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WHEN A FIRST ORDER T HAS LIMIT MODELS

BY

SAHARON SHELAH (Jerusalem and Piscataway, NJ)

Abstract. We sort out to a large extent when a (first order complete theory) T" has
a superlimit model in a cardinal A. Also we deal with related notions of being limit.

Annotated content

0. Introduction. We give background and basic definitions. We then present exis-
tence results for stable 7" which have models that are saturated or close to being saturated.

1. On countable superstable non-Ro-stable. Consistently 28! > Ry and some
such (complete first order) T has a superlimit (non-saturated) model of cardinality N;.
This shows that we cannot prove a non-existence result fully complementary to the results
in 0.9.

2. A strictly stable consistent example. Consistently X; < 2%° and some count-
able stable not superstable T" has a (non-saturated) model of cardinality N; which satisfies
some relatives of being superlimit.

3. On the non-existence of limit models. The proofs here are in ZFC. If T is
unstable, it has no superlimit models of cardinality A when A > R +|T'|. For unsuperstable
T we have similar results but with “few” exceptional cardinals A on which we do not know:
A < A®0 which are < J,,. Moreover, if T is superstable and A > |T'| + 27! then T has a
superlimit model of cardinality X iff |[D(T")| < X iff T has a saturated model. Lastly, we
get weaker results on weaker relatives of superlimit.

0. Introduction

0A. Background and content. Recall that ([15, Ch. ITI]) if 7" is (first
order complete and) superstable then for A > 2|71, T has a saturated model
M of cardinality A and moreover

(%) if (M, : a < §) is <-increasing, § a limit ordinal < A* and a < § =
M, = M then [J{M, : o < 4} is isomorphic to M.

When investigating categoricity of an a.e.c. (abstract elementary class) ¢ =
(K¢, <¢), the following property turns out to be central: M is a <g-universal
model of cardinality A with the property (%) above (called superlimit), pos-
sibly with additional parameter x = cf(k) < X (or stationary S C AT1);
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we also consider some relatives of the “superlimit” notion, mainly limit,
weakly limit and strongly limit. Those notions were suggested for a.e.c. in
[13, 3.1]; see also the revised version [3, 3.3] and [19], or here in But
though coming from investigating non-elementary classes, they are meaning-
ful for elementary classes and here we try to investigate them for elementary
classes.

Recall that for a first order complete T', we know {A : T has a saturated
model of T of cardinality A}, namely, it is {\ : \<* > |D(T)| or T is stable
in A}; for the definitions of D(T") and other notions see 0B below. What if
we replace saturated by superlimit (or some relative)? Let ECy(T') be the
class of models M of T of cardinality .

If there is a saturated M € EC,(T') we have considerable knowledge on
the existence of a limit model for the cardinal A, by [15], as mentioned in
[3, 3.6] (seel),(Q)). E.g. for superstable T'in A > 271 there is a superlimit
model (the saturated one). It seems a natural question on [3| 3.6] whether
it exhausts the possibilities of (A, *)-superlimit and (\, k)-superlimit models
for elementary classes. Clearly the cases of the existence of such models of
a (first order complete) theory T where there are no saturated (or special)
models are rare, because even the weakest version of Definition [I3] 3.1] =
[3, 3.3] or here Definition for A implies that 7" has a universal model of
cardinality A, which is rare (see Kojman—Shelah [2] which includes earlier
history and recently Dzamonja [I]).

So the main question seems to be whether there are such cases at all. We
naturally look at some of the previous cases of consistency of the existence
of a universal model (for A < A<}), i.e., those for A = &;.

E.g. a sufficient condition for some versions is the existence of 7" D T
of cardinality A such that PC(T",T) is categorical in A (see[0.4(3)). By [12]
we have consistency results for such 77 so naturally we first deal with the
consistency results from [12]. In §1 we deal with the case of the countable
superstable Tp from [12] which is not Rg-stable. By [12] consistently X; < 2%0
and for some T{) D Tj of cardinality Ny, PC(Tj, Tp) is categorical in ;. We
use this to get the consistency of “Ip has a superlimit model of cardinality
N; and N; < 2807,

In §2 for some stable non-superstable countable T} we have a paral-
lel but weaker result. We reconsider the old consistency results of “some
PC(T7,Th),|T]| = Ry > |T1], is categorical in N;” from [I2]. From this we
deduce that in this universe, T} has a strongly (X1, Np)-limit model.

It is a reasonable thought that we can similarly have a consistency result
for the theory of linear orders, but this is still unclear.

In §3 we show that if 7" has a superlimit model in A > |T'|+ 8y then T is
stable and T is superstable except possibly under some severe restrictions on
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the cardinal A (i.e., A < J, and A < AY). We then prove some restrictions
on the existence of some (weaker) relatives.

Summing up our results on the strongest notion, superlimit, by [[-1] + B1]
we have:

CoNcLUSION 0.1. Assume A > |T|+3,,. Then T has a superlimit model
of cardinality X iff T is superstable and X\ > |D(T)|.

In subsequent work we shall show that for some unstable 7' (e.g. the
theory of linear orders), if A = A<* > k = cf(x), then T has a medium
(A, k)-limit model, whereas if T' has the independence property, even weak
(A, k)-limit models do not exist; see [5] and more in [6], [20], [4], [9].

0B. Basic definitions

NoTATION 0.2. Let T denote a complete first order theory which has
infinite models but T},7T” etc. are not necessarily complete.

If M,N denote models, then |M| is the universe of M and | M] its
cardinality and M < N means M is an elementary submodel of N.

Let 7p = 7(T'), 7ps = 7(M) be the vocabularies of T', M respectively.

Let M = “p[a]®**")” mean that the model M satisfies [a] if the state-
ment stat is true (or is 1 rather than 0).

DEFINITION 0.3. For a € “7|M| and B C M let
tp(a, B, M) = {p(2,0) : ¢ = ¢(Z,7) € L(rx),b € “9'B and M = [a, b]}.

Let

D(T) = {tp(a,0, M) : M a model of T" and @ a finite sequence from M }.

If AC M then

S"™(A,M) = {tp(a,A,N): M < N and a € "N},
if m = 1 we may omit it.

A model M is A-saturated when: if A C M,|A] < XA and p € S(4, M)
then p is realized by some a € M, i.e. p C tp(a, A, M); if A = || M| we may
omit it.

A model M is special when letting A = || M|, there is an increasing se-
quence (\; : ¢ < cf(N)) of cardinals with limit A and a <-increasing sequence

(M; :i < cf(N\)) of models with union M such that M, is A;-saturated of
cardinality ;41 for i < cf(A).

DEFINITION 0.4. For any T let

EC(T) = {M : M is a 7p-model of T'},
ECA(T) = {M € EC(T) : M is of cardinality \}.
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For T C T' let
PC(T',T) = {M|rr : M is model of T"},
PCA(T",T) = {M € PC(T",T) : M is of cardinality \}.
We say M is A-universal for T when it is a model of 77 and every N €
EC\(T) can be elementarily embedded into M; if 71 = Th(M) we may omit

it.
We say M € EC(T) is universal when it is A-universal for A = || M.

We are here mainly interested in

DEFINITION 0.5. Given T and M € ECy(T') we say that M is a super-
limit or \-superlimit model when: M is universal and if § < AT is a limit
ordinal, (M, : o < ¢) is <-increasing continuous, and M, is isomorphic to
M for every a < §, then Mjy is isomorphic to M.

REMARK 0.6. Concerning the following definition we shall use strongly
limit in [2.14(1), medium limit in [2.14)2).

DEFINITION 0.7. Let A be a cardinal > |T'|. For parts (3)—(7) below, but
not (8), to simplify the presentation we assume the axiom of global choice
and that F is a class function; alternatively restrict yourself to models with
universe an ordinal € [\, AT).

(1) For non-empty © C {u : Ry < p < X and p is regular} and M €
ECy(T) we say that M is (A, ©)-superlimit when: M is universal and

if (M; i < p) is <-increasing, M; = M for i < p and pu € O,

then (J{M,; :i < p} = M.

(2) If O is a singleton, say © = {0}, we may say that M is (A,0)-
superlimit.

(3) Let S C AT be stationary. A model M € EC,(T) is called S-strongly

limit or (X, S)-strongly limit when for some function F : EC)(T') — EC,(T)
we have:
(a) for N € EC\(T") we have N < F(NV),
(b) if § € S is a limit ordinal and (M; : i < J) is a <-increasing
continuous sequence @ in EC\(T) and i < 6 = F(M;41) <
Mo, then M = U{Mz 1< 5}
(4) Let S C A' be stationary. M € EC(T) is called S-limit or (A, S)-
limit if for some function F : EC)(T") — EC(T") we have:

(a) for every N € EC)(T) we have N < F(N),

(*) No loss if we add M;41 = M, so this simplifies the demand on F, i.e., only F(M’)
for M’ =2 M is required.
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(b) if (M; : i < A1) is a <-increasing continuous sequence of mem-
bers of ECy(T) such that F(M;41) < M, 4o for i < AT then for
some closed unbounded @ subset C of A1,

[0 e SNC = Ms= M)].

(5) We define[(%)] “S-weakly limit”, “S-medium limit” like “S-limit”, “S-
strongly limit” respectively by demanding that the domain of F' is the family
of <-increasing continuous sequences of members of EC)(T') of length < A
and replacing “F(M;;1) < Mit2” by “M;1 < F((M; :j <i+1)) < M;y2”.

(6) If S = AT then we may omit S (in (3)—(5)).

(7) For non-empty @ C {p : p < X and p is regular}, M is (A, ©)-strongly
limit [(D)] if M is {5 < AT : cf(5) € O}-strongly limit. Similarly for the other
notions. If we do not write A we mean \ = || M.

(8) We say that M € K is invariantly strong limit when in (3), F is just
a subset of {(M,N)/=: M < N are from EC,(T")} and in (3)(b) we replace
“F(MH_l) < M;12” by “(ElN)(Mi_H < N < Miz2 A ((M, N)/g) € F)”.
But abusing notation we still write N = F(M) instead of (M,N)/=) € F.
Similarly with the other notions, so we use the isomorphism type of M~ (N)
for “weakly limit” and “medium limit”.

(9) In the definitions above we may say “F witnesses M is ...”

OBSERVATION 0.8. (1) Assume F1,F3 are as above and F1(N) < Fa(N)
(or F1(N) < Fo(N)) whenever defined. If Fy is a witness then so is Fa.

(2) All versions of limit models imply being a universal model in EC(T').

(3) (The obvious implications diagram) For non-empty © C {0 : 0 is
reqular < \} and stationary S1 C {d < AT : cf(§) € O}:

superlimit = (A, {p : pn < Aregular})-superlimit

1
(A, ©)-superlimit
1
S1-strongly limit
\ \
S1-medium limit Sq-limit
\ \
S1-weakly limit

(?) Alternatively, we can use as a parameter a filter on A" extending the co-bounded
filter.

(3) Note that M is (X, S)-strongly limit iff M is ({\,cf(8) : § € S})-strongly limit.

(*) In [3] we replace “limit” by “limit™” if “F(M;41) < Mit2”, “Mit1 < F((M; :
j<i+1)) < M;yo” are replaced by “F(M;) < Mi41”, “M; < F((M; : j <)) < Miy1”
respectively. But (EC(T'), <) has amalgamation.
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LEMMA 0.9. Let T be a first order complete theory.

(1) If X is regular and M a saturated model of T of cardinality X\, then
M is (X, \)-superlimit.

(2) If T is stable, and M is a saturated model of T of cardinality A >
Ny + |T] and © = {p : &(T) < pu < X and p is regular}), then M is
(A, ©)-superlimit (for x(T'), see [15, III, §3]).

(3) If T is stable in A and k = cf(k) < X then T has an invariantly
strongly (A, k)-limit model.

REMARK 0.10. Concerning [0.9(2), note that by [15] if A is singular or
just A < A<* and T has a saturated model of cardinality A then T is stable
(even stable in \) and cf(\) > k(T)).

Proof. (1) Let M; be a A-saturated model of T" of cardinality A for i < A
with (M; : i < A) <-increasing and set M) = |J,., M;. Now for every
A C M)y of cardinality < A there is i < A such that A C M;, so every
p € S(A, M)) is realized in M;, hence in My; so clearly M) is A-saturated.
Remembering the uniqueness of a A-saturated model of T of cardinality A
we finish.

(2) Use [15] III, 3.11]: if M; is a A-saturated model of T with (M; : i < 0)
increasing and cf(d) > x(T') then (J; s M; is A-saturated.

(3) Let Ky, = {M : M = (M; : i < k) is <-increasing continuous,
M; € ECA\(T) and (M;t2,¢)cen,,, is saturated for every i < s}. Clearly
M,N € Ky, = M, = N,. Also for every M € EC\(T) there is N such
that M < N and (N, ¢).cps is saturated, as also Th((M, ¢).cpr) is stable in
A; so there is an invariant F : EC)(T) — ECy(T") such that M < F(M) and
(F(M), ¢)cenr is saturated; such F witnesses the desired conclusion. mgg

DEFINITION 0.11. For a regular uncountable cardinal X let
I\ = {S C \: some pair (F,a) witnesses S € I[)\], see below}.
We say that (E,a) is a witness for S € I[\] iff:
e F is a club of the regular cardinal A,
o U= (Us:a <), uyCaand f € uy = ug =L Nug,
e for every 6 € EN S, us is an unbounded subset of ¢ of order-type cf(6)
(and 0 is a limit ordinal).
By [16] §1] we have
CLAaM 0.12. If kT < X angl Kk, A are regular then some stationary S C
{6 < X:cf(6) = Kk} belongs to I[N].
By [11] we have
Cramv 0.13. If A=p", 0 = cf(0) < cf(p) and a<p = la|< < i then
Sy ellN.
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1. On superstable non-Xj-stable 7. We first note that superstable
T tend to have superlimit models.

CLAIM 1.1. Assume T is superstable and X\ > |T| + 280, Then T has a
superlimit model of cardinality A iff T has a saturated model of cardinality

A iff T has a universal model of cardinality \ iff X > |D(T)|.

Proof. By [15, III, §5] we know that T is stable in A iff A > |D(T')|. Now
if |T| < X < |D(T)] trivially there is no universal model of 7" of cardinality A,
hence no saturated model and no superlimit model, etc., recalling (2) If
A > |D(T)|, then T is stable in A, hence has a saturated model of cardinality
A by [15) III] (hence universal) and the class of A-saturated models of T is
closed under increasing elementary chains by [15] III], so we are done. mrT

The following are the prototypical theories which we shall consider.
DEFINITION 1.2.
To = Th(*2, E) e where nE%v & nin =v/n,
T) = Th(“(w1), E})pew,  where nElv < nin=vin,
T, = Th(R, <).
Recall
OBSERVATION 1.3.

(0) Ty is a countable complete first order theory for £ =0,1,2.
(1) Ty is superstable non-Rg-stable.

(2) Ty is strictly stable, that is, stable non-superstable.

(3) Ts is unstable.

(4) Ty has elimination of quantifiers for £ = 0,1,2.

CLAIM 1.4. It is consistent with ZFC that ¥y < 280 and some M €
ECxy, (Tp) is a superlimit model.

Proof. By [12], for notational simplicity we start with V = L.
So Tp is defined in [1.2] and it is the T from Theorem [12), 1.1]. Let S be
the set of € (“2)Y'. We define T" (called T} there) as the following theory:

@®1 (i) for each n the sentence saying F,, is an equivalence relation with
2" equivalence classes, each FE,, equivalence class divided into two
by En+1, Eny1 refines E,, Ey is trivial,

(ii) the sentences saying that

(a) for every zg, the function z — F'(xg, z) is one-to-one and
(8) zoEpF(x0, 2) for each n < w,

(iii) B (cy, cp)fm=vI") for n,v € S.
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In [12] it is proved that in some forcing @ extension LF of L, P an Ro-c.c.
proper forcing of cardinality Ro, and in V = LF, the class PC(T",Ty) =
{M|7p, : M is a T-model of T"} is categorical in N;.
However, letting M* be any model from PC(T”,Tj) of cardinality ¥y, it
is easy to see that (in V = LF):
®o the following conditions on M are equivalent:
(a) M is isomorphic to M*,
(b) M € PC(T', Ty),
(¢) () M is a model of Tj of cardinality Ny,

(B8) M* can be elementarily embedded into M,
() for every a € M the set (V{a/EM : n < w} has cardinality R;.

But

®3 every model M of T' of cardinality < N; has a proper elementary
extension to a model satisfying (c), i.e., (a)—() of ®2 above,

@y if (M, @ @ < 0) is an increasing chain of models satisfying (c) of ®s
and § < wsy then also (J{M, : o < 6} does.

Altogether we are done. mr7
Naturally we ask
QUESTION 1.5. What occurs to Tp for A > 8y but A\ < 2%0?

QUESTION 1.6. Does the theory T of linear order consistently have an
(N1, Ng)-superlimit (or only strongly limit) model? (but see §3).

QUESTION 1.7. What is the answer for 7" when T is countable super-
stable non-Rg-stable and D(T) is countable for ®; < 2% and Ry < 2%0?

By the above for some such T, in some universe, for N; the answer is
yes, there is a superlimit model.

2. A strictly stable consistent example. We now look at models of
T (redefined below) in cardinality Ni; recall

DEFINITION 2.1. T} = Th(“(w1), En)n<w where E, = {(n,v) : n,v €
“(w1) and nin = v|n}.

REMARK 2.2. Note that T} has elimination of quantifiers. Moreover, if
A=>{\:n <w}and A\, = AN, then Ty has a (), Ng)-superlimit model
in A (see [2.15).

DEFINITION/CLAIM 2.3. Any model of T} of cardinality A is isomorphic
to Map == ({(n,e) :n € A, e < h(n)}, Ey)n<cw for some A C “X and h :

(°) We can replace L by any Vo which satisfies 280 = Ry, 2% = Ry,
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“X = (CarnAT)\ {0} where (11,e1)Ey(n2,€2) < n1In = n2|n; pedantically
we should write ETJI\/IA”‘ = En[|Map|.

We write My for Maj, when A is as above and h : A — {|A[}, so
constantly |A| when A is infinite.

For A C “X and h as above the model M, ), is a model of T7 iff A is
non-empty and (Vn € A)(Vn < w)(Fv € A)(vIn =nln Av(n) £ n(n)).

Above M4 j, has cardinality A iff > {h(n) : n € A} = A,

DEFINITION 2.4. We say that A is a (71, \)-witness when:

e A C ¥\ has cardinality A,
e if B;,By C “X are (Ty,A)-big (see below) of cardinality A then
(B1 U“Z\, <) is isomorphic to (Ba U“Z ), ).
A set B C “\is called (17, A)-big when it is (A, )-(T1, A)-big; see below.
B is (u,\)-(T1, A)-big means: B C “\,|B| = |A| = p and for every
n € “>\ there is an isomorphism f from (“Z\,<) onto ({n°v:v € “Z\}, <)
mapping A into {v : n"v € B}.
A C “(wq) is Ry-suitable when:
b ’A‘ =Ry,
e for a club of § < wy, AN¥$ is everywhere non-meagre in the space “§,
i.e., for every n € “74 the set {v € AN¥§ : n<v} is a non-meagre
subset of “0 (that is what is really used in [12]).

CLAIM 2.5. It is consistent with ZFC that 280 > Ny + there is a (T1,%y)-
witness; moreover every Ny-suitable set is a (11, Ny )-witness.

Proof. By [12], §2]. mpg
REMARK 2.6. The witness does not give rise to an (X1, Xg)-limit model
as for the union of any “fast enough” <-increasing w-chain of members of
ECxy, (T1), the relevant sets are meagre.
DEFINITION 2.7. Let A be a (T3, \)-witness. We define qu"l,A as the
family of M = (|M|, <M, PM) <, such that:
() (IM|,<M) is a tree with w + 1 levels,
(B) PM is the ath level; let PM = | J{PM : n < w},
(y) M is isomorphic to M} for some B C “\ of cardinality A where
1 1
M}, is defined by [M}| = (“>A)U B, P'# = "\, P)"® = B and
<Mp = al|ML], i.e., being an initial segment,
(6) moreover B is such that some f satisfies:
o [:¥X— wand f(()) =0 for simplicity,

e ndve”A= f(n) < f(v),
e if n € B then (f(n[n) : n < w) is eventually constant,
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eifne“ Athen {re“ \:nveBandm<w= f(n"(vIm)) =
f(m)}is (T1, A)-big,
e for n € “”X and n € [f(n),w) for A ordinals @ < A, we have
fi—(a)) = n.
CrAamM 2.8 (The Global Axiom of Choice). If A is a (T1,N1)-witness
then:

(a) K7, 4 # 0,

(b) any two members of Ktlrl,A are isomorphic,

(c) there is a function F from K;lphA to itself (up to isomorphism, i.e.,
(M,F(M)) is defined only up to isomorphism) satisfying M C F(M)
such that K%LA is closed under increasing unions of sequences (M, :
n < w) such that F(M,) C M,41.

Proof. (a): Trivial.

(b): By the definition of “A is a (77, N;)-witness” and of Kjl“l,A'

(c): We choose F such that

o if M € K}L"Tl then M C F(M) € K}X,Tl and for every k < w and

a € PM, the set {b € P]zf]lw) ta <poy band b ¢ M} has cardinal-
ity Nl.
Assume M = |J{M, : n < w} where (M, : n < w) is C-increasing,
M, € K}l,Tl, F(M,) C My4+1. Clearly M is as required at the beginning
of Deﬁnitio that is, satisfies clauses (a)—(vy) there. To prove (4), we
define f : P2, = w by f(a) = Min{n : a € M, }. Pedantically, F is defined
only up to isomorphism. mgg
CrLam 2.9. If A is a (Th, \)-witness then:

(a) K’_%“LA 7é @7
(b) any two members of K}FLA are isomorphic,
(c) if My, € K%LA andn < w = M, C M4y then M := | J{M, : n < w}
€ K%hA.
REMARK 2.10. If we omit clause (b), we can weaken the demand on the
set A.

Proof. Assume M = |J{M,, : n < w}, M, C M1, M, € K%l,A and fj,
witnesses M, € Kjlﬂh 4 Clearly M satisfies clauses (a)—(7) of Deﬁnition
we just have to find a witness f as in (J) there.

For each a € M let n(a) = Min{n : a € M, }; clearly if M = “a <b < ¢’
then n(a) < n(b) and n(a) = n(c) = n(a) = n(b). Let g, : M — M be
defined by: gn(a) = b iff b <M a, b € M, and b is <M-maximal under
those restrictions; clearly it is well defined. Now we define f] : M,, — w by
induction on n < w such that m <n = f/ C f/ as follows.
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Ifn=01lt f. = fn.

Ifn=m+1and a € M, welet f/(a) be f] (a)if a € M,, and be
(fn(a) = fulgm(a)) + fin(gm(a)) + 1 if a € My\My,. Clearly f := U{fy, :
n < w} is a function from M to w, a <M b = f(a) < f(b), and for any
a € M theset {b € M :a <M band f(b) = f(a)} is equal to {b € M, :
fn(a) (a) = fn(a) (b) and a SM b} =20

DEFINITION 2.11. Let A be a (T, \)-witness. We define K:2F1,A as in
Definition 2.7 but f is constantly zero.

CrLAIM 2.12 (The Global Axiom of Choice). If A is a (11, N;)-witness
then:

(a) K, 4 #0,

(b) any two members of KIZH 4 are isomorphic,

(c) there is a function F from U{a+2(K72}) 4) ta<wi} to K%l A which
satisfies:

() if M = (M; : i < a+ 1) is an <-increasing sequence of models
of T then May1 C F(M) € K7, 4,

(B) when wy = sup{a : F(M[r(a+2)) C May2) and is a well defined
embedding of My into My}, the union of any increasing wi -
sequence M = (M, : a < wi) of members of K%LA belongs

2
to KTl,A'

REMARK 2.13. Instead of the global axiom of choice, we can restrict the
models to have universe a subset of AT (or just a set of ordinals).

Proof. (a): Easy.

(b): By the definition.

(c): Let (% : € < wi) be an increasing sequence of subsets of w; with
union wy such that € < wy = [%\ U, %[ = R1. Let M* € K%,A be such
that “>(w1) C |[M*| C “Z(w;) and M7 := M*[“Z(%.) belongs to K:%’l,A for
every € < wi.

We choose a pair (F,f) of functions with domain {M : M an increasing
sequence of members of K%h 4 of length < wq} such that:

e F(M) is an extension of J{M; : i < £g(M)} from K%,A’

e f(M) is an embedding from M;g(M) into F(M),

o if ]\Z[Z = (M : a < ag) for £ = 1,2 and a1 < ag, M' = M?aq and
F(M') C M,, then f(M') C f(M?),

o if a € F(M) and n < w then for some b € M;g(M) we have F(M) =

akn (£(M)(b))-

Now check. mp17
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CONCLUSION 2.14. Assume there is a (T, Ny )-witness (see Definition[2.4)
for the first-order complete theory Ty from[2.1]. Then:

(1) Th has an (Xq,Rq)-strongly limit model.

(2) Th has an (X1, Ry)-medium limit model.

(3) Th has an (N1, Ng)-superlimit model.

Proof. (1) By the reduction of problems on (EC(71),<) to Kr}l A
(which is easy) is exactly as in [12].

(2) By .12}

(3) Like part (1) using Claim [2.9] mga

Cramm 2.15. If A = Y {\, 1 n < w} and A, = A,
(X, Wo)-superlimit model in \.

Proof. Let M,, be the model My, p, where A, =“(\,;) and hy, : 4, —
A is constantly A,. Clearly,

then T1 has a

(%)1 M, is a saturated model of T of cardinality A,
(*)2 Mn < Mn+17
(%)3 My, = U{M,, : n < w} is a special model of T of cardinality A.

The main point is:
(¥)a M, is (X, Rg)-superlimit model of 7.
[Why? Toward this assume:

e N, is isomorphic to M, say f, : M, — N, is an isomorphism,
e N, < Npyq forn < w.

Let N, = |J{NV, : n < w} and we should prove N, = M, so just N, is a
special model of T7 of cardinality A suffice.

Let N = N,I[(U{fn(M}) : k < n}). Clearly N;, < N, ,; < N, and
U{N/} : n < w} = N,, and |N}|| = A\n. So it suffices to prove that N}, is
saturated and direct inspection shows this. mgTy

3. On non-existence of limit models. Naturally we assume that
non-existence of superlimit models for unstable T is easier to prove. For
other versions we need to look more. We first show that for A > |T'| + Ny, if
T is unstable then it does not have a superlimit model of cardinality A, and
if T' is unsuperstable, we show this for “most” cardinals A\. On “@ proper for
Ko or K7, see [15, VII] or [7] or hopefully some day in [8] ITI]. We assume
some knowledge of stability.

Cram 3.1. (1) If T is unstable, X\ > |T'| + Xy, then T has no superlimit
model of cardinality .

(2) If T is stable non-superstable and X\ > |T| + 3, or A\ = A\¥ > |T|
then T has mo superlimit model of cardinality .
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REMARK 3.2. We assume some knowledge of EM models for linear orders
I and members of K as index models (see, e.g., [15, VII]).

(2) We use the following definition in the proof, as well as a result from
[17] or [18].

DEFINITION 3.3. For cardinals A > & let A/ be the minimal p such
that for some, equivalently for every set A of cardinality A\ there is &4 C
[A]* = {B C A : |B| < k} of cardinality A such that any B € [\]<" is the
union of < k members of Hy4.

Proof of Claim . (1) Towards a contradiction assume M™* is a super-
limit model of T of cardinality A\. As T is unstable we can find m and ¢(Z, 3)
such that

® ©(7,9) € L) linearly orders some infinite I C ™M, M = T so

tg(z) = Lg(y) = m.
We can find a ¢ which is proper for linear orders ([15, VII]) and Fy(¢ < m)
such that Fy € 74\7r is a unary function symbol for ¢ < m,7r C 7(P)
and for every linear order I, EM(I,®) has Skolem functions and its 7p-
reduct EM(7)(1,®) is a model of T' of cardinality |T'| + [I| and 7(®) is of
cardinality |T| + Yo and (as : s € I) is the skeleton of EM(I, @), that is, it
is an indiscernible sequence in EM(I,®) and EM(I, ®) is the Skolem hull
of {as : s € I}, and letting a5 = (Fy(as) : £ < m) in EM(I,®) we have
EM,(7)(I,®) |= ¢las, "< for s,t € I.
Next we can find @, (for n < w) such that:

(a) @, is proper for linear orders and ¢y = P,
(b) EM(¢)(I,Pn) < EM (g (I, Ppny1) for every linear order I and n < w;
moreover
(b))t 7(@n) € 7(Ppy1) and EM(I,®,) < EMyg,)(I,Pny1) for every
n < w and linear order I,
(c) if [I| < n then EM (¢ (I, ®n) = EM;(¢) (I, Pn11) and EM (1 (I, @)
>~ M*
(d) |7(@n)] = A.
This is easy. Let @, be the limit of (¥, : n < w), i.e. 7(Py) = U{7(Pn) :
n < w} and if k < w then EM,(g,)(I, Pw) = U{EM (¢,)(I, @) : 1 € [k, w)}.
So as M* is a superlimit model, for any linear order I of cardinality A,
EM,(1y(I, @) is the direct limit of (EM ) (J,®,) : J C I finite), each
isomorphic to M*, so as we have assumed that M* is a superlimit model it
follows that EM_(7) ([, ®,,) is isomorphic to M*. But by [14} IIT] or [7] which
may eventually be [8] IT1] there are 2* many pairwise non-isomorphic models
of this form varying I on the linear orders of cardinality A, contradiction.
(2) First assume A = A®0. Let 7 C 77 be countable such that 7" =
T N L(7) is not superstable. Clearly if M* is a (A, Np)-limit model then
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M*|7" is not Ny-saturated. [Why? As in [10, Ch. VI, §6], but we shall give full

details:

there are Ny =T, p = {¢n(), @n) : n < w} atypein Ny, @p<any1, ag

empty and On+1(x, apt1) forks over a,. Let F(M) be such that if n < w

and b,

C M realizes tp(an,, Ni) then for some byi1 from F, M realizing

tp(@n+t1, 0, Ni), the type tp(bpy1, M, F(M)) does not fork over b,.] But if
k = cf(k) € R, A] and M* is a (A, k)-limit then M*[7’ is Rj-saturated,
contradiction.

The

case A\ > |T| + 3, is more complicated (the assumption A\ > 3, is

to enable us to use [17] or see [I§] for a simpler proof; we can use weaker
but less transparent assumptions; maybe \ > 280 sulfﬁces).
As T is stable non-superstable by [15] for some A:

@1 for any p there are M and (ayq :n € “p and a < p) such that

(a) M is a model of T,

(b) I, = {ana : a < p} € M is an indiscernible set (and oo < f < p
:_> an,a 7& an,ﬂ)7

(c) A= (A, :n <w)and A, C L7 infinite,

(d) for n,v € “uwe have Ava, (M,1,) = Ava, (M, L) iff n[n = v|n.

Hence by [I5 VIII] (or see [7] assuming M* is a universal model of T' of
cardinality \):

®2.1

Also
®2.9

®2.3

®2.4

there is @ such that:

(a) @ is proper for K 70 C 7(P), |7(P)| = X > |T| + o,

(b) for I C “2X\, EM,(g)(I,®) is a model of T and I C J =
EM(I, &) < EM(J, ®),

(c) for some two-place function symbol F if for I € K& and n€ P!,
I a subtree of “Z), for transparency we let Iy, = {F(a,,a,) :
v € I}, then (Ir, : n € PL) are as in ®1(b), (d).

if &y satisfies (a)—(c) of ®2.1 and M is a universal model of 7' then

there is @ satisfying (a)—(c) of ®2.1 and @1 < & (see ®2.3(a)) and

for every finitely generated J € K{ (see ®2.3(b)) there is M’ = M

such that EMT(T)(J, &) < M’ < EMT(T)(J, D3),

(a) we say @1 < @9 when 7(P1) C 7(P2) and J € K = EM(J, Pq)
= EMT(eﬁl)(Jv @2)7

(b) we say that J C I is finitely generated if it has the form {n, :
¢ < n}U{p: for some n, ¢ we have p € P! and p <! n,} for some
N0y -3 Mn—1 € Pygv

if M, € EC\(T) is superlimit (or just weakly S-limit, with S C A"

stationary) then there is @ as in ®3.1 above such that EM_(7)(J, ®)

= M, for every finitely generated J € K/,
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®92.5 we fix @ as in ®q4 for M, € ECy(T) superlimit.
Hence (mainly by clause (b) of ®21 and ®24 as in the proof of part (1))
®3 if I € K{] has cardinality < A then EM_ (g (I, ®) is isomorphic to M*.
Now by [I7], we can find regular uncountable x < 3, such that A = Al

(see Definition [3.3).

Let S = {0 < k:cf(d) =No} and 7 = (ns : 6 € S) be such that 7; is an
increasing sequence of length w with limit 4.

For a model M of T let OBz(M) = {a : a = (ap;,0 : 6 € W and
a < k), W C S and in M they are as in ®1(b),(d)}. For a € OBz(M) let
W(a] be W as above and let

Z(a,M) = {n € “k : there is an indiscernible set
I={an:a<k}in M such that for every n,
for some § € W(a], n[n = ns|n and
AVAn(M, I) = AVA"(M, {ané,a o< /ﬁ?})}

Clearly:
®4 (a) if M < N then OB5(M) C OB;(N),
(b) if M < N and a € OBg(M) then =(a, M) C =(a, N).
Now by the choice of k it should be clear that:

®5 if M = T is of cardinality A then we can find an elementary extension
N of M of cardinality A such that for every a € OBz(M) with W{a]
a stationary subset of k, for some stationary W' C W{a] the set
Zla, N] includes {n € “k : (Vn)(35 € W')(nIn = nsin)} (moreover
we can even find €* < k and W, C W for ¢ < ¢* satisfying W[a] =
U{W€ HEAN E*})v

®¢ we find M € EC\(T) isomorphic to M* such that for every a €
OBj(M) with Wa] a stationary subset of x, we can find a stationary
subset W’ of W{a] such that the set =[a, M] includes {n € “u :
(¥n)(35 € W) (nln = nsln)}.

[Why? We choose (M;, N;) for i < xT such that:

M; € EC)(T') is <-increasing continuous,
M1 is isomorphic to M™*,
M; < N; < Mi-i—la
(M;, N;) are like (M, N) in ®s;.
Now M = |J{M; : i < T} is as required. The model M is isomorphic to
M* as M* is superlimit.]
Now the model from ®¢ is not isomorphic to M’ = EM_ () (*~ AU {75 :
§ € S}, ®) where @ is from ®371. But M’ =2 M* by ®3.
Altogether we are done. mgT
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The following claim says in particular that if some not unreasonable pcf
conjectures hold, the conclusion holds for every A > 280,

CrLam 3.4. Assume T is stable non-superstable, X > |T| and A > k =
cf(k) > No.

(1) T has no (A, k)-superlimit model provided that k = cf(k) > g,
kY < X and A = Up(N) := Min{|2| : & C [\* and for every f : k — X
for some u € P we have {a < k : f(a) € u} € DV}, where D is a normal
filter on K to which {6 < k: cf(0) = Ng} belongs.

(2) Similarly if X > 280 and letting Jo = {u C K : |u] < Ng}, J1 =
{u C k:unSK non-stationary} we have A = U, j,(A) := Min{|Z|: & C
AR, and if u € Jy and f : (k\u) — X then for some countable infinite
w C k(u) and v € &, Rang(flw) C v}.

Proof. Like[3.1] =

Cram 3.5. (1) Assume T is unstable and X\ > |T| + 3,. Then for at
most one reqular k < A\, T has a weakly (A, k)-limit model and even a weakly
(A, S)-limit model for some stationary S C S2.

(2) Assume T is unsuperstable and X\ > |T| + 3,(k2) and k1 = Ry <
kg = cf(k2). Then T has no model which is a weak (X, S)-limit where S C A
and SN S,i‘e is stationary for £ =1,2.

Proof. (1) Assume k1 # kg form a counterexample. Let x < 3, be
regular large enough such that A = A\l (see Definition 3.3) and « ¢ {1, Ko}
Let m and ¢(Z, ) be as in the proof of 3.1] Then

() if M € EC,\(T) then there is N such that:

(a) N e EC)\(T)v

(b) M <N,

(c)ifa=(a;:1 < k) €"("™M) for a < k then for some % € [x]X,
for every uniform ultrafilter D on k to which % belongs there
is ap € "N such that tp(ap, N,N) = Av(D,a, M) = {¢(z,¢) :
(Z,2) € L(rr), ¢ € WEAM and {{a < s : N = [as,, ¢} € D}.

Similarly

M for every function F with domain {M : M an <-increasing sequence
of models of T of length < AT each with universe € A"} such that
M; < F(M) for i < £g(M) and F(M) has universe € AT there is
a sequence (M. : ¢ < A7) obeying F such that: for every ¢ < A%
and a € "("™(M,)) for a < k, there is % € [k]" such that for every
ultrafilter D on k to which % belongs, for every ¢ € (g, A\") there is
ap¢ € "(Mcyq) realizing Av(D,a, M¢) in Meyq.



WHEN A FIRST ORDER T HAS LIMIT MODELS 203

Hence

My for (M, : a < AT) as in Hy, for every limit § < AT of cofinality #

and every a = (a; : 1 < k) € "("(Ms)), there is % € [k]" such that
for every ultrafilter D on x to which % belongs, there is a sequence
(b : € < cf(8)) € ) (™ (Ms)) such that for every (%, z) € L(7p) and
¢ € 93)(Ms), and for every e < cf(8) large enough, My = 9[b.,d iff
1#(57 6) € AV(D> a, M&)

The rest should be clear.
(2) Combine the above and the proof of [3.1[2). g
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