), eKe =ele and eKf =eAf. We
have N # 0. Indeed, if fAe = fKe then, since eAfAe C rad(eAe), we ob-
tain fAe = fJ + fAe(rad(ede)), and so fAe = fJ (Nakayama lemma, [30),
Lemma I.3.3]), which contradicts our assumption. Further, B = eAe/ele and
(fAe)(ele) = fAeJ C fJ C fKe, and hence N is a B-module. Moreover,
N is also a left module over S = fAf/fKf and A = F/K is isomorphic
to the triangular matrix algebra (g % ) Invoking now our assumption that
M is a pure sectional module in mod A, we conclude that, for any inde-
composable direct summand X of M, we have in mod B an almost split
sequence 0 - X — Y — Z — 0 which is also an almost split sequence in
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mod A, and so an almost split sequence in mod A. Applying Lemma [£.4] we
obtain Homp (NN, M) = 0. On the other hand, since every indecomposable
module in mod B is either generated or cogenerated by M, we conclude that
Homp(M,N) #0. =

PROPOSITION 4.6. We have [e = J and el = J'.

Proof. This follows exactly as [23, Proposition 5.9] by applying Lem-

mas [L.1] 2] £3] [45] =

The following direct consequence of Lemma[4.2]and Proposition [£.6] com-
pletes the proof that I is a deforming ideal of A with Iel = 0.

COROLLARY 4.7. We have ra(I) = el and ls(I) = Ie.
Applying Theorems [3.4] and [3.5] we conclude that:

(1) A is socle equivalent to A[I];

(2) A is stably equivalent to A[I];

(3) A[I] is isomorphic to a self-injective orbit algebra B/ (¢vg) for some
positive automorphism ¢ of B.

Since A and A[I] are socle equivalent, the quotient algebras A/socA and
A[I]/soc A[I] are isomorphic, and consequently there is a canonical isomor-
phism @: mod(A/socA) — mod(A[I]/socA[I]) of their module categories.
Observe also that the indecomposable modules in mod(A/soc A) (respec-
tively, mod(A[I]/socA[I])) are precisely the indecomposable non-projective
modules in mod A (respectively, mod A[I]). Further, for any non-projective
indecomposable modules L, N in mod A and non-projective indecomposable
modules U,V in mod A[I] we have the equalities of homomorphism spaces
HomA(L, N) :HOmA/SOCA(L, N) and HOmAm (U, V) :HomA[I}/socA[I] (U, V)
We also note that the Auslander—Reiten quiver I'y /¢c 4 of A/soc A (respec-
tively, FA[I]/SOCA[I of A[I]/soc A[I]) is obtained from I'4 (respectively, I's(1))
by removing all indecomposable projective modules P, making their radi-
cals rad P injective modules and the socle factors P/soc P projective mod-
ules, and keeping the indecomposable non-projective modules as well their
Auslander—Reiten translations unchanged. Finally, the functor @ induces a
canonical isomorphism of the stable Auslander-Reiten quivers I'} = Fj[ 1
Summing up, we conclude that the image ®(M) of the pure sectional module
in mod A is a pure sectional module M in mod A[I] and is not the middle of
a short chain. Applying Theorem [2.2) we conclude that pvz = pI/A for some

positive automorphism p of B. Since, by Theorem the Nakayama permu-
tations of A and A[I] are the same, an 1somorphlsm Alll = B/ (pV ) forces
that e; # e, ;) for any primitive direct summand e; of the common re31dua1
identity e of A/I = A[I]/I. Applying now Theorem [3.6] we conclude that
the algebras A and A[I] are isomorphic. Therefore, A is isomorphic to the
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orbit algebra B/ (pV%). This proves the implication (i)=-(ii) of Theorem
The converse implication (ii)=>(i) follows from Theorem
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