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PRIME FACTORS OF VALUES OF POLYNOMIALS

BY

J. BROWKIN and A. SCHINZEL (Warszawa)

Abstract. We prove that for every quadratic binomial f(x) = rx2+s ∈ Z[x] there are
pairs 〈a, b〉 ∈ N2 such that a 6= b, f(a) and f(b) have the same prime factors and min{a, b}
is arbitrarily large. We prove the same result for every monic quadratic trinomial over Z.

1. Introduction. Let P(n) = {p prime : p |n}. We study the problem
when for a given polynomial f ∈ Z[x] there exist infinitely many pairs
〈a, b〉 ∈ N2 such that a 6= b and P(f(a)) = P(f(b)). For polynomials of
degree one the question is easily answered by

Theorem 1. For all r, s ∈ Z there exists a strictly increasing sequence
ai of positive integers such that P(rai + s) is the same for all i.

A related problem of whether P(a+ i) = P(b+ i) (i = 1, . . . , k) implies
a = b has been treated (see [1, Problem B29]).

For quadratic polynomials of non-zero discriminant an analogue of the
above theorem is not true (by Pólya’s theorem, the greatest prime factor of
a value of such a polynomial tends to infinity with this value), and we only
have

Theorem 2. For all r, s ∈ Z, there exist pairs 〈a, b〉 ∈ N2 such that
a 6= b, P(ra2 + s) = P(rb2 + s) and min{a, b} is arbitrarily large.

Theorem 3. For every monic quadratic polynomial f ∈ Z[x] there exist
pairs 〈a, b〉 ∈ N2 such that a 6= b, P(f(a)) = P(f(b)) and min{a, b} is
arbitrarily large.

We have not been able to prove, even for f(x) = x2− 1, the existence of
infinitely many triples 〈a, b, c〉 ∈ N3 such that a 6= b 6= c 6= a and P(f(a)) =
P(f(b)) = P(f(c)).

For polynomials of degree higher than two we know only numerical re-
sults communicated to us by J. Brzeziński and E. Reyssat. In particular, for
max{a, b} ≤ 4 · 106 and n = 3, and for max{a, b} ≤ 104 and 4 ≤ n ≤ 50,
there is only one pair 〈a, b〉 ∈ N2 such that a 6= b and P(an−1) = P(bn−1),
namely P(574 − 1) = P(994 − 1).
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2. Proofs

Proof of Theorem 1. We can assume that r > 0. Let d := (r, s). Then
f(x) = df1(x), where f1(x) = r1x+ s1 and (r1, s1) = 1.

It follows that

P(f(n)) = P(d) ∪ P(f1(n)) for every n ∈ N.
Take m = r1a1 + s1 > 1. Then (m, r1) = 1.

The Euler theorem gives, for every i ∈ N,

m(i−1)ϕ(r1)+1 = r1(ai − a1) +m = r1ai + s1 = f1(ai).

Hence
P(f1(ai)) = P(f1(a1)) = P(m).

It follows that

P(f(ai)) = P(m) ∪ P(d) (i = 1, 2, . . .).

Definition. Let d ∈ N be a non-square. We say that a unit u+ v
√
d of

the order Z[
√
d] is singular if (v, d) > 1.

Let us remark that if the fundamental unit of the order Z[
√
d] is singular,

then every unit of this order is singular.

Lemma. Let q, s ∈ Z, q 6= 0, ε = ±1. If there is a k ∈ Z, k ≡ ε (mod q),
(k, s) = 1, such that d := qs + k2 is positive, but not a square, and the
fundamental unit η of the order Z[

√
d] is non-singular, then there are pairs

〈a, b〉 ∈ N2 such that a 6= b, P(qa2 + s) = P(qb2 + s) and min{a, b} is
arbitrarily large.

Moreover, if qs is odd, a and b can be chosen odd.

Proof. In order to prove the first assertion of the lemma it suffices to
find infinitely many pairs 〈a, b〉 ∈ N2 such that

qa2 + s = (qs+ k2)(qb2 + s) and qs+ k2 | qb2 + s.

Equivalently,

a2 − db2 = s · d− 1
q

and d | qb2 + s.

We have

N(1 +
√
d) = 1− d, N(k − ε

√
d) = k2 − d = −qs;

then

(1) α := (1 +
√
d) · k − ε

√
d

q
=
k − εd
q

+
k − ε
q

√
d

is in Z[
√
d] and satisfies N(α) = s· d−1

q . Therefore, it suffices to find infinitely
many n ∈ Z such that

a+ b
√
d := αηn satisfies d | qb2 + s, or equivalently d | q2b2 − k2.
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Let I := dZ[
√
d] be the ideal of the ring Z[

√
d] generated by d. Then

ηn = (u+ v
√
d)n ≡ un + nun−1v

√
d (mod I),

hence
αηnq ≡ (k + (k − ε)

√
d)(un + nun−1v

√
d)

≡ un−1(ku+ ((k − ε)u+ nkv)
√
d) (mod I).

Therefore,

qa ≡ kun (mod d),(2)

qb ≡ un−1((k − ε)u+ nkv) (mod d).(3)

From u2 − dv2 = N(η) we obtain u2 ≡ N(η) (mod d), hence

(4) q2b2 ≡ N(η)n−1((k − ε)u+ nkv)2 (mod d).

Therefore q2b2 ≡ k2 (mod d) holds provided

(5) n ≡ 1 (mod 2), (k − ε)u+ nkv ≡ k (mod d).

There are infinitely many n satisfying this system of congruences, since
(kv, d) = 1 and if d ≡ 1 (mod 2) the Chinese Remainder Theorem applies,
while if d ≡ 0 (mod 2) then k ≡ 1 (mod 2) and the congruences in question
are compatible.

In order to prove the second assertion of the lemma we notice that if
k ≡ 1 (mod 2), then d ≡ 0 (mod 2), hence uv ≡ 1 (mod 2) and, by (2)–(5),
ab ≡ 1 (mod 2).

If k ≡ 0 (mod 2), then d ≡ 1 (mod 2), hence, by (1), α ≡ 1+
√
d (mod 2).

Also ηn = un + vn

√
d, where un + vn ≡ 1 (mod 2), hence

a+ b
√
d ≡ (1 +

√
d)(un + vn

√
d) ≡ 1 +

√
d (mod 2)

and ab ≡ 1 (mod 2).

Proof of Theorem 2. We may assume rs 6= 0. Put

w = 900rs+ 1, p =
w2 − 1

4
and take in the Lemma

q = 900r(w + 2)2, k = pqs+ 1.

Hence

d = qs+ k2 = p2q2s2 + (2p+ 1)qs+ 1 =
w2

4p2

((
2p2qs+ 2p+ 1

w

)2

− 1
)
.

We have 8(2p2qs+2p+1) ≡ 15w2 (mod w3), and since w is odd and |w| > 1,

2p2qs+ 2p+ 1
w2

∈ Z,
∣∣∣∣2p2qs+ 2p+ 1

w

∣∣∣∣ > 1, d > 0, d 6= �.
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In the order Z[
√
d] there is a non-singular unit

η =
(

2p2qs+ 2p+ 1
w

)2

+
d

w2
· 4p2 +

√
d · 4p · 2p2qs+ 2p+ 1

w2
= ζ2,

where

ζ =
2p2qs+ 2p+ 1

w
+ 2p

√
d

w2

is a unit of Z[
√
d/w2] and, since (w, 15) = 1,(

2p2qs+ 2p+ 1
w2

, w

)
= 1.

Hence, by the lemma, there exist pairs 〈a, b〉 ∈ N2 such that a 6= b,
P(qa2 + s) = P(qb2 + s) and min{a, b} is arbitrarily large.

Since qa2 = r(30(w + 2)a)2, qb2 = r(30(w + 2)b)2 and w 6= −2, the
theorem follows.

Proof of Theorem 3. Applying, if necessary, an integral translation of x
we may assume that f(x) = x2 + s or x2 + x+ t. In the first case we apply
Theorem 2.

In the second case we apply the second assertion of the Lemma with
q = 1, s = 4t− 1 and k = 2 if t = 0, k = t− 1 if t 6= 0, t ≡ 0 (mod 3), and
k = 3t− 1 if t 6≡ 0 (mod 3). In the order Z[

√
d] there is a non-singular unit

2 +
√

3, t+ 1 +
√
d and 9t− 1 + 3

√
d, respectively.

We infer the existence of a, b odd such that a 6= b, P(a2 + s) = P(b2 + s)
and min{a, b} is arbitrarily large. Taking a = 2a1 + 1, b = 2b1 + 1 we
conclude that P(4f(a1)) = P(4f(b1)). Since f(a1) ≡ t ≡ f(b1) (mod 2), the
last equality implies P(f(a1)) = P(f(b1)).
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