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APPROXIMATION THEOREMS FOR COMPACTIFICATIONS

BY

KOTARO MINE (Tsukuba)

Abstract. We shall show several approximation theorems for the Hausdorff com-
pactifications of metrizable spaces or locally compact Hausdorff spaces. It is shown that
every compactification of the Euclidean n-space Rn is the supremum of some compactifi-
cations homeomorphic to a subspace of Rn+1. Moreover, the following are equivalent for
any connected locally compact Hausdorff space X:

(i) X has no two-point compactifications,
(ii) every compactification of X is the supremum of some compactifications whose

remainder is homeomorphic to the unit closed interval or a singleton,
(iii) every compactification of X is the supremum of some singular compactifications.

We shall also give a necessary and sufficient condition for a compactification to be ap-
proximated by metrizable (or Smirnov) compactifications.

1. Introduction. Suppose that X is a non-compact completely regular
space and let K(X) be the class of all Hausdorff compactifications of X. For
any two compactifications γX and δX of X, we write γX ≤ δX if there is a
continuous map f : δX → γX such that f |X = idX . If such a map f can be
a homeomorphism (i.e., γX ≤ δX and γX ≥ δX), we say γX is equivalent
(∼) to δX. Identifying γX and δX with γX ∼ δX, we may assume that the
quotient (K(X)/∼,≤) has a partially ordered structure. Throughout this
paper, we identify K(X) with K(X)/∼.

In this paper, we shall show the following theorem.

Theorem 1.1. Every compactification of Euclidean n-space Rn is the
supremum of compactifications that are subspaces of Rn+1.

There have been many studies about approximating the Stone–Čech
compactification βX by simpler compactifications. For example, it is known
that βX is the supremum of (a) all singular compactifications having the
remainder homeomorphic to a closed interval if X is locally compact non-
pseudocompact (Chandler and Faulkner [2]), (b) all singular compactifi-
cations if X is locally compact 1-complemented, where a locally compact
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space X is said to be 1-complemented (or connected at infinity) provided
each compact set L1 ⊂ X is contained in a compact set L2 such that X \L2

is connected (cf. [2]), (c) all Smirnov compactifications for any metrizable
space X (Woods [8]) and (d) all Higson compactifications for any locally
compact separable metrizable space X (Kawamura and Tomoyasu [7]).

On the other hand, it was announced that any compactification of Rn

(n ≥ 2) is the supremum of compactifications having closed intervals as
remainders in [5]. In this paper, we shall give the following.

Theorem 1.2. Suppose that X is a non-compact locally compact Haus-
dorff space. Then X has no two-point compactifications if and only if every
compactification of X is the supremum of a collection K ⊂ K(X) such that
each remainder of γX ∈ K is homeomorphic to the unit closed interval or a
singleton. In this case, we can take for K a collection of singular compacti-
fications.

Theorem 1.3. Suppose that X is a connected non-compact locally com-
pact Hausdorff space. Then the following are equivalent:

(i) X has no two-point compactifications,
(ii) every compactification of X is the supremum of a collection K ⊂
K(X) such that each remainder of γX ∈ K is homeomorphic to the
unit closed interval or a singleton,

(iii) every compactification of X is the supremum of singular compacti-
fications.

It is well known that every compactification of a locally compact separa-
ble metrizable space is the supremum of some metrizable compactifications.
Since any metrizable compactification is a Smirnov compactification (see
Fact 3.3), it also follows that every compactification of a locally compact
separable metrizable space is the supremum of some Smirnov compactifica-
tions. These results are generalized as follows.

Theorem 1.4. Suppose that X is a non-compact metrizable space. Then
a compactification δX of X can be realized as the supremum of some metriz-
able compactifications if and only if X has a metrizable compactification γX
such that γX ≤ δX.

Theorem 1.5. Suppose that X is a non-compact metrizable space. Then
a compactification δX of X can be realized as the supremum of some Smirnov
compactifications if and only if X has a Smirnov compactification udX for
an admissible metric d on X such that udX ≤ δX.

In Section 4, we shall also give an upper bound κ on the minimal car-
dinality of a collection K in Theorem 1.2 (see Corollaries 4.3 and 4.5). The
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paper [6] gave the minimal cardinality to approximate βX by Smirnov com-
pactifications in the case of X = [0, 1) or ω.

2. Compactifications and subalgebras of C∗(X). Throughout this
paper, X is a non-compact completely regular space. We denote by C∗(X)
the unital Banach algebra consisting of all bounded continuous functions
from X to R with the supremum norm ‖f‖ = supx∈X |f(x)|.

It is well known that the partially ordered set (K(X),≤) is isomorphic
to the collection (A(X),⊂) consisting of all closed unital subalgebras A ⊂
C∗(X) which generate the topology of X, that is, the original topology of X
coincides with the weak topology with respect to A. Indeed, the following
function S : K(X)→ A(X) (cf. [1]) is an isomorphism:

S(γX) = {f |X ∈ C∗(X) | f ∈ C∗(γX)}.

Note that S(γX) is isomorphic to C∗(γX) as a Banach algebra and co-
incides with all functions in C∗(X) which can be extended over γX. For
any A ∈ A(X), let eA : X → IA be the embedding defined by eA(x) =
(f(x)/‖f‖)f∈A, where I denotes the closed interval [−1, 1]. Then the order
homomorphism T : A(X) → K(X) defined by T (A) = clIA eA(X) is the
inverse of S (cf. Theorem 3.7 of [1]).

Since (A(X),⊂) is a complete upper semilattice, so is (K(X),≤), that
is, every subset K ⊂ K(X) has a supremum supK ∈ K(X). In particu-
lar, supK(X) = βX is the Stone–Čech compactification of X. If X is lo-
cally compact, then K(X) has a complete lattice structure and the infimum
inf K(X) = αX is the Aleksandrov one-point compactification of X.

For a subset D of any unital Banach algebra A, D denotes the closure of
D in A, and 〈D〉 is the smallest unital subalgebra of A containing D. The
following is a key lemma (cf. Theorem 2 of [5]).

Lemma 2.1. Suppose that γX is a compactification of X and A =
S(γX). For any g ∈ C∗(X), the compactification γgX = T (〈A, g〉) can
be embedded in I× γX.

Proof. Put Ag = 〈A, g〉. Note that the map e : X → IA∪{g} defined
by e(x) = prA∪{g} ◦ eAg is an embedding, where prA∪{g} : IAg → IA∪{g}

is the natural projection. From the definition of the operator T , γgX =
clIAg eAg(X). Now, we show that the compactification γ′gX = clIA∪{g} e(X)
is equivalent to γgX. It is clear that γgX ≥ γ′gX via the quotient map
prA∪{g}|γgX : γgX → γ′gX. On the other hand, since each map f ∈A∪{g} has
an extension ‖f‖ prf |γ′gX over γ′gX, the closed subalgebra S(γ′gX) contains
A ∪ {g}. This implies Ag ⊂ S(γ′gX) and

γgX = T (Ag) ≤ T (S(γ′gX)) = γ′gX.
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Hence, γgX is equivalent to γ′gX. Thus, we have the inclusion

(1) γgX ∼ γ′gX = clIA∪{g} e(X) ⊂ I× clIA eA(X) = I× γX.

In the following, we consider the one-point compactification for a locally
compact space X.

Lemma 2.2. Suppose that X is non-compact locally compact having no
two-point compactifications. Let αX = X ∪ {∞} be the one-point compacti-
fication and A = S(αX) a subalgebra of C∗(X). Then the remainder of the
compactification αgX = T (〈A, g〉) is homeomorphic to I or a singleton for
each g ∈ C∗(X).

Proof. Without loss of generality, we may assume ‖g‖ = 1 because
〈A, g〉 = 〈A, g/‖g‖〉. Put e(X) = {(g(x), x) | x ∈ X} ⊂ I × αX. Note that
equation (1) in the proof of Lemma 2.1 implies α′gX = clI×αX e(X) ∼ αgX.
Thus, it suffices to show that νX = α′gX \ e(X) is homeomorphic to I or a
singleton. Since e(X) is closed in I×X, we have νX = α′gX∩(I×{∞}). Now,
we shall show if νX is disconnected then X has a two-point compactifica-
tion. Indeed, if νX is disconnected, take t ∈ I such that (t,∞) /∈ νX, νX ∩
((t, 1]×{∞}) 6= ∅ and νX∩([−1, t)×{∞}) 6= ∅. Then X is the disjoint union

X = g−1([−1, t)) ∪ g−1(t) ∪ g−1((t, 1]).

As (t,∞) /∈ νX, g−1(t) is compact. On the other hand, the closures of V+ =
g−1((t, 1]) and V− = g−1([−1, t)) are both non-compact. Hence, we have a
two-point compactification γX = X∪{±∞} with the topology generated by

{U | U open in X}
∪ {{+∞} ∪ (V+ \ F ), {−∞} ∪ (V− \ F ) | F compact in X}.

Thus, νX is a compact connected subset of I×{∞} and it is homeomorphic
to I or a singleton.

3. Singular compactifications and Smirnov compactifications.
We call a continuous map f from X to a compact space L singular if
clX f−1(U) is non-compact for every non-empty open set U in L. Then
the singular compactification of X induced by f , denoted by X ∪f L, is a
topological space X ∪ L whose topology is generated by the following col-
lection:

{U | U open in X}
∪ {V ∪ (f−1(V ) \ F ) | V open in L, F compact in X}.

It is known that a compactfication γX is equivalent to some singular com-
pactification if and only if γX \X is a retract of γX (cf. [4]). Then we have
the following lemma whose simple proof is left to the reader.
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Lemma 3.1. In Lemma 2.2, αgX is a singular compactification for any
g ∈ C∗(X).

For a metrizable space X and an admissible metric d on X, let U∗d (X)
be the subalgebra of C∗(X) consisting of all bounded uniformly continuous
functions with respect to d. The Smirnov (or Samuel) compactification udX
is defined by udX = T (U∗d (X)), which is characterized by the following
theorem:

Theorem 3.2 (Theorem 2.5 of [8]). Suppose that X = (X, d) is a metric
space. Then the following are equivalent:

(i) γX ∼ udX,
(ii) for any A,B ⊂ X, clγX A ∩ clγX B 6= ∅ if and only if d(A,B) = 0.

Note that it is well known that every compactification of a locally com-
pact separable metrizable space is the supremum of some metrizable com-
pactifications. The following fact implies that every compactification of a lo-
cally compact separable metrizable space is the supremum of some Smirnov
compactifications.

Fact 3.3. Every metrizable compactification is a Smirnov compactifica-
tion.

Proof. Let γX be a metrizable compactification. Take an admissible met-
ric ρ on γX. Then d = ρ|X is an admissible metric on X. It is obvious that
clγX A∩clγX B 6= ∅ if and only if d(A,B) = 0 for any A,B ⊂ X. By Theorem
3.2, we have udX ∼ γX.

The following is well known (see the proof of Theorem 3.5.5 of [3]).

Theorem 3.4 (Tăımanov). Suppose that X is a non-compact completely
regular space. Let γX and δX be compactifications of X. Then the following
are equivalent:

(i) γX ≤ δX,
(ii) if A and B are closed subsets in X with clγX A ∩ clγX B = ∅ then

clδX A ∩ clδX B = ∅.
The following lemma implies that βX is realized as the supremum of

some Smirnov compactifications, which was shown by Woods [8].

Lemma 3.5. Let X = (X, d) be a metric space. Then ud′X is equivalent
to γX = T (〈U∗d (X), g〉) for any g ∈ C∗(X), where d′ is the metric on X
defined by d′(x, y) = d(x, y) + |g(x)− g(y)|.

Proof. Since g and each member of U∗d (X) are uniformly continuous with
respect to the metric d′, it is clear that U∗d (X) ⊂ 〈U∗d (X), g〉 ⊂ U∗d′(X). This
implies udX ≤ γX ≤ ud′X. To see ud′X ≤ γX, by Theorem 3.4 it suffices
to check that clγX A∩ clγX B = ∅ for any closed subsets A and B in X with
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clud′X A∩ clud′X B = ∅. Assume to the contrary that clud′X A∩ clud′X B = ∅
and there is x ∈ clγX A ∩ clγX B. Then ε = d′(A,B) > 0 by Theorem 3.2.
Let π = prU∗d (X) |γX : γX → udX be the quotient map and N(x) the
open neighborhood system of x in γX. For every V ∈ N(x), π(x) is in
cludX π(A∩ V )∩ cludX π(A∩ V ) since x ∈ clγX(A∩ V )∩ clγX(B ∩ V ). Note
that π(A ∩ V ) = A ∩ V and π(B ∩ V ) = B ∩ V . Thus, π(x) ∈ cludX(A ∩
V )∩ cludX(B ∩ V ) and d(A∩ V,B ∩ V ) = 0 by Theorem 3.2. Hence, we can
take aV ∈ A ∩ V and bV ∈ B ∩ V such that d(aV , bV ) < ε/2. Then the nets
(aV )V ∈N(x) and (bV )V ∈N(x) converge to x in γX and we have

lim
V ∈N(x)

g(aV ) = lim
V ∈N(x)

‖g‖ prg(aV ) = ‖g‖ prg(x)

= lim
V ∈N(x)

‖g‖ prg(bV ) = lim
V ∈N(x)

g(bV ).

Hence, there is V0 ∈ N(x) such that |g(aV0)− g(bV0)| < ε/2 and so

d′(aV0 , bV0) = d(aV0 , bV0) + |g(aV0)− g(bV0)| < ε/2 + ε/2 = ε = d′(A,B).

This is a contradiction.

4. Generators for Banach algebras. Recall that K(X) is the collec-
tion of all compactifications of X.

Proposition 4.1. Let γX and δX be compactifications of a completely
regular space X with δX ≥ γX. Then there exists a collection K ⊂ K(X)
such that supK = δX and each member of K can be embedded in I× γX.

Proof. Let A = S(γX) and B = S(δX) be subalgebras of C∗(X). Take
any set D ⊂ B satisfying 〈D〉 = B. For any g ∈ D\S(γX), γgX = T (〈A, g〉)
can be embedded in I×γX by Lemma 2.1. Let K = {γgX | g ∈ D \S(γX)}
be a collection of compactifications. Since T is an isomorphism between
complete upper semilattices, we have

δX = T (B) = T (sup{〈A, g〉 | g ∈ D \ S(γX)})
= sup{T (〈A, g〉) | g ∈ D \ S(γX)}
= sup{γgX | g ∈ D \ S(γX)} = supK.

For a set D, cardD denotes the cardinal of D. From the proof of Propo-
sition 4.1, the following corollaries are derived.

Corollary 4.2. In Proposition 4.1, we can take K ⊂ K(X) such that
each member of K is T (〈A, g〉) for some g ∈ C∗(X), where A is the subal-
gebra of C∗(X) defined by A = S(γX).

Corollary 4.3. In Proposition 4.1, the minimal cardinality of a col-
lection K ⊂ K(X) satisfying supK = δX has an upper bound

κ = min{card(D \ S(γX)) | D ⊂ S(δX), 〈D〉 = S(δX)}.
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For any unital Banach algebra A, gen(A) denotes the minimal cardinality
of a subset of A which generates A, that is,

gen(A) = min{cardD | D ⊂ A, 〈D〉 = A}.
In Corollary 4.3, it is obvious that κ ≤ gen(S(δX)) = gen(C∗(δX)). Let Y
be a completely regular space. We denote by emb(Y ) the minimal dimension
of Tikhonov cubes containing Y as a subspace:

emb(Y ) = min{cardD | ∃e : Y ↪→ ID an embedding}.
Then the following proposition yields gen(S(δX)) = emb(δX).

Proposition 4.4. If L is a compact Hausdorff space, then emb(L) =
gen(C∗(L)).

Proof. To see emb(L) ≥ gen(C∗(L)), take an embedding e : L ↪→ Iemb(L).
Let D = {prλ ◦ e ∈ C∗(L) | λ ∈ emb(L)}, where prλ : Iemb(L) → I is the
projection to the λth coordinate. Since e is an embedding, D separates the
points of L. Hence, 〈D〉 = C∗(L) by the Stone–Weierstrass Theorem. This
implies gen(C∗(L)) ≤ cardD = emb(L).

To see emb(L) ≤ gen(C∗(L)), let D be a subset of C∗(L) with 〈D〉 =
C∗(L). Then D separates the points of L. Hence, the map

e : L→ ID, e(x) = (f(x)/‖f‖)f∈D,
is an embedding. This implies emb(L) ≤ cardD = gen(C∗(L)).

Corollary 4.5. In Corollary 4.3, κ ≤ emb(δX).

We say that a unital Banach algebra A is countably (resp. finitely) gen-
erated if there exists a countable (resp. finite) subset D ⊂ A such that
〈D〉 = A. The following is a direct consequence of the previous proposition.

Corollary 4.6. Suppose that L is a compact Hausdorff space. Then
L is separable (resp. finite-dimensional separable) metrizable if and only if
C∗(L) is countably (resp. finitely) generated.

Theorem 4.7. Suppose that X is a completely regular space. Then X is
separable (resp. finite-dimensional separable) metrizable if and only if there
exists a compactification γX of X such that C∗(γX) is countably (resp.
finitely) generated.

Proof. To show the “if” part, suppose that C∗(γX) is countably (resp.
finitely) generated. By Corollary 4.6, γX is separable (resp. finite-dimen-
sional separable) metrizable, thus so is X.

To show the “only if” part, assume that X is separable (resp. finite-
dimensional separable) metrizable. Then X can be embedded in the Hilbert
cube IN (resp. the n-cube In for some n ∈ N). Let γX be the closure of
X in IN (resp. In). Then C∗(γX) is countably (resp. finitely) generated by
Corollary 4.6.



100 K. MINE

In particular, if X is locally compact (finite-dimensional) separable metr-
izable, then so is αX. Thus, we have the following corollary.

Corollary 4.8. Suppose that X is a locally compact Hausdorff space.
Then X is separable (resp. finite-dimensional separable) metrizable if and
only if C∗(αX) is countably (resp. finitely) generated.

5. The proof of approximation theorems. Now, we shall show the
statements in Section 1. The following is a direct consequence of Proposi-
tion 4.1.

Theorem 5.1. Suppose that X is a non-compact locally compact Haus-
dorff space. If I×αX is homeomorphic to a subspace of a topological space
Y , then every compactification of X is the supremum of compactifications
homeomorphic to a subspace of Y .

In particular, if X = Rn then the one-point compactification αX is
homeomorphic to the n-dimensional sphere Sn. Since I×Sn can be embedded
in Rn+1, Theorem 1.1 follows from Theorem 5.1 above.

Proof of Theorem 1.2. It is clear that the “only” if part follows from
Lemma 2.2 and Corollary 4.2. On the other hand, it is obvious that no
two-point compactification of X can be the supremum of compactifications
having the remainder homeomorphic to I or one-point. This yields the “if”
part. The representability by singular compactifications is due to Lemma 3.1.
We have completed the proof.

Proof of Theorem 1.3. From Theorem 1.2, we have (i)⇔(ii) and (i)⇒(iii).
Now we shall show (iii)⇒(i). Assume to the contrary that X has a two-
point compactification γX. Since γX is the supremum of some singular
compactifications, we have a singular map f : X → L and the singular
compactification X ∪f L ≤ γX whose remainder L is a two-point set. This
contradicts the connectedness of X.

Proof of Theorems 1.4 and 1.5. Let γX be a metrizable (resp. Smirnov)
compactification with γX ≤ δX and A = S(γX) a subalgebra of C∗(X). It
follows from Lemma 2.1 (resp. Lemma 3.5) that T (〈A, g〉) is also a metrizable
(resp. Smirnov) compactification for any g ∈ C∗(X). Thus, we have the
result from Corollary 4.2.

Acknowledgements. The author would like to thank Katsuro Sakai
and Kazuhiro Kawamura for their helpful comments.

REFERENCES

[1] B. J. Ball and S. Yokura, Compactifications determained by subsets of C∗(X), Topol-
ogy Appl. 13 (1982), 1–13.

http://dx.doi.org/10.1016/0166-8641(82)90002-5


APPROXIMATION THEOREMS FOR COMPACTIFICATIONS 101

[2] R. E. Chandler and G. D. Faulkner, Singular compactifications: the order structure,
Proc. Amer. Math. Soc. 100 (1987), 377–382.

[3] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[4] G. D. Faulkner, Compactifications whose remainders are retracts, Proc. Amer. Math.

Soc. 103 (1988), 984–988.
[5] —, Minimal compactifications and their associated function space, ibid. 108 (1990),

541–546.
[6] M. Kada, K. Tomoyasu and Y. Yoshinobu, How many miles to βω? Approximating

βω by metric-dependent compactifications, Topology Appl. 145 (2004), 277–292.
[7] K. Kawamura and K. Tomoyasu, Approximations of Stone–Čech compactifications
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