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ON ϕ-INNER AMENABLE BANACH ALGEBRAS

BY

A. JABBARI, T. MEHDI ABAD and M. ZAMAN ABADI (Kerman)

Abstract. Generalizing the concept of inner amenability for Lau algebras, we define
and study the notion of ϕ-inner amenability of any Banach algebra A, where ϕ is a
homomorphism from A onto C. Several characterizations of ϕ-inner amenable Banach
algebras are given.

1. Introduction. In his famous work, Lau [6] introduced a wide class of
Banach algebras, called F -algebras, and studied the notion of left amenabil-
ity for these algebras. By definition, an F -algebra A is a Banach algebra
which is the predual of a W ∗-algebra M such that the identity ε of M is a
multiplicative linear functional on A. Although M need not be unique [6],
we shall identify M with the continuous dual A∗ of A if no confusion can
arise. Later on, F -algebras were termed Lau algebras by Pier [14]. Such an
algebra A was called left amenable if there exists a positive linear functional
m of norm 1 on the W ∗-algebra A∗ such that m(f ·a) = m(f) for all f ∈ A∗
and a ∈ P1(A) = {a ∈ A : ε(a) = ‖a‖ = 1}. Left amenability of F -algebras
has been characterized in different ways by Lau [6].

Lau algebras have been studied under various aspects in [6, 7], [9], and
[11–13]. In [12], Nasr-Isfahani introduced the concept of inner amenability
for Lau algebras. A Lau algebra A was said to be inner amenable if there
exists a topological inner invariant mean on the W ∗-algebra A∗, that is, a
positive linear functional m of norm 1 on A∗ such that m(f ·a) = m(a·f) for
all f ∈ A∗ and all a ∈ P1(A) = {a ∈ A : ε(a) = ‖a‖ = 1} (or equivalently,
for all a ∈ A). Commutative Lau algebras, like the Fourier algebra A(G) of
a locally compact group G, are examples of inner amenable algebras. Also
the group algebra L1(G) of any locally compact group G is inner amenable.
In [12], the author obtained several characterizations of inner amenability
of Lau algebras, for instance, inner amenability was shown to be equivalent
to a fixed point property. The idea behind this definition was the notion of
inner amenability for discrete semigroups studied by Ling [10]. A discrete
semigroup S is called inner amenable if there is an element m of P1(`∞(S)∗)
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such that m(ft) = m(tf) for all f ∈ `∞(S) and t ∈ S, where ft(s) =
f(ts) = sf(t) for s, t ∈ S. As pointed out in [12], a discrete semigroup S is
inner amenable if and only if `1(S) is inner amenable.

In an interesting recent work [4] (continued in [5]), the authors have
studied the notion of ϕ-amenability for an arbitrary Banach algebra A, where
ϕ is a homomorphism from A onto C, generalizing left amenability for Lau
algebras of [6]. A is called (left) ϕ-amenable if there exists a bounded linear
functional m on A∗ satisfying m(ϕ) = 1 and m(f · a) = ϕ(a)m(f) for all
a ∈ A and f ∈ A∗. They characterized ϕ-amenability in different ways. One
may define that A is two-sided ϕ-amenable if there exists m ∈ A∗∗ with
m(ϕ) = 1 and m(f · a) = m(a · f) = ϕ(a)m(f) for all a ∈ A and f ∈ A∗.

In this paper, as in the case of ϕ-amenability in [4], we are going to define
and study the concept of ϕ-inner amenability for any Banach algebra. Let
A be an arbitrary Banach algebra and ϕ a homomorphism from A onto C.
Let Aϕ = {a ∈ A : ϕ(a) = 1}. We call A ϕ-inner amenable if there exists
a bounded linear functional m on A∗ satisfying m(ϕ) = 1 and m(f · a) =
m(a·f) for all f ∈ A∗ and for all a ∈ Aϕ (hence for all a ∈ A, since if ϕ(a) = 0
and b ∈ Aϕ is arbitrary, then b−a ∈ Aϕ, thus m(f · (b−a)) = m((b−a) ·f),
that is, m(f · a) = m(a · f) because m(f · b) = m(b · f)). Such a linear
functional m will sometimes be referred to as a ϕ-inner mean, and we denote
by ϕ-IM(A∗) the set of all ϕ-inner means on A∗. In case ϕ is identically zero,
it is clear that there is no non-trivial 0-inner amenable Banach algebra. So
we always assume that ϕ is non-zero.

Commutative Banach algebras, two-sided ϕ-amenable Banach algebras
and Banach algebras with a bounded approximate identity are examples of
ϕ-inner amenable algebras (for the latter see Corollary 2.2). As we shall see,
the concept of ϕ-inner amenability is more general than the notion of inner
amenability for Lau algebras (Remark 2.4). We give several characterizations
of ϕ-inner amenable Banach algebras. In accomplishing these, the methods
employed in [12] and [4] prove extremely useful. Below we outline the content
of this paper.

In Section 2, among other things, it is shown that ϕ-inner amenability
of a Banach algebra A is equivalent to; the existence of a bounded net (να)
in Aϕ such that ‖ναa − aνα‖ → 0 for all a ∈ Aϕ, and the existence of a
ϕ-inner invariant mean (see Section 2 for the definition) on Cau(Aϕ), the
set of all additively uniformly continuous functions on Aϕ (Theorem 2.1).
The aim of Section 3 is to show that the ϕ-inner amenability of a Banach
algebra A with a bounded right approximate identity is equivalent to the
existence of a certain element Λ ∈ B(X∗∗) (the Banach space of all bounded
operators onX∗∗) such that for all a ∈ Aϕ, ΛΛa = ΛaΛ, for every left Banach
A-module X (Theorem 3.3).
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2. Characterization of ϕ-inner amenability. Unless otherwise
stated, throughout this paper A denotes an arbitrary Banach algebra, 0 6=
ϕ ∈ ∆(A), the set of all homomorphisms from A onto C, and Aϕ = {a ∈ A :
ϕ(a) = 1}. The set Aϕ, endowed with the induced norm topology of A and
the product of A, is a topological semigroup. Let Cb(Aϕ) denote the Banach
space of all bounded and continuous functions on Aϕ with the supremum
norm, and define the left and right translation operators la and ra on Cb(Aϕ)
by laφ(b) = φ(ab) = rbφ(a) for all a, b ∈ Aϕ and φ ∈ Cb(Aϕ).

As in [12], a function φ ∈ Cb(Aϕ) is called additively uniformly continuous
on Aϕ if for each ε > 0 there exists δ > 0 such that |φ(a) − φ(b)| < ε
whenever a, b ∈ Aϕ with ‖a − b‖ < δ. Let Cau(Aϕ) denote the set of all
additively uniformly continuous functions on Aϕ. Then Cau(Aϕ) is a norm
closed, translation invariant subspace of Cb(Aϕ) containing the constants
and the restrictions to Aϕ of elements of A∗. An element m of Cau(Aϕ)∗ is
called a ϕ-inner invariant mean if 〈m,ϕ|Aϕ〉 = 1 and 〈m, laφ〉 = 〈m, raφ〉 for
all a ∈ Aϕ and φ ∈ Cau(Aϕ), where ϕ|Aϕ denotes the restriction of ϕ to Aϕ.

Recall that the second dual A∗∗ of A is a Banach algebra with respect to
the first and second Arens products denoted by � and �, respectively, defined
as follows. For a, b ∈ A, f ∈ A∗ and m,n ∈ A∗∗, the elements f ·a, a ·f, m ·f
and f ·m of A∗ and the elements m� n and m � n of A∗∗ are defined by

〈m� n, f〉 = 〈m,n · f〉, 〈n · f, a〉 = 〈n, f · a〉, 〈f · a, b〉 = 〈f, ab〉,
〈m � n, f〉 = 〈n, f ·m〉, 〈f ·m, a〉 = 〈m, a · f〉, 〈a · f, b〉 = 〈f, ba〉.

Obviously, a �m = a �m and m � a = m � a for all a ∈ A and m ∈ A∗∗.
A Banach algebra A is called Arens regular ifm�n = m�n for allm,n ∈ A∗∗.
Now we state and prove the main result of this section.

Theorem 2.1. For a Banach algebra A and ϕ ∈ ∆(A) the following
statements are equivalent:

(i) A is ϕ-inner amenable.
(ii) There is a bounded net (να) in Aϕ such that for all a ∈ Aϕ,

ναa− aνα → 0 in the weak topology of A.
(iii) There is a bounded net (να) in Aϕ such that for all a ∈ Aϕ,

‖ναa− aνα‖ → 0.
(iv) There is a ϕ-inner invariant mean on Cau(Aϕ).

Proof. (i)⇒(ii). Assume that A is ϕ-inner amenable. Then there exists
m ∈ A∗∗ such that m(ϕ) = 1 and 〈m, f · a〉 = 〈m, a · f〉 for all a ∈ Aϕ and
f ∈ A∗. Choose a net (να) in A with the property that να → m in the weak∗
topology on A∗∗ and ‖να‖ ≤ ‖m‖ for all α. Since ϕ(να) → m(ϕ) = 1, after
passing to a subnet and replacing να by (1/ϕ(να))να, we can assume that
ϕ(να) = 1 and ‖να‖ ≤ ‖m‖ + 1 for all α. For all a ∈ Aϕ and f ∈ A∗, we
have 〈m� a, f〉 = 〈a�m, f〉, thus 〈w∗-limα να� a, f〉 = 〈a�w∗-limα να, f〉,
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that is, limα f(ναa) = limα f(aνα) or equivalently limα f(ναa − aνα) = 0.
The latter means that ναa− aνα → 0 in the weak topology of A.

(ii)⇒(iii). Let Y be the vector space
∏
{A : b ∈ Aϕ} and let T : A→ Y

be the linear map defined by T (a)(b) = ba − ab for all a ∈ A and b ∈ Aϕ.
By assumption, the weak closure of T (Aϕ) contains 0. Since Y is a locally
convex space with the product of the norm topologies and Aϕ is convex, the
closure of T (Aϕ) in this topology contains 0. That is, (iii) holds.

(iii)⇒(iv). Let (να) be as in (iii). If we define mα ∈Cau(Aϕ)∗ by 〈mα, φ〉
= φ(να) for all φ ∈ Cau(Aϕ), then any weak∗ cluster point of (mα) in
Cau(Aϕ)∗ is a ϕ-inner invariant mean.

(iv)⇒(i). Let m be a ϕ-inner invariant mean on Cau(Aϕ), and define
M ∈ A∗∗ by 〈M,f〉 = 〈m, f |Aϕ〉 for f ∈ A∗. Then M is a ϕ-inner mean
on A∗.

The next corollary gives us a variety of ϕ-inner amenable Banach alge-
bras.

Corollary 2.2. Let A be a Banach algebra with a bounded approximate
identity. Then A is ϕ-inner amenable for all ϕ ∈ ∆(A).

Proof. Let ϕ ∈ ∆(A). Let {eα} be a bounded approximate identity of A.
Then ϕ(eα) → 1. Hence, without loss of generality, we may assume that
ϕ(eα) 6= 0 for all α. Let να = eα/ϕ(eα). Then the net {να} satisfies condi-
tion (iii) of Theorem 2.1, and hence A is ϕ-inner amenable.

Example 2.3. (1) Let G be a locally compact group and let L1(G) de-
note the group algebra of G. It is well-known that L1(G) has a bounded ap-
proximate identity. Hence L1(G) is ϕ-inner amenable for all ϕ ∈ ∆(L1(G)).

(2) As pointed out in the introduction, every commutative Banach al-
gebra A is ϕ-inner amenable for all ϕ ∈ ∆(A). In fact Aϕ ⊆ ϕ-IM(A∗). In
particular, if G is a locally compact group and A(G) is the Fourier alge-
bra of G [3], then ∆(A(G)) consists of all point evaluations ϕt(f) = f(t),
f ∈ A(G), t ∈ G, and so A(G) is ϕt-inner amenable for all t ∈ G.

The following remark asserts that the concept of ϕ-inner amenability
generalizes that of inner amenability of Lau algebras in [12].

Remark 2.4. Let A be a Lau algebra with ε being the identity of A∗.
Then it is readily seen that A is ε-inner amenable if and only if A is inner
amenable. In fact, that inner amenability implies ε-inner amenability follows
easily from definitions. For the converse, assume that A is ε-inner amenable,
hence there exists an ε-inner mean m on A∗. Thus a � m = m � a and
a � m∗ = m∗ � a for all a ∈ P1(A) = {a ∈ A : ε(a) = ‖a‖ = 1} (note in
particular that the elements of P1(A) are positive). So we may assume that
m is self-adjoint. Write m = m+ −m−, the orthogonal decomposition of m.
If a ∈ P1(A), then a�m = a�m+−a�m− and m�a = m+�a−m−�a.
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Let a ∈ P1(A). Since m+ � a, m− � a, a�m+ and a�m− are all positive
and

‖a�m+‖+ ‖a�m−‖ = ‖a�m‖ = ‖m� a‖ = ‖m+ � a‖+ ‖m− � a‖

it follows that a�m+ = m+�a and a�m− = m−�a [15, Theorem 1.14.3].
Therefore if m+ 6= 0 (say) and n = m+/m+(ε), then n is the desired topo-
logical inner invariant mean.

For a Banach algebra A and ϕ ∈ ∆(A) let ϕ̃ denote the unique extension
of ϕ to A∗∗. Clearly, any ϕ̃-inner mean on A∗∗∗ restricted to A∗ is a ϕ-inner
mean on A∗. Thus we have the following proposition.

Proposition 2.5. Let A be an Arens regular Banach algebra. Then A
is ϕ-inner amenable if and only if A∗∗ is ϕ̃-inner amenable.

Proof. Assume that A is ϕ-inner amenable. Then there exists m ∈ A∗∗
such that 〈m,ϕ〉 = 1 and 〈m, f.a〉 = 〈m, a.f〉 for all a ∈ Aϕ and f ∈ A∗. For
given n ∈ A∗∗ϕ̃ and u ∈ A∗∗∗, choose nets (aα)α in A and (fβ)β in A∗ such
that aα → n and fβ → u with respect to the corresponding w∗-topologies.
Now ϕ(aα) = 〈aα, ϕ〉 → 〈n, ϕ〉 = ϕ̃(n) = 1, hence after passing to a subnet
and replacing aα by (1/ϕ(aα))aα, one may assume that ϕ(aα) = 1. Consider
m as an element m̂ of A∗∗∗∗. Then clearly m̂(ϕ̃) = 1 and

〈m̂, u.n〉 = 〈u.n,m〉 = 〈u, n�m〉 = lim
β
〈fβ, n�m〉 = lim

β
〈n,m · fβ〉

= lim
β

lim
α
〈aα,m · fβ〉 = lim

β
lim
α
〈m, fβ · aα〉 = lim

β
lim
α
〈m, aα · fβ〉

= lim
β

lim
α
〈m · aα, fβ〉 = lim

β
〈m� n, fβ〉 = lim

β
〈fβ,m� n〉

= 〈u,m� n〉 = 〈n · u,m〉 = 〈m̂, n · u〉.

Hence A∗∗ is ϕ̃-inner amenable.

Recall that an element E of A∗∗ is called a mixed identity if a � E =
E�a = a for all a ∈ A. It is easily seen that an element E of A∗∗ is a mixed
identity if and only if it is a weak∗ cluster point of a bounded approximate
identity in A, [1]. A Lau algebra A is called strictly inner amenable (see [2]
and also [8]) if there exists a topological inner invariant mean on A∗ which
is not a mixed identity of A∗∗. For ϕ ∈ ∆(A), let us call an element E of
A∗∗ a ϕ-mixed identity if a � E = E � a = a for all a ∈ Aϕ. Therefore any
ϕ-mixed (or equivalently mixed) identity M of A∗∗ such that M(ϕ) = 1 is
in ϕ-IM(A∗).

We say that A is strictly ϕ-inner amenable if there exists a ϕ-inner mean
on A∗ which is not a ϕ-mixed identity. When ϕ = 1 and A = L1(G), the
group algebra of a locally compact group G, the notion of strict ϕ-inner
amenability was studied by Effros [2] and also by Lau and Paterson [8].
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As an application of the above proposition we have the next corollary.

Corollary 2.6. If A is Arens regular and A∗∗ is not strictly ϕ̃-inner
amenable, then A is not strictly ϕ-inner amenable.

Proof. Let M ∈ ϕ-IM(A∗). Then by the proof of the above proposition,
M ∈ ϕ̃-IM(A∗∗∗). Since A∗∗ is not strictly ϕ̃-inner amenable,M is a ϕ-mixed
identity of A∗∗∗∗. In particular, a�M = M � a = a for all a ∈ Aϕ, that is,
M is a ϕ-mixed identity of A∗∗ and A is not strictly ϕ-inner amenable.

Remark 2.7. We remark that every strictly ε-inner amenable Lau alge-
bra A is strictly inner amenable, where ε is the identity of A∗. Indeed, if A is
strictly ε-inner amenable, then there exists an ε-inner mean m on A∗ which
is not an ε-mixed identity, that is, there exists b ∈ A with ε(b) = 1 such that
m�b = b�m 6= b. Suppose that m+(ε) 6= 0. By Remark 2.4, n = m+/m+(ε)
is a topological inner invariant mean on A∗. Now two cases may occur:

First, m−(ε) = 0. In this case, since m− is positive we have ‖m−‖ =
m−(ε) = 0. Hence m− = 0 and therefore n = m+ = m, and m is the desired
topological inner invariant mean which is not a mixed identity.

Second, m−(ε) 6= 0. Then the same method as in Remark 2.4 shows
that n′ := m−/m−(ε) is also a topological inner invariant mean on A∗. We
are going to show that at least one of the means n or n′ is not a mixed
identity of A∗∗. To this end, it is enough to show that n� b = b� n 6= b or
n′ � b = b � n′ 6= b. But this is clear, since otherwise m � b = b �m = b,
which is a contradiction.

For every commutative Banach algebra A of dimension more than 1, if
ϕ ∈ ∆(A) and a ∈ Aϕ with a2 6= a, then a is a ϕ-inner mean on A∗ which is
not a ϕ-mixed identity, hence A is strictly ϕ-inner amenable.

Now we wish to raise the following question:

Question. Can (strictly) 1-inner amenability be characterized in terms
of a property of the von Neumann algebra A∗ where A is in a certain class
of Lau algebras?

To end this section, we prove the next heredity property.

Theorem 2.8. Let A and B be Banach algebras and suppose that h :
A → B is a continuous homomorphism with dense range. If ϕ ∈ ∆(B) and
A is ϕ ◦ h-inner amenable, then B is ϕ-inner amenable.

Proof. Let m ∈ A∗∗ satisfy 〈m,ϕ◦h〉 = 1 and 〈m, f ·a〉 = 〈m, a ·f〉 for all
f ∈ A∗ and a ∈ Aϕ◦h. Define n ∈ B∗∗ by 〈n, g〉 = 〈m, g ◦ h〉, where g ∈ B∗.
Then 〈n, ϕ〉 = 1. Since h(A) is dense in B, for b ∈ Bϕ there is a net (aα)
in A such that h(aα) → b. Therefore ϕ(h(aα)) → ϕ(b) = 1. After passing
to a subnet and replacing h(aα) by (1/ϕ(h(aα)))h(aα) we can assume that
ϕ(h(aα)) = 1, that is, h(aα) ∈ Bϕ. Now for 〈n, g ·b〉 = 〈n, b ·g〉 to hold for all
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b ∈ Bϕ and g ∈ B∗, it suffices to verify this equality for b ∈ Bϕ of the form
b = h(a), a ∈ A. Let a and b be as above. Since b ∈ Bϕ, we have a ∈ Aϕ◦h.
Now for all a′ ∈ A,

〈(g · h(a)) ◦ h, a′〉 = 〈g, h(a)h(a′)〉 = 〈g ◦ h, aa′〉 = 〈(g ◦ h) · a, a′〉,

hence (g · h(a)) ◦ h = (g ◦ h) · a. Similarly, (h(a) · g) ◦ h = a · (g ◦ h). Hence
for all g ∈ B∗,

〈n, g · b〉 = 〈n, g · h(a)〉 = 〈m, (g · h(a)) ◦ h〉 = 〈m, (g ◦ h) · a〉
= 〈m, a · (g ◦ h)〉 = 〈m, (h(a) · g) ◦ h〉 = 〈n, h(a) · g〉 = 〈n, b · g〉,

and the result follows.

3. Bounded right approximate identities and ϕ-inner amenabil-
ity. In this section we study the concept of ϕ-inner amenability for Banach
algebras with a bounded right approximate identity. To this end, first we fix
some notation and definitions.

Let A be a Banach algebra and let X be a left Banach A-module, i.e. a
Banach space X equipped with a bounded bilinear map from A×X into X,
denoted by (a, x) 7→ a · x, such that a · (b · x) = (ab) · x for all a, b ∈ A and
x ∈ X. For all a ∈ A, x ∈ X, x∗ ∈ X∗ and x∗∗ ∈ X∗∗ define

〈a · x∗∗, x∗〉 = 〈x∗∗, x∗ · a〉, 〈x∗ · a, x〉 = 〈x∗, a · x〉.

Let B(X∗∗) denote the Banach space of all bounded operators on X∗∗. By
weak∗ operator topology on B(X∗∗) we shall mean the locally convex topology
of B(X∗∗) determined by the family

{T 7→ |〈Tx∗∗, x∗〉| : x∗∗ ∈ X∗∗, x∗ ∈ X∗}

of seminorms on B(X∗∗). We denote by Bϕ(A,X∗∗) the closure of the set
{Λa : a ∈ Aϕ} in the weak∗ operator topology, where Λa ∈ B(X∗∗) is defined
by Λa(x∗∗) = a · x∗∗ for all x∗∗ ∈ X∗∗.

It is well-known that (X∗∗⊗X∗)∗ is isometrically isomorphic to B(X∗∗)
with the isomorphism φ : (X∗∗ ⊗ X∗)∗ → B(X∗∗) defined by φ(F ) = φF ,
where φF (x∗∗)(x∗) = F (x∗∗ ⊗ x∗) for all x∗∗ ∈ X∗∗ and x∗ ∈ X∗. So the
weak∗ operator topology of B(X∗∗) coincides with the weak∗ topology of
(X∗∗ ⊗X∗)∗ (see [1]).

Note that for each a ∈ Aϕ, Λa ∈ B(X∗∗), and since φ is an isomorphism
there exists a unique element Fa ∈ (X∗∗ ⊗ X∗)∗ such that φ(Fa) = Λa.
Therefore for all x∗∗ ∈ X∗∗ and x∗ ∈ X∗, φ(Fa)(x∗∗)(x∗) = Λa(x∗∗)(x∗),
that is, Fa(x∗∗ ⊗ x∗) = 〈a · x∗∗, x∗〉 = 〈x∗∗, x∗ · a〉.

Lemma 3.1. If H = {Fa : a ∈ Aϕ} ⊂ (X∗∗ ⊗ X∗)∗. Then φ(Hw∗
) =

Bϕ(A,X∗∗), where Hw∗
denotes the weak∗ closure of H in (X∗∗ ⊗X∗)∗.
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Proof. Indeed, φ(H) = {Λa : a ∈ Aϕ}. Let D = {Λa : a ∈ Aϕ}, and
let F ∈ H

w∗
. Then there is a net (Faα) in H such that Faα → F in the

weak∗ topology of (X∗∗⊗X∗)∗. Since the weak∗ operator topology of B(X∗∗)
coincides with the weak∗ topology of (X∗∗ ⊗X∗)∗, φFaα → φF in the weak∗
operator topology onB(X∗∗), thus Λaα → φF in the weak∗ operator topology
onB(X∗∗). Therefore φF belongs to the weak∗ operator closure ofD, which is
equal to Bϕ(A,X∗∗). Hence φF ∈ Bϕ(A,X∗∗) and so φ(Hw∗

) ⊆ Bϕ(A,X∗∗).
Conversely, let Λ ∈ Bϕ(A,X∗∗). Then there is a net aα ∈ Aϕ such that

φFaα = Λaα → Λ in the weak∗ operator topology. Since φ is onto, there
exists F ∈ (X∗∗⊗X∗)∗ such that Λ = φ(F ). Hence φFaα → φF in the weak∗

operator topology, and so Faα → F in the weak∗ topology. That is, F ∈ Hw∗

and Λ = φ(F ) ∈ φ(Hw∗
).

Proposition 3.2. If the Banach algebra A is ϕ-inner amenable, then
for each left Banach A-module X there exists Λ ∈ Bϕ(A,X∗∗) such that
ΛΛa = ΛaΛ for all a ∈ Aϕ.

Proof. By Theorem 2.1, there exists a bounded net aα ∈ Aϕ such that
‖aαa − aaα‖ → 0 for all a ∈ Aϕ. Furthermore, if p denotes the projective
tensor norm on X∗∗ ⊗X∗, then for each α,

‖Faα‖ = sup{‖Faα(x∗∗ ⊗ x∗)‖ : p(x∗∗ ⊗ x∗) = ‖x∗∗‖ · ‖x∗‖ = 1,
x∗∗ ∈ X∗∗, x∗ ∈ X∗}

= sup{‖〈x∗∗, x∗ · aα〉‖ : ‖x∗∗‖ · ‖x∗‖ = 1, x∗∗ ∈ X∗∗, x∗ ∈ X∗}
≤ sup{‖x∗∗‖ ‖x∗‖ ‖aα‖ : ‖x∗∗‖ · ‖x∗‖ = 1} = ‖aα‖.

But (aα) is bounded, hence the net (Faα) is bounded. Therefore (Faα)
has a cluster point, say F . Assume that Faδ → F in the weak∗ topol-
ogy on (X∗∗ ⊗X∗)∗, where (aδ) is a subnet of (aα). Put Λ = φ(F ). Then
clearly Λaδ → Λ in the weak∗ operator topology. Thus for each a ∈ Aϕ,
ΛaδΛa → ΛΛa and ΛaΛaδ → ΛaΛ in the weak∗ operator topology. Moreover
‖ΛaδΛa − ΛaΛaδ‖ ≤ K‖aδa− aaδ‖ → 0, where K is a constant satisfying

‖b · x‖ ≤ K‖b‖ · ‖x‖

for all b ∈ A and x ∈ X. Consequently, ΛΛa = ΛaΛ for all a ∈ Aϕ.

We are now in a position to give a characterization of ϕ-inner amenability
of a Banach algebra A with a bounded right approximate identity.

Theorem 3.3. Suppose that the Banach algebra A has a bounded right
approximate identity and let ϕ ∈ ∆(A). Then the following are equivalent:

(i) A is ϕ-inner amenable.
(ii) There exists Λ ∈ Bϕ(A,A∗∗) such that ΛΛa = ΛaΛ for all a ∈ Aϕ.
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(iii) For each left Banach A-module X, there exists Λ ∈ Bϕ(A,X∗∗) such
that ΛΛa = ΛaΛ for all a ∈ Aϕ.

Proof. (i)⇒(iii) follows from Proposition 3.2. (iii)⇒(ii) is trivial. Now
suppose that (ii) holds, and choose an element Λ of Bϕ(A,A∗∗) such that
ΛΛa = ΛaΛ for all a ∈ Aϕ. We prove that (i) holds. By Lemma 3.1,
φ(Hw∗

) = Bϕ(A,A∗∗), thus for Λ ∈ Bϕ(A,A∗∗) there exists F ∈ Hw∗
such

that φ(F ) = Λ. On the other hand, there is a net (aα) in Aϕ such that
Faα → F in the weak∗ topology on (A∗∗ ⊗ A∗)∗, therefore φFaα → φ(F )
in the weak∗ operator topology on B(A∗∗), that is, Λaα → Λ in the weak∗
operator topology.

Define M ∈ A∗∗ by 〈M,f〉 = 〈F,E⊗ f〉 for all f ∈ A∗, where E ∈ A∗∗ is
a weak∗ cluster point of a bounded right approximate identity of A. Hence
E is a right identity of A∗∗. Now

〈M,ϕ〉 = 〈F,E ⊗ ϕ〉 = 〈w∗- lim
α
Faα , E ⊗ ϕ〉 = lim

α
〈Faα , E ⊗ ϕ〉

= lim
α
〈E,ϕ · aα〉 = lim

α
〈aα � E,ϕ〉 = lim

α
〈aα, ϕ〉 = 1.

It remains to show that M � a = a�M for all a ∈ Aϕ. To this end, observe
that for a ∈ Aϕ and f ∈ A∗ one has

〈M � a, f〉 = 〈M,a · f〉 = 〈F,E ⊗ (a · f)〉 = 〈w∗- lim
α
Faα , E ⊗ (a · f)〉

= lim
α
〈Faα , E ⊗ (a · f)〉 = lim

α
〈E, (a · f) · aα〉 = lim

α
〈aα � E, a · f〉

= lim
α
〈aα, a · f〉 = lim

α
〈aα, (a · E) · f〉 = lim

α
〈aα � (a · E), f〉

= lim
α
〈(aαa) � E, f〉 = lim

α
〈E, f · (aαa)〉.

On the other hand,

〈a�M,f〉 = 〈a,M · f〉 = 〈M,f · a〉 = 〈F,E ⊗ (f · a)〉
= 〈w∗- lim

α
Faα , E ⊗ (f · a)〉 = lim

α
〈Faα , E ⊗ (f · a)〉

= lim
α
〈E, (f · a) · aα〉 = lim

α
〈E, f · (aaα)〉

It is enough to observe that the right hand sides of the above equalities
coincide, that is,
(?) lim

α
〈E, f · (aαa)〉 = lim

α
〈E, f · (aaα)〉

Fix a ∈ Aϕ and f ∈ A∗. We have ΛaΛ(E) = ΛΛa(E), hence 〈a · (ΛE), f〉 =
〈Λ(a · E), f〉, and 〈a � (ΛE), f〉 = 〈Λ(a · E), f〉. Therefore 〈ΛE, f · a〉 =
〈Λ(a · E), f〉.

Since Λaα → Λ in the weak∗ operator topology, Λaα(E)(f) → Λ(E)(f)
for all f ∈ A∗. Thus limα〈Λaα(E), f ·a)〉 = limα〈Λaα(a·E), f〉. It follows that
limα〈aα·E, f ·a〉 = limα〈aα·(a·E), f〉. Hence limα〈f, aaαE〉 = limα〈f, aαaE〉,
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and therefore limα〈f ·(aaα), E〉 = limα〈f ·(aαa), E〉. It follows that (?) holds.
Consequently, a�M = M � a for all a ∈ Aϕ, and A is ϕ-inner amenable.
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