prime factors of values of polynomials

BY
J. BROWKIN and A. SCHINZEL (Warszawa)

Abstract

We prove that for every quadratic binomial $f(x)=r x^{2}+s \in \mathbb{Z}[x]$ there are pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b, f(a)$ and $f(b)$ have the same prime factors and $\min \{a, b\}$ is arbitrarily large. We prove the same result for every monic quadratic trinomial over \mathbb{Z}.

1. Introduction. Let $\mathcal{P}(n)=\{p$ prime : $p \mid n\}$. We study the problem when for a given polynomial $f \in \mathbb{Z}[x]$ there exist infinitely many pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b$ and $\mathcal{P}(f(a))=\mathcal{P}(f(b))$. For polynomials of degree one the question is easily answered by

Theorem 1. For all $r, s \in \mathbb{Z}$ there exists a strictly increasing sequence a_{i} of positive integers such that $\mathcal{P}\left(r a_{i}+s\right)$ is the same for all i.

A related problem of whether $\mathcal{P}(a+i)=\mathcal{P}(b+i)(i=1, \ldots, k)$ implies $a=b$ has been treated (see [1, Problem B29]).

For quadratic polynomials of non-zero discriminant an analogue of the above theorem is not true (by Pólya's theorem, the greatest prime factor of a value of such a polynomial tends to infinity with this value), and we only have

Theorem 2. For all $r, s \in \mathbb{Z}$, there exist pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b, \mathcal{P}\left(r a^{2}+s\right)=\mathcal{P}\left(r b^{2}+s\right)$ and $\min \{a, b\}$ is arbitrarily large.

Theorem 3. For every monic quadratic polynomial $f \in \mathbb{Z}[x]$ there exist pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b, \mathcal{P}(f(a))=\mathcal{P}(f(b))$ and $\min \{a, b\}$ is arbitrarily large.

We have not been able to prove, even for $f(x)=x^{2}-1$, the existence of infinitely many triples $\langle a, b, c\rangle \in \mathbb{N}^{3}$ such that $a \neq b \neq c \neq a$ and $\mathcal{P}(f(a))=$ $\mathcal{P}(f(b))=\mathcal{P}(f(c))$.

For polynomials of degree higher than two we know only numerical results communicated to us by J. Brzeziński and E. Reyssat. In particular, for $\max \{a, b\} \leq 4 \cdot 10^{6}$ and $n=3$, and for $\max \{a, b\} \leq 10^{4}$ and $4 \leq n \leq 50$, there is only one pair $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b$ and $\mathcal{P}\left(a^{n}-1\right)=\mathcal{P}\left(b^{n}-1\right)$, namely $\mathcal{P}\left(57^{4}-1\right)=\mathcal{P}\left(99^{4}-1\right)$.

2. Proofs

Proof of Theorem 1. We can assume that $r>0$. Let $d:=(r, s)$. Then $f(x)=d f_{1}(x)$, where $f_{1}(x)=r_{1} x+s_{1}$ and $\left(r_{1}, s_{1}\right)=1$.

It follows that

$$
\mathcal{P}(f(n))=\mathcal{P}(d) \cup \mathcal{P}\left(f_{1}(n)\right) \quad \text { for every } n \in \mathbb{N} .
$$

Take $m=r_{1} a_{1}+s_{1}>1$. Then $\left(m, r_{1}\right)=1$.
The Euler theorem gives, for every $i \in \mathbb{N}$,

$$
m^{(i-1) \varphi\left(r_{1}\right)+1}=r_{1}\left(a_{i}-a_{1}\right)+m=r_{1} a_{i}+s_{1}=f_{1}\left(a_{i}\right) .
$$

Hence

$$
\mathcal{P}\left(f_{1}\left(a_{i}\right)\right)=\mathcal{P}\left(f_{1}\left(a_{1}\right)\right)=\mathcal{P}(m) .
$$

It follows that

$$
\mathcal{P}\left(f\left(a_{i}\right)\right)=\mathcal{P}(m) \cup \mathcal{P}(d) \quad(i=1,2, \ldots) .
$$

Definition. Let $d \in \mathbb{N}$ be a non-square. We say that a unit $u+v \sqrt{d}$ of the order $\mathbb{Z}[\sqrt{d}]$ is singular if $(v, d)>1$.

Let us remark that if the fundamental unit of the order $\mathbb{Z}[\sqrt{d}]$ is singular, then every unit of this order is singular.

Lemma. Let $q, s \in \mathbb{Z}, q \neq 0, \varepsilon= \pm 1$. If there is a $k \in \mathbb{Z}, k \equiv \varepsilon(\bmod q)$, $(k, s)=1$, such that $d:=q s+k^{2}$ is positive, but not a square, and the fundamental unit η of the order $\mathbb{Z}[\sqrt{d}]$ is non-singular, then there are pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b, \mathcal{P}\left(q a^{2}+s\right)=\mathcal{P}\left(q b^{2}+s\right)$ and $\min \{a, b\}$ is arbitrarily large.

Moreover, if qs is odd, a and b can be chosen odd.
Proof. In order to prove the first assertion of the lemma it suffices to find infinitely many pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that

$$
q a^{2}+s=\left(q s+k^{2}\right)\left(q b^{2}+s\right) \quad \text { and } \quad q s+k^{2} \mid q b^{2}+s .
$$

Equivalently,

$$
a^{2}-d b^{2}=s \cdot \frac{d-1}{q} \quad \text { and } \quad d \mid q b^{2}+s .
$$

We have

$$
N(1+\sqrt{d})=1-d, \quad N(k-\varepsilon \sqrt{d})=k^{2}-d=-q s ;
$$

then

$$
\begin{equation*}
\alpha:=(1+\sqrt{d}) \cdot \frac{k-\varepsilon \sqrt{d}}{q}=\frac{k-\varepsilon d}{q}+\frac{k-\varepsilon}{q} \sqrt{d} \tag{1}
\end{equation*}
$$

is in $\mathbb{Z}[\sqrt{d}]$ and satisfies $N(\alpha)=s \cdot \frac{d-1}{q}$. Therefore, it suffices to find infinitely many $n \in \mathbb{Z}$ such that
$a+b \sqrt{d}:=\alpha \eta^{n} \quad$ satisfies $\quad d \mid q b^{2}+s, \quad$ or equivalently $\quad d \mid q^{2} b^{2}-k^{2}$.

Let $I:=d \mathbb{Z}[\sqrt{d}]$ be the ideal of the ring $\mathbb{Z}[\sqrt{d}]$ generated by d. Then

$$
\eta^{n}=(u+v \sqrt{d})^{n} \equiv u^{n}+n u^{n-1} v \sqrt{d}(\bmod I),
$$

hence

$$
\begin{aligned}
\alpha \eta^{n} q & \equiv(k+(k-\varepsilon) \sqrt{d})\left(u^{n}+n u^{n-1} v \sqrt{d}\right) \\
& \equiv u^{n-1}(k u+((k-\varepsilon) u+n k v) \sqrt{d})(\bmod I) .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
q a & \equiv k u^{n}(\bmod d), \tag{2}\\
q b & \equiv u^{n-1}((k-\varepsilon) u+n k v)(\bmod d) . \tag{3}
\end{align*}
$$

From $u^{2}-d v^{2}=N(\eta)$ we obtain $u^{2} \equiv N(\eta)(\bmod d)$, hence

$$
\begin{equation*}
q^{2} b^{2} \equiv N(\eta)^{n-1}((k-\varepsilon) u+n k v)^{2}(\bmod d) . \tag{4}
\end{equation*}
$$

Therefore $q^{2} b^{2} \equiv k^{2}(\bmod d)$ holds provided

$$
\begin{equation*}
n \equiv 1(\bmod 2), \quad(k-\varepsilon) u+n k v \equiv k(\bmod d) . \tag{5}
\end{equation*}
$$

There are infinitely many n satisfying this system of congruences, since $(k v, d)=1$ and if $d \equiv 1(\bmod 2)$ the Chinese Remainder Theorem applies, while if $d \equiv 0(\bmod 2)$ then $k \equiv 1(\bmod 2)$ and the congruences in question are compatible.

In order to prove the second assertion of the lemma we notice that if $k \equiv 1(\bmod 2)$, then $d \equiv 0(\bmod 2)$, hence $u v \equiv 1(\bmod 2)$ and, by $(2)-(5)$, $a b \equiv 1(\bmod 2)$.

If $k \equiv 0(\bmod 2)$, then $d \equiv 1(\bmod 2)$, hence, by $(1), \alpha \equiv 1+\sqrt{d}(\bmod 2)$. Also $\eta^{n}=u_{n}+v_{n} \sqrt{d}$, where $u_{n}+v_{n} \equiv 1(\bmod 2)$, hence

$$
a+b \sqrt{d} \equiv(1+\sqrt{d})\left(u_{n}+v_{n} \sqrt{d}\right) \equiv 1+\sqrt{d}(\bmod 2)
$$

and $a b \equiv 1(\bmod 2)$.
Proof of Theorem 2. We may assume $r s \neq 0$. Put

$$
w=900 r s+1, \quad p=\frac{w^{2}-1}{4}
$$

and take in the Lemma

$$
q=900 r(w+2)^{2}, \quad k=p q s+1 .
$$

Hence

$$
d=q s+k^{2}=p^{2} q^{2} s^{2}+(2 p+1) q s+1=\frac{w^{2}}{4 p^{2}}\left(\left(\frac{2 p^{2} q s+2 p+1}{w}\right)^{2}-1\right) .
$$

We have $8\left(2 p^{2} q s+2 p+1\right) \equiv 15 w^{2}\left(\bmod w^{3}\right)$, and since w is odd and $|w|>1$,

$$
\frac{2 p^{2} q s+2 p+1}{w^{2}} \in \mathbb{Z}, \quad\left|\frac{2 p^{2} q s+2 p+1}{w}\right|>1, \quad d>0, d \neq \square .
$$

In the order $\mathbb{Z}[\sqrt{d}]$ there is a non-singular unit

$$
\eta=\left(\frac{2 p^{2} q s+2 p+1}{w}\right)^{2}+\frac{d}{w^{2}} \cdot 4 p^{2}+\sqrt{d} \cdot 4 p \cdot \frac{2 p^{2} q s+2 p+1}{w^{2}}=\zeta^{2},
$$

where

$$
\zeta=\frac{2 p^{2} q s+2 p+1}{w}+2 p \sqrt{\frac{d}{w^{2}}}
$$

is a unit of $\mathbb{Z}\left[\sqrt{d / w^{2}}\right]$ and, since $(w, 15)=1$,

$$
\left(\frac{2 p^{2} q s+2 p+1}{w^{2}}, w\right)=1 .
$$

Hence, by the lemma, there exist pairs $\langle a, b\rangle \in \mathbb{N}^{2}$ such that $a \neq b$, $\mathcal{P}\left(q a^{2}+s\right)=\mathcal{P}\left(q b^{2}+s\right)$ and $\min \{a, b\}$ is arbitrarily large.

Since $q a^{2}=r(30(w+2) a)^{2}, q b^{2}=r(30(w+2) b)^{2}$ and $w \neq-2$, the theorem follows.

Proof of Theorem 3. Applying, if necessary, an integral translation of x we may assume that $f(x)=x^{2}+s$ or $x^{2}+x+t$. In the first case we apply Theorem 2.

In the second case we apply the second assertion of the Lemma with $q=1, s=4 t-1$ and $k=2$ if $t=0, k=t-1$ if $t \neq 0, t \equiv 0(\bmod 3)$, and $k=3 t-1$ if $t \not \equiv 0(\bmod 3)$. In the order $\mathbb{Z}[\sqrt{d}]$ there is a non-singular unit $2+\sqrt{3}, t+1+\sqrt{d}$ and $9 t-1+3 \sqrt{d}$, respectively.

We infer the existence of a, b odd such that $a \neq b, \mathcal{P}\left(a^{2}+s\right)=\mathcal{P}\left(b^{2}+s\right)$ and $\min \{a, b\}$ is arbitrarily large. Taking $a=2 a_{1}+1, b=2 b_{1}+1$ we conclude that $\mathcal{P}\left(4 f\left(a_{1}\right)\right)=\mathcal{P}\left(4 f\left(b_{1}\right)\right)$. Since $f\left(a_{1}\right) \equiv t \equiv f\left(b_{1}\right)(\bmod 2)$, the last equality implies $\mathcal{P}\left(f\left(a_{1}\right)\right)=\mathcal{P}\left(f\left(b_{1}\right)\right)$.

REFERENCES

[1] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2005.
J. Browkin, A. Schinzel

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: browkin@impan.pl schinzel@impan.pl

