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Abstract. We prove an invariance principle for non-stationary random processes and
establish a rate of convergence under a new type of mixing condition. The dependence
is exponentially decaying in the gap between the past and the future and is controlled
by an assumption on the characteristic function of the finite-dimensional increments of
the process. The distinctive feature of the new mixing condition is that the dependence
increases exponentially in the dimension of the increments. The proposed mixing property
is particularly suited to processes whose behavior can be described in terms of spectral
properties of some related family of operators. Several examples are discussed. We also
work out explicit expressions for the constants involved in the bounds. When applied to
Markov chains, our result specifies the dependence of the constants on the properties of
the underlying Banach space and on the initial state of the chain.

1. Introduction. Let (Xk)k≥1 be a sequence of real valued random
variables (r.v.’s) defined on the probability space (Ω,F ,P), and let

SN (t) = N−1/2

[Nt]∑
k=1

Xk, t ∈ [0, 1].

The (weak) invariance principle states that the process 1√
N

(SN (t))0≤t≤1

converges weakly to the Brownian process (W (t))0≤t≤1, and is a powerful
tool for various applications in probability and statistics. It extends the
scope of the central limit theorem to continuous functionals of the stochastic
process (SN (t))0≤t≤1, such as, for example, the maxima or the L2-norm of
the trajectory of the process, considered in the appropriate functional spaces.
The rates of convergence in the (weak) invariance principle, for independent
r.v.’s under the existence of the moments of order 2 + 2δ, with δ > 0,
have been obtained in Prokhorov [28], Borovkov [4], Komlós, Major and
Tusnády [22], Einmahl [10], Sakhanenko [31], [32], Zăıtsev [38], [39] among
others. In the case of martingale differences, for δ ≤ 1/2, the rates are
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essentially the same as in the independent case (see, for instance, Hall and
Heyde [20], Kubilius [23], Grama [11]).

The almost sure invariance principle is a reinforcement of the weak in-
variance principle which states that the trajectories of a process are approx-
imated with the trajectories of the Brownian motion a.s. in the sense that
within a particular negligible error rN → 0 it is true that

sup
0≤t≤1

∣∣∣∣ 1√
N
SN (t)−W (t)

∣∣∣∣ = O(rN ) a.s.

There are many recent results concerning the rates of convergence in the
strong invariance principle for weakly dependent r.v.’s under various con-
ditions. We refer to Wu [37], Zhao and Woodroofe [40], Liu and Lin [24],
Cuny [5], Merlevède and Rio [25], Dedecker, Doukhan and Merlevède [6]
and to the references therein. However, in contrast to the case of indepen-
dent r.v.’s where it is found that the optimal rate is of order N−δ/(2+2δ) for
the strong invariance principle and N−δ/(3+2δ) for the weak invariance prin-
ciple, the problem of obtaining the best rate of convergence in both the weak
and strong invariance principles for dependent variables is not yet settled
completely.

Gouëzel [15] has introduced a new type of mixing condition which is tied
to spectral properties of the sequence (Xk)k≥1. Consider the vectors X1 =
(XJ1 , . . . , XJM1

) and X2 = (Xkgap+JM1+1
, . . . , Xkgap+JM1+M2

), called the past
and the future, respectively, where Xk+Jm =

∑
l∈Jm Xk+l, Jm = [jm−1, jm),

j0 ≤ · · · ≤ jM1+M2 , and kgap is a gap between X1 and X2. Roughly speak-
ing, the condition used in [15] supposes that the characteristic function of
(X1, X2) is exponentially close to the product of the characteristic func-
tions of the past X1 and the future X2, with an error term of the form
A exp(−λkgap), where λ is some non-negative constant and A is exponen-
tial in terms of the size of the blocks. This mixing property is particularly
suited to systems whose behavior can be described in terms of spectral prop-
erties of some related family of operators, as initiated by Nagaev [26], [27]
and Guivarc’h [16]. Examples are Markov chains whose perturbed transition
probability operators (Pt)|t|≤ε0 exhibit a spectral gap and enough regularity
in t, and dynamical systems whose characteristic functions can be coded
by a family of operators (Lt)|t|≤ε0 with similar properties. Gouëzel proves
in [15] an almost sure invariance principle with rate of convergence of or-
der N−δ/(2+4δ).

The scope of the present paper is to improve on the results of Gouëzel
by quantifying the rate of convergence in the (weak) invariance principle for
dependent r.v.’s under the mixing condition introduced above. Although the
strong and weak invariance principles are closely related, it seems that the
rate of convergence in the (weak) invariance principle is less studied under
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weak dependence constraints. We refer to Doukhan, Leon and Portal [7],
Merlevède and Rio [25] and Grama and Neumann [12]. However, these re-
sults rely on mixing conditions which do not hold in the present setting.
Under the above mentioned mixing and some further mild conditions in-
cluding the moment assumption supk≥1 E|Xk|2+2δ < ∞ we obtain a bound

of order N−
1+α
1+2α

α
3+2α , for any α < δ. Moreover, we give explicit expressions

of some constants involved in the rate of convergence; for instance, in the
case of Markov walks we are able to figure out the dependence of the rate
of convergence on the properties of the Banach space related to the cor-
responding family (Pt)|t|≤ε0 of perturbed transition operators and on the
initial state X0 = x of the associated Markov chain. When compared with

the rate N−
1
2

α
1+2α in the almost sure invariance principle of [15] ours appears

with a loss in the power of multiple 2+2α
3+2α < 1. This loss in the power is ex-

actly the same as in the case of independent r.v.’s, when we compare the

almost sure invariance principle (rate N−
δ

2+2δ ) and the (weak) invariance

principle (rate N−
δ

3+2δ ).
As in the paper [15] our proof relies on a progressive blocking technique

(see Bernstein [2]) coupled with a triadic Cantor-like scheme and on the
Komlós, Major and Tusnády approximation type results for independent
r.v.’s (see [22], [10], [38]), which is in contrast to approaches usually based
on martingale methods.

As a potential application of the results obtained we point out the asymp-
totic equivalence of statistical experiments as developed in [13], [14], [12],
whose scope can be extended to various models under weak dependence
constraints.

Our paper is organized as follows. In Sections 2 and 3 we formulate
our main results and give an application to the case of Markov chains. In
Section 4 we introduce the notations to be used in the proofs of the main
results. Proofs of the main results are given in Sections 5–7. In Section 8
we prove some bounds for the Lp norm of the increments of the process
(Xk)k≥1, and finally, in Section 9 we collect some auxiliary assertions and
general facts.

We conclude this introduction by setting some notations to be used all
over the paper. For any x ∈ Rd, denote by ‖x‖∞ = sup1≤i≤d |xi| the supre-
mum norm. For any p > 0, the Lp norm of a random variable X is denoted
by ‖X‖Lp . The equality in distribution of two stochastic processes (Z ′i)i≥1

and (Z ′′i )i≥1, possibly defined on two different probability spaces (Ω′,F ′,P′)
and (Ω′′,F ′′,P′′), will be denoted L((Z ′i)i≥1|P′)

d
= L((Z ′′i )i≥1|P′′). The gener-

alized inverse of a distribution function F on a real line is denoted by F−1,
i.e. F−1(y) = inf{x : F (x) > y}. By c, c′, c′′, . . . , possibly supplied with
indices 1, 2, . . . , we denote absolute constants whose values may vary from
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line to line. The notations cα1,...,αr , c
′
α1,...,αr , . . . will be used to stress that

the constants depend only on the parameters indicated in their indices: for
instance c′α,β denotes a constant depending only on the constants α, β. All
other constants will be specifically indicated. As usual, a “standard normal
r.v.” is a normal random variable of mean 0 and variance 1.

2. Main result. Assume that on the probability space (Ω,F ,P) we are
given a sequence (Xi)i≥1 of dependent r.v.’s with values on the real line R.
The expectation with respect to P is denoted by E.

The following condition will be used to ensure that the process (Xi)i≥1

has almost independent increments. Given natural numbers kgap,M1,M2

∈ N and a sequence j0 ≤ · · · ≤ jM1+M2 denote Xk+Jm =
∑

l∈Jm Xk+l,
where Jm = [jm−1, jm), m = 1, . . . ,M1 + M2 and k ≥ 0. Consider the
vectors X1 = (XJ1 , . . . , XJM1

) and X2 = (Xkgap+JM1+1
, . . . , Xkgap+JM1+M2

).

Let φ(t1, t2) = Eeit1X1+it2X2 , φ1(t1) = Eeit1X1 and φ2(t2) = Eeit2X2 be the
characteristic functions of (X1, X2), X1 and X2 respectively. We require
that the dependence between the two vectors X1 (the past) and X2 (the
future) decreases exponentially as a function of the size of the gap kgap in
the following sense.

Condition C1. There exist positive constants ε0 ≤ 1, λ0, λ1, λ2 such
that for any kgap, M1,M2 ∈ N, any sequence j0 < · · · < jM1+M2 and any
t1 ∈ RM1 , t2 ∈ RM2 satisfying ‖(t1, t2)‖∞ ≤ ε0,

|φ(t1, t2)− φ1(t1)φ2(t2)|

≤ λ0 exp(−λ1kgap)
(

1 + max
m=1,...,M1+M2

card(Jm)
)λ2(M1+M2)

.

All over the paper we suppose that the following moment condition holds
true.

Condition C2. There exist two constants δ > 0 and µδ > 0 such that

sup
i≥1
‖Xi‖L2+2δ ≤ µδ <∞.

We also suppose that the sequence (Xi)i≥1 has the following asymptotic
homogeneity property.

Condition C3. There exist constants τ > 0 and σ > 0 such that, for
any γ > 0 and any n ≥ 1,

sup
k≥0

∣∣∣n−1 VarP

( k+n∑
i=k+1

Xi

)
− σ2

∣∣∣ ≤ τn−1+γ .

The main result of the paper is the following theorem. Denote µi = EXi

for i ≥ 1.
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Theorem 2.1. Assume Conditions C1–C3 hold. Let 0 < α < δ. Then
on some probability space (Ω̃, F̃ , P̃) there exist a sequence of random vari-

ables (X̃i)i≥1 such that L((X̃i)i≥1|P̃)
d
= L((Xi)i≥1|P) and a sequence of

independent standard normal random variables (Wi)i≥1 such that for any
0 < ρ < α

2(1+2α) and N ≥ 1,

P̃
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(X̃i − µi − σWi)
∣∣∣ > 6N−ρ

)
≤ C0N

−α 1+α
1+2α

+ρ(2+2α),

where C0 = cλ1,λ2,α,δ,σ(1 + λ0 + µδ +
√
τ)2+2δ and cλ1,λ2,α,δ,σ depends only

on the constants indicated in its indices.

Letting ρ = α
3+2α

1+α
1+2α , from Theorem 2.1 we get

(2.1) P̃
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(X̃i − µi − σWi)
∣∣∣ > 6N−

α
3+2α

1+α
1+2α

)
≤ C0N

− α
3+2α

1+α
1+2α ,

where C0 = cλ1,λ2,α,δ,σ(1 + λ0 + µδ +
√
τ)2+2δ and cλ1,λ2,α,δ,σ depends only

on the constants indicated in its indices. Compared with the optimal rate of
convergenceN−α/(3+2α) for independent r.v.’s, the loss in the power is within
the factor 1+α

1+2α . As α→∞ we obtain the limiting power 1/4 which is twice
worse than the optimal power 1/2 in the independent case. In particular,
if α = 1/2 (which corresponds to p = 2 + 2α = 3) we obtain the rate of

convergence N−
α

3+2α
1+α
1+2α = N−

3
32 , while in the independent case we have

N−1/8, which represents a loss of the power of order 1
8 −

3
32 = 1

32 .

Observe that in Theorem 2.1 we figure out the explicit dependence
of the constant C0 on the constants λ0, µδ and τ involved in Conditions
C1–C3. In the next section we show that Theorem 2.1 can be applied
to Markov walks under spectral gap type assumptions on the associated
Markov chain. It is important to stress that our result is the first one to
figure out the dependence of the constants involved in the bounds on the
initial state of the Markov chain. The results of the paper can also be ap-
plied to a large class of dynamical systems, however this stays beyond the
scope of the present article. For a discussion of such applications we refer
to [15].

For the proof of Theorem 2.1, without loss of generality, we shall assume
that µi = 0, i ≥ 1 and σ = 1, since the general case can be reduced to this
one by centering and renormalizing the variables Xi, i.e. by replacing Xi by
X ′i = (Xi − µi)/σ. It is easy to see that Conditions C1–C3 are satisfied for
the new random variables X ′i with the same λ0 and with µδ, τ replaced by
2µδ/σ, τ/σ

2.



6 I. GRAMA ET AL.

3. Applications to Markov walks. Consider a Markov chain (Xk)k≥0

with values in the measurable state space (X,X ) with the transition proba-
bility P(x, ·), x ∈ X. For every x ∈ X denote by Px and Ex the probability
measure and expectation generated by the finite-dimensional distributions

Px(X0 ∈ B0, . . . , Xn ∈ Bn) = 1B0(x)
�

B1

. . .
�

Bn

P(x, dx1) . . .P(xn−1, dxn)

for any Bk ∈ X , k = 1, . . . , n, n = 1, 2, . . . , on the space of trajectories
(X,X )N. In particular Px(X0 = x) = 1.

Let f be a real valued function defined on the state space X of the
Markov chain (Xk)k≥0. Let B be a Banach space of real valued functions
on X endowed with the norm ‖ · ‖B and let ‖ · ‖B→B be the operator norm
on B. Denote by B′ = L(B,C) the topological dual of B equipped with the
norm ‖ · ‖B′ . The unit function on X is written e: e(x) = 1 for x ∈ X. The
Dirac measure at x ∈ X is denoted by δx: δx(g) = g(x) for any g ∈ B.

We introduce the following hypotheses.

Hypothesis M1 (Banach space).

(a) The unit function e belongs to B.
(b) For every x ∈ X the Dirac measure δx belongs to B′.
(c) B ⊆ L1(P(x, ·)) for every x ∈ X.
(d) There exists a constant ε0 ∈ (0, 1) such that for any g ∈ B the

function eitfg is in B for any t satisfying |t| ≤ ε0.

Note that, for any x ∈ X and g ∈ L1(P(x, ·)), the quantity Pg(x) :=	
X g(y)P(x, dy) is well defined. In particular, under Hypothesis M1(c),
Pg(x) exists when g ∈ B. We thus consider the following hypothesis:

Hypothesis M2 (Spectral gap).

(a) The map g 7→ Pg is a bounded operator on B.

(b) There exist constants CQ > 0 and κ ∈ (0, 1) such that

(3.1) P = Π +Q,

where Π is a one-dimensional projector and Q is an operator on B
satisfying ΠQ = QΠ = 0 and ‖Qn‖B→B ≤ CQκn.

Notice that, since the image of Π is generated by the unit function e,
there exists a linear form ν ∈ B′ such that, for any g ∈ B,

(3.2) Πg = ν(g)e.

When Hypotheses M1 and M2 hold, we set Ptg = P(eitfg) for any g ∈ B
and t ∈ [−ε0, ε0]. Notice that P = P0.
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Hypothesis M3 (Perturbed transition operator).

(a) For any |t| ≤ ε0 the map B 3 g 7→ Ptg ∈ B is a bounded operator
on B.

(b) There exists a constant CP > 0 such that, for all n ≥ 1 and |t| ≤ ε0,

(3.3) ‖Pn
t ‖B→B ≤ CP.

Hypothesis M4 (Moment condition). There exists δ > 0 such that for
any x ∈ X,

µδ(x) := sup
k≥1

(Ex|f(Xk)|2+2δ)
1

2+2δ = sup
k≥1

((Pk|f |2+2δ)(x))
1

2+2δ <∞.

We show first that under Hypotheses M1–M4, Conditions C1–C3 are
satisfied. As in the previous section let kgap,M1,M2 ∈ N and j0 ≤ · · · ≤
jM1+M2 be natural numbers. Denote Yk+Jm =

∑
l∈Jm f(Xk+l), where Jm =

[jm−1, jm), m = 1, . . . ,M1 + M2 and k ≥ 0. Consider the vectors Y 1 =
(YJ1 , . . . , YJM1

) and Y 2 = (Ykgap+JM1+1
, . . . , Ykgap+JM1+M2

). Denote by

φx(t1, t2) = Eeit1Y 1+it2Y 2 , φx,1(t1) = Exeit1Y 1 and φx,2(t2) = Exeit2Y 2 the
characteristic functions of (Y 1, Y 2), Y 1 and Y 2 respectively.

Proposition 3.1. Assume that the Markov chain (Xn)n≥1 and the func-
tion f satisfy Hypotheses M1–M4. Then Condition C1 is satisfied, i.e.
there exists a positive constant ε0 ≤ 1 such that for any kgap,M1,M2 ∈ N,
any sequence j0 < · · · < jM1+M2 and any t1 ∈ RM1 , t2 ∈ RM2 satisfying
‖(t1, t2)‖∞ ≤ ε0,

|φx(t1, t2)− φx,1(t1)φx,2(t2)|

≤ λ0(x) exp(−λ1kgap)
(

1 + max
m=1,...,M1+M2

card(Jm)
)λ2(M1+M2)

,

where

λ0(x) = 2CQ(‖ν‖B′ + ‖δx‖B′)‖e‖B,
λ1 = |lnκ|, λ2 = max{1, log2CP}.

Proposition 3.2. Assume that the Markov chain (Xn)n≥1 and the func-
tion f satisfy Hypotheses M1–M4. Then:

(a) There exists a constant µ such that for any x ∈ X and k ≥ 1,

(3.4) |Exf(Xk)− µ| ≤ cδA1(x)κkγ/4−1

for any positive constant γ satisfying 0 < γ ≤ min{1, 2δ}, where A1(x) =
1 + µδ(x)1+γ + ‖δx‖B′‖e‖BCPCQ. Moreover

(3.5)

∞∑
k=0

|Exf(Xk)− µ| ≤ µ(x) = cδ,κ,γA1(x).
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(b) There exists a constant σ ≥ 0 such that for any x ∈ X,

(3.6) sup
m≥0

∣∣∣VarPx

( m+n∑
i=m+1

f(Xi)
)
− nσ2

∣∣∣ ≤ τ(x) = cδ,κ,γA2(x),

where

A2(x) = 1 + µδ(x)2+γ

+ (1 + ‖δx‖B′)‖e‖B(C2
PCQ(1 + CQ) + CPCQ(1 + ‖ν‖B′CP)).

Note that the constants µ and σ do not depend on the initial state x.
The main result of this section is the following theorem. Let Ω̃ =

R∞ × R∞. For any ω̃ = (ω̃1, ω̃2) ∈ Ω̃ denote by Ỹi = ω̃1,i and Wi = ω̃2,i,

i ≥ 1, the coordinate processes in Ω̃.

Theorem 3.3. Assume that the Markov chain (Xn)n≥0 and the function
f satisfy Hypotheses M1–M4, with σ > 0. Let 0 < α < δ. Then there exists
a Markov transition kernel x 7→ P̃x(·) from (X,X ) to (Ω̃,B(Ω̃)) such that

L((Ỹi)i≥1|P̃x)
d
= L((f(Xi))i≥1|Px), the Wi, i ≥ 1, are independent standard

normal r.v.’s under P̃x, and for any 0 < ρ < α
2(1+2α) ,

(3.7) P̃x
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(Ỹi − µ− σWi)
∣∣∣ > 6N−ρ

)
≤ C(x)N−α

1+α
1+2α

+ρ(2+2α),

with

C(x) = C1(1 + µδ(x) + ‖δx‖B′)2+2δ,

where C1 is a constant depending only on δ, α, κ, CP, CQ, ‖e‖B and ‖ν‖B′ .

Note that only the probability P̃x depends on the initial state x while
the processes (Ỹk)k≥0 and (Wk)k≥0 do not.

As in the previous section, letting ρ = α
3+2α

1+α
1+2α , under the conditions

of Theorem 3.3 we obtain

(3.8) P̃x
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(Ỹi − µ− σWi)
∣∣∣ > 6N−

α
3+2α

1+α
1+2α

)
≤ C(x)N−

α
3+2α

1+α
1+2α .

Compared to the rate N−
α

3+2α , which is optimal in the independent case, the

rate of convergence N−
α

3+2α
1+α
1+2α in (3.8) is slower by the factor N

α
3+2α

α
1+2α .

As α→∞ we obtain N−1/4, which is the best rate in the invariance principle
that is known for dependent random variables.

In Theorem 3.3 we do not suppose the existence of the stationary mea-
sure. Assume that there exists a stationary probability measure ν on X; it
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thus coincides with the linear form ν introduced in (3.2). Let Pν and Eν be
the probability measure and expectation generated by the finite-dimensional
distributions of the chain under the stationary measure ν. Note that the
means EνXk and the covariances CovPν (f(Xl), f(Xl+k)) with respect to ν
may not exist, under Hypotheses M1–M4. To ensure their existence, we
require the following additional condition (where generally |f |2 /∈ B).

Hypothesis M5 (Stationary measure). On the state space X there ex-
ists a stationary probability measure ν with ν(supk≥0 P

k(|f |2)) <∞.
Under Hypothesis M5 for µ and σ we find the usual expressions of the

means and of the variance in the central limit theorem for dependent r.v.’s.

Theorem 3.4. Assume that the Markov chain (Xn)n≥0 and the func-
tion f satisfy Hypotheses M1–M5. Assume also that σν > 0. Then Propo-
sition 3.2 holds true with µ = ν(f) and σ = σν , where

ν(f) =
�
f(x) ν(dx)

and

σ2
ν = VarPν (f(X0)) + 2

∞∑
k=1

CovPν (f(X0), f(Xk)).

Moreover, if σν > 0 the assertions of Theorem 3.3 and (3.8) hold true with
µ = ν(f) and σ = σν .

From Theorem 3.4 one can derive a bound when the Markov chain
(Xn)n≥0 is in the stationary regime. If we assume ν(supk≥0 P

k(|f |2+2δ))

≤ cν,δ < ∞ and
	
‖δx‖2+2δ

B′ ν(dx) ≤ cB′,δ < ∞, then integrating (3.7) with
respect to ν we obtain

P̃ν
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(Ỹi − µ− σWi)
∣∣∣ > 6N−ρ

)
≤ CN−α

1+α
1+2α

+ρ(2+2α),

where C is a constant depending on δ, α, κ, CP, CQ, ‖e‖B, ‖ν‖B′ and cν,δ, cB′,δ.
Hypotheses M1–M5 formulated above can be easily verified by stan-

dard methods. As to M3 it can be verified using two approaches. The first
approach is based on the assumption that the family of operators (Pt)|t|≤ε0
is continuous in t at t = 0. In this case, M3 is satisfied by classical per-
turbation theory (see, for instance, Dunford and Schwartz [9]). The second
approach is based on a weaker form of continuity of the family (Pt)|t|≤ε0 as
developed in Keller and Liverani [21].

We end this section by giving three examples where these hypotheses are
satisfied.

Example 1 (Markov chains with finite state spaces). Suppose that
(Xn)n≥0 is an irreducible ergodic aperiodic Markov chain with finite state
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space. It is easy to verify that Hypotheses M1–M5 are satisfied and that
there exists a unique invariant probability measure ν. Then the conclusions
of Theorem 3.4 hold true.

Example 2 (Autoregressive random walk with Bernoulli noise). Con-
sider the autoregressive model xn+1 = αxn + bn, n ≥ 0, where α is a
constant satisfying α ∈ (−1, 1), and (bn)n≥0 are i.i.d. Bernoulli r.v.’s with
P (b = 1) = P (b = −1) = 1/2 and x0 = x. Consider the Banach space B = L
of continuous functions f on R such that ‖f‖ = |f |+ [f ] <∞, where

|f | = sup
x∈R

|f(x)|
1 + x2

, [f ] = sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|(1 + x2)(1 + y2)

.

Since α ∈ (−1, 1), the invariant measure ν exists and coincides with the law
of the random variable Z =

∑∞
i=1 α

i−1bi. It is easy to verify that Hypotheses
M1–M5 are satisfied for the function f(x) = x. For the mean ν(f) we have

ν(f) =
�
x ν(dx) = EZ =

∞∑
i=1

αi−1Eb1 =
Eb1

1− α
.

Since Eb1 = 0, one gets ν(f) = 0 and the variance is computed as follows:

σ2
ν = lim

n→∞
E
( n∑
i=1

αi−1bi

)2
= lim

n→∞

n∑
i=1

α2(i−1)Eb21 =
1

1− α2
.

Thus the conclusions of Theorem 3.4 hold true with ν(f) = 0 and σ2
ν = 1

1−α2 .

Example 3 (Stochastic recursion). On the probability space (Ω,F ,P)
consider the stochastic recursion

xn+1 = an+1xn + bn+1, n ≥ 0,

where (an, bn)n≥0 are i.i.d. r.v.’s with values in (0,∞) × R of the same
distribution µ̂ and x0 = x. Following Guivarc’h and Le Page [17], we assume
the conditions:

H1. There exists α > 2 such that

ϕ(α) :=
�
|a|α µ̂(da, db) < 1 and

�
|b|α µ̂(da, db) <∞.

H2. µ̂({(a, b) : ax0 + b = x0}) < 1 for any x0 ∈ R.
H3. The set {ln |a| : (a, b) ∈ supp µ̂} generates a dense subgroup of R.

Let ε ∈ (0, 1), θ and c be positive such that α−1 < c+ε < θ ≤ 2c < α−ε.
Consider the Banach space B = Lε,c,θ of continuous functions f on R such
that ‖f‖ = |f |+ [f ] <∞, where

|f | = sup
x∈R

|f(x)|
1 + |x|θ

, [f ] = sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|ε(1 + |x|c)(1 + |y|c)

.
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The transition probability P(x, ·) of the Markov chain (xn)n≥0 is defined by�
h(y)P(x, dy) =

�
h(ax+ b) µ̂(da, db)

for any bounded Borel measurable function h : R → R and x ∈ R. For
any x ∈ R denote by Px and Ex the corresponding probability measure
and expectation generated by the finite-dimensional distributions on the
space of trajectories. It is proved in [17, Proposition 1] that the series∑∞

i=1 a1 . . . ai−1bi is P-a.s. convergent and the Markov chain (xn)n≥0 has
a unique invariant probability measure ν which coincides with the law of
Z =

∑∞
i=1 a1 . . . ai−1bi. Moreover,

	
|x|t ν(dx) <∞ for any t ∈ [0, α).

We now verify that Hypotheses M1–M5 are satisfied for f(x) = x.
Hypothesis M1 is obvious and M2 and M3 follow from [17, Theorem 1 and
Proposition 4]. If δ > 0 is such that 2 + 2δ ≤ α, by simple calculations we
obtain

(Ex|xn|2+2δ)
1

2+2δ ≤ ϕ(2 + 2δ)
n

2+2δ |x|+ ‖b1‖2+2δ

1− ϕ(2 + 2δ)
1

2+2δ

.

Taking the sup over n ≥ 1, we get

µδ(x) = sup
n≥1

(Ex|f(xn)|2+2δ)
1

2+2δ ≤ ϕ(2 + 2δ)
1

2+2δ |x|+ ‖b1‖2+2δ

1− ϕ(2 + 2δ)
1

2+2δ

,

which proves that M4 is satisfied. Finally, M5 holds since

�
µδ(x)2 ν(dx) ≤ 2

(
ϕ(2 + 2δ)

1
1+δ

�
x2 ν(dx) +

(
‖b1‖2+2δ

1− ϕ(2 + 2δ)
1

2+2δ

)2)
<∞.

The mean is given by ν(f) = EZ =
∑∞

i=1(Ea1)i−1Eb1 = Eb1
1−Ea1 . Without

loss of generality we can assume that ν(f) = 0, i.e. that Eb1 = 0; then the
variance is

σ2
ν = VarP(Z) = lim

n→∞
E
( n∑
i=1

a1 · · · ai−1bi

)2

= lim
n→∞

n∑
i=1

(Ea2
1)i−1Eb21 =

Eb21
1− Ea2

1

.

Therefore the conclusions of Theorem 3.4 hold true with µ = ν(f) = 0 and

σ = σ2
ν =

Eb21
1−Ea21

.

A multivariate version of the stochastic recursion has been considered in
Guivarc’h and Le Page [18], [19] and can be treated in the same manner.

4. Partition of the set N and notations. In what follows, ε, β ∈ (0, 1)
will be such that ε+β < 1 (all over the paper ε is supposed to be very small,
while β will be optimized). Denote for simplicity [a, b) = {l ∈ N : a ≤ l < b}.
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Let k0 ≥ 1 be a natural number. We start by splitting the set N into subsets
[2k, 2k+1), k = k0, k0 +1, . . . , called blocks. Consider the kth block [2k, 2k+1).
We leave a large gap Jk,1 of length 2[εk]+[βk] at the left end of the kth block.
Then, following a triadic Cantor-like scheme, we split the remaining part
[2k + 2[εk]+[βk], 2k+1) into subsets Ik,j and Jk,j called islands and gaps as

explained below. At resolution level 0 a gap of size 2[εk]+[βk]/2 is put in the
middle of the interval [2k+2[εk]+[βk], 2k+1). This yields two intervals of equal
length. At resolution level 1 two additional gaps of length 2[εk]+[βk]/22 are
put in the middle of each interval obtained, which yields four intervals of
equal length. Continuing, at resolution level [βk] we obtain 2[βk] intervals
Ik,j , j = 1, . . . , 2[βk], called islands, and the same number of gaps Jk,j ,

j = 1, . . . , 2[βk] which we index from left to right (recall that Jk,1 = Jk,20
denotes the large gap at the left end of the kth block). It is obvious that
[2k, 2k+1) is the union of the constructed islands and gaps, so that

(4.1) [2k, 2k+1) = Jk,1 ∪ Ik,1 ∪ · · · ∪ Jk,2[βk] ∪ Ik,2[βk] .

Note that in block k there are one gap of length 2[[εk]]+[βk] and 2l gaps of
length 2[[εk]]+[βk]−l−1, where l = 0, . . . , [βk]− 1. The length of the finest gap
(for example Jk,2[βk]) is 2[εk]. The total length of the gaps in block k is

Lgap
k = 2[[εk]]+[βk] +

[βk]−1∑
l=0

2l2[[εk]]+[βk]−l−1 = (2 + [βk])2[[εk]]+[βk]−1.

Recall that, by construction, the islands of the kth block have the same
length

|Ik,j | =
(
2k+1 − 2k − (2 + [βk])2[[εk]]+[βk]−1

)
/2[βk]

= 2k−[βk] − (1 + [βk]2[[εk]]−1).

An obvious upper bound is |Ik,j | ≤ 2k−[βk]. Since ε < 1− β we have |Ik,j | ≥
2k−[βk]−2[[εk]]−c′β,ε ln k ≥ cε,β2k(1−β), with some cε,β ∈

(
0, 1

2

)
. Since the length

of the kth block is 2k, the total length of the islands in this block equals

Lisl
k = 2k − 2[[εk]]+[βk]−1(2 + [βk]).

Note that, for some constant cβ > 0,

(4.2) cβ2k ≤ Lisl
k ≤ 2k.

Denote by K the set of double indices (k, j), with k = 1, 2, . . . the index
of the block and j = 1, . . . , 2[βk] the index of the island in block k. The set K
will be endowed with the lexicographical order �. Then the sets Ik,j and Jk,j ,
(k, j) ∈ K, will also be endowed with the lexicographical order. Let N ∈ N.
From (4.1), there exists a unique (n,m) ∈ K such that 2n ≤ N < 2n+1 and
N ∈ Jn,m∪In,m, where the dependence of n and m on N is suppressed from
the notation; let KN = {(k, j) : (k, j) � (n,m)}.
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For ease of reading we recall the notations and properties that will be
used throughout the paper:

P1. ε and β are positive numbers such that ε + β < 1. Later on, the
constant ε will be chosen small enough.

P2. K = {(k, j) : k = 1, 2, . . . , j = 1, . . . , 2[βk]}.
P3. For any N ∈ N the unique couple (n,m) ∈ K is such that N ∈

Jn,m ∪ In,m.
P4. KN = {(k, j) : (k, j) � (n,m)}.
P5. Ik,j , j = 1, . . . , 2[βk], are the islands and Jk,j , j = 1, . . . , 2[βk], are

the gaps in the kth block.
P6. The number of islands and the number of gaps in the kth block

are both equal to mk = 2[βk]. Set mk,n = mk + · · ·+mn.

P7. The islands in the kth block have the same length |Ik,j | = 2k−[βk]−
(1 + [βk]2[[εk]]−1) ≤ 2k−[βk]. This implies |Ik,j | ≥ cε,β2k(1−β) for
some constant cε,β ∈

(
0, 1

2

)
.

P8. The length of the finest gap in the kth block is |Jk,j | = 2[[εk]]. This

implies |Jk,j | ≥ 2[[εk]].
P9. The length |Jk,1| of the gap at the left end of the kth block is

2[εk]+[βk].
P10. For each pair (k, j) ∈ K, we denote X(k,j) =

∑
i∈Ik,j Xi and

W(k,j) =
∑

i∈Ik,j Wi.

P11. LX1,...,Xd denotes the probability law of the vector (X1, . . . , Xd).

5. Auxiliary result. Without loss of generality we assume that on
the initial probability space there is a sequence of independent r.v.’s

(Y(k,j))(k,j)∈K such that Y(k,j)
d
=X(k,j), (k, j) ∈ K. Let k0 ∈ N+ and n > k0.

Suppose that on the same probability space there is an i.i.d. sequence of R1-
valued r.v.’s (V(k,j))(k,j)∈K with mean 0 whose characteristic function has
support [−ε0, ε0] and E|V(k,j)|r0 < ∞ for any r0 > 0. We suppose that the
sequence (V(k,j))(k,j)∈K is independent of (X(k,j))(k,j)∈K and (Y(k,j))(k,j)∈K.
Denote X(k) = (X(k,1), . . . , X(k,mk)), Y(k) = (Y(k,1), . . . , Y(k,mk)) and V(k) =
(V(k,1), . . . , V(k,mk)). Let π denote the Prokhorov distance (for details see
Section 9.1 of the Appendix).

Assume Conditions C1 and C2 hold. The main result of this section is
the following proposition, which is of independent interest.

Proposition 5.1. There exists a constant cε,β,λ1,λ2 such that, for any
k0 = 1, 2, . . . and n > k0,

π(LX(k0)
+V(k0),...,X(n)+V(n) ,LY(k0)+V(k0),...,Y(n)+V(n))

≤ cε,β,λ1,λ2(1 + λ0 + µδ) exp

(
−λ1

4
· 2εk0/2

)
.
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Proof. Without loss of generality we assume that there exists a sequence

of independent random vectors R(k), k = 1, . . . , n, such that R(k)
d
= X(k) +

V(k) and (R(k))k=1,...,n is independent of (X(k) + V(k))k=1,...,n, (Y(k,j))(k,j)∈K
and (V(k,j))(k,j)∈K.

The further proof is split into Parts (a) and (b). In Part (a) we give a
bound for the Prokhorov distance between (X(k0) + V(k0), . . . , X(n) + V(n))
and (R(k0) . . . , R(n)), while in Part (b) we give a bound for the Prokhorov
distance between (R(k0), . . . , R(n)) and (Y(k0) +V(k0), . . . , Y(n) +V(n)). Propo-
sition 5.1 follows from (5.1) and (5.9) by the triangle inequality.

Part (a). We show that there exists a constant cε,β,λ1,λ2 such that, for
any k0 = 1, 2, . . . and n > k0,

(5.1) π(LX(k0)
+V(k0),...,X(n)+V(n) ,LR(k0)

...,R(n)
)

≤ cε,β,λ1,λ2(1 + λ0 + µδ) exp

(
−λ1

4
· 2εk0/2

)
.

For k = k0, . . . , n, define Z(k) = (X(k0) + V(k0), . . . , X(k) + V(k)) and

Z̃(k) = (Z(k−1), R(k)). By Lemma 9.3,

(5.2) π(LZ(n)
,LR(k0)

,...,R(n)
) ≤

n∑
k=k0

π(LZ(k)
,L

Z̃(k)
).

Let φ(k) (resp. φ̃(k)) be the characteristic function of the vector Z(k) (resp.

Z̃(k)) and let mk0,k = mk0 + · · ·+mk. Then by Lemma 9.5, for any T > 0,

π(LZ(k)
,L

Z̃(k)
) ≤ (T/π)mk0,k/2

( �

t∈Rmk0,k
|φ(k)(t)− φ̃(k)(t)|2 dt

)1/2
(5.3)

+ P
(

max
k0≤l≤k

max
1≤j≤ml

|X(l,j)| > T
)
.

Denote by ϕ(k) and ψ(k) the characteristic functions of the vectors X(k)

and (X(k0), . . . , X(k))) respectively. Since V(k0), . . . , V(k) are independent of
X(k0), . . . , X(k) and Y(k0), . . . , Y(k), we have

(5.4)
�

t∈Rmk0,k
|φ(k)(t)− ϕ(k)(t)|2 dt

=
�

t1∈R
mk0

. . .
�

tk∈Rmk
|φ(k)(tk0 , . . . , tk)− ϕ(k)(tk0 , . . . , tk)|2 dtk0 . . . dtk

≤ I1 ≡
�

t1∈R
mk0

. . .
�

tk∈Rmk
|ψ(k)(tk0 , . . . , tk)− ψ(k−1)(tk0 , . . . , tk−1)ϕ(k)(tk)|2

dtk0 . . . dtk.
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To bound the right-hand side of (5.4), note that mk0,k = (2[βk0] + · · ·+2[βk])

≤ 2[βk]+1 and, by construction, the length of the gap between the vectors
X(k−1) and X(k) is kgap = 2[εk]+[βk]. Note also that |Ik,j | ≤ 2k−[βk] and
|ε0| ≤ 1. Recall that the characteristic functions of the r.v.’s V(k,j) have
support [−ε0, ε0] and the sequence (V(k,j))(k,j)∈K is independent of
(X(k,j))(k,j)∈K; this readily implies that the integrals above are in fact over
[−ε0, ε0]mk0,k . Using Condition C1 with M1 = mk0,k−1 and M2 = mk, one
may thus write

I1 ≤ λ0(1 + max
l≤k, j≤mk

|Il,j |)λ2(M1+M2) exp(−λ1kgap)ε
mk0,k
0(5.5)

≤ λ0(1 + 2k−[βk])λ22[βk]+1
exp(−λ1kgap)

≤ λ0 exp(−λ12[εk]+[βk] + λ22[βk]+1 ln(1 + 2k−[βk]))

≤ cε,β,λ1,λ2λ0 exp

(
−λ1

2
· 2[εk]+[βk]

)
.

Putting together (5.3)–(5.5), we get

π(LZ(k)
,L

Z̃(k)
) ≤ cε,β,λ1,λ2λ0(T/π)mk0,k/2 exp

(
−λ1

2
· 2[εk]+[βk]

)
(5.6)

+
∑

k0≤l≤k

∑
1≤j≤ml

P(|X(l,j)| > T ).

Since |I(l,j)| ≤ 2l, by Markov’s inequality and Condition C2,

P(|X(l,j)| > T ) ≤ T−1E|X(l,j)| ≤ T−12l max
i

E|Xi| ≤ µδT−12l.

Choosing T = exp(2[εk]/2), one gets

(5.7)
∑

k0≤l≤k

∑
1≤j≤ml

P(|X(l,j)| > T ) ≤ µδT−1
∑

k0≤l≤k
ml2

l

≤ µδ exp(−2[εk]/2)
∑

k0≤l≤k
2[βl]2l ≤ cβµδ exp(−2[εk]/2/2).

Since mk0,k ≤ 2βk, one gets

(5.8) (T/π)mk0,k/2 ≤ exp

(
1

2
· 2[εk]/2+βk

)
.

From (5.6)–(5.8), we deduce

π(LZ(k)
,L

Z̃(k)
) ≤ cε,β,λ1,λ2λ0 exp

(
1

2
· 2[εk]/2+[βk]

)
exp

(
−λ1

2
· 2[εk]+[βk]

)
+ cβµδ exp(−2[εk]/2/2)

≤ (1 + λ0 + µδ)cε,β,λ1,λ2 exp

(
−λ1

4
· 2εk/2

)
.
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Using (5.2) leads to

π(LZ(n)
,L(R(k0)

...,R(n))) ≤ (1 + λ0 + µδ)cε,β,λ1,λ2

n∑
k=k0

exp

(
−λ1

4
· 2[εk]/2

)
≤ (1 + λ0 + µδ)c

′
ε,β,λ1,λ2 exp

(
−λ1

4
· 2[εk]0/2

)
.

This concludes the proof of Part (a).

Part (b). We show that there exists a constant cε,β,λ1,λ2 such that, for
any k0 = 1, 2, . . . and n > k0,

(5.9) π(LR(k0)
,...,R(n)

,LY(k0)+V(k0),...,Y(n)+V(n))

≤ cε,β,λ1,λ2(1 + λ0 + µδ) exp

(
−λ1

8
· 2[εk]0/2

)
.

By Lemma 9.4, since R(k0), . . . , R(n) and Y(k0) +V(k0), . . . , Y(n) +V(n) are
independent r.v.’s, one may write

(5.10) π(LR(k0)
,...,R(n)

,LY(k0)+V(k0),...,Y(n)+V(n)) =
n∑

k=k0

π(LR(k)
,LY(k)+V(k))

and it suffices to prove that, for any k = 1, 2, . . . ,

(5.11) π(LR(k)
,LY(k)+V(k)) ≤ (1 + λ0 + µδ)c

′
ε,β,λ1,λ2 exp

(
−λ1

8
· 2[εk]/2

)
.

For this, recall that, according to the construction in Section 4, at res-
olution level 0, a gap of length 2[[εk]]+[βk]/2 in the middle of the block

R0,0
(k) = R(k) splits it into two vectors R̃0,1

(k) and R̃0,2
(k); let R0,1

(k) and R0,2
(k) be

independent versions of R̃0,1
(k) and R̃0,2

(k) respectively. Next, at level 1, for any

j ∈ {1, 2}, a gap of length 2[(ε+β)k]/4 in the middle of the block R0,j
(k) splits

it into two vectors R̃1,2j−1
(k) and R̃1,2j

(k) ; let R1,2j−1
(k) and R1,2j

(k) be their indepen-

dent versions. Assuming that at level l ∈ {1, . . . , [βk]} the independent r.v.’s

Rl,j(k), j ∈ {1, . . . , 2
l}, are already constructed, we shall perform the construc-

tion at resolution level l + 1. Note that, at level l, for any j ∈ {1, . . . , 2l},
a gap of length 2[(ε+β)k]/2l+1 in the middle of the block Rl,j(k) splits it into two

vectors R̃l+1,2j−1
(k) and R̃l+1,2j

(k) ; it is enough to let Rl+1,2j−1
(k) and Rl+1,2j

(k) be

their independent versions. It is easy to see that at the final level lk = [βk]

we have Rlk,j(k)

d
= Y(k,j) + V(k,j) for j = 1, . . . ,mk = 2[βk].

Let l ∈ {0, . . . , [βk]}. For j ∈ {1, . . . , 2l}, denote by ψl,2j−1
k and ψl,2jk

the characteristic functions of Rl,2j−1
(k) and Rl,2j(k) . Using Lemma 9.5 and the
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independence of R̃l,2j−1
(k) and R̃l,2j(k) , we get

(5.12) π(L
Rl,j

(k)
,
L
Rl+1,2j−1

(k)
,Rl+1,2j

(k)

)

≤
(

(T/π)2−lmk
�

(t,s)∈R2−lmk

|ψl,jk (t, s)− ψl+1,2j−1
k (t)ψl+1,2j

k (s)|2 dt ds
)1/2

+
∑

1≤j≤2−lmk

P(|X(k,j) + V(k,j)| > T ).

By Condition C1 with N = M = mk
2 2−l and kgap = 2[εk]+[βk]−l−1, we obtain

(5.13)
�

(t,s)∈Rmk2−l
|ψl,jk (t, s)− ψl+1,2j−1

k (t)ψl+1,2j
k (s)|2 dt ds

=
�

(t,s)∈Rmk2−l , ‖t‖∞≤ε0, ‖s‖∞≤ε0

|ψl,jk (t, s)− ψl+1,2j−1
k (t)ψl+1,2j

k (s)|2 dt ds

≤ λ0 exp
(
λ2mk2

−l ln(1 + 2k−[βk])− λ12[εk]+[βk]−1−l
)

(2ε0)mk2−l

≤ λ0c
′′
ε,β,λ1,λ2 exp

(
−λ1

4
· 2[εk]+[βk]−l

)
.

We thus take T = exp(λ12[[εk]]/2) so that

(T/π)2−lmk ≤ exp(λ12−lmk2
[[εk]]/2) ≤ exp(λ12[[εk]]/2+[βk]−l).

In order to control the terms P(|X(k,j) + V(k,j)| > T ), we use Markov’s

inequality, Condition C2 and the fact that |Ik,j | ≤ 2k; it readily follows that

P(|X(k,j) + V(k,j)| > T ) ≤ T−1(E|X(k,j)|+ E|V(k,j)|)

≤ T−1
(

2k max
i

E|Xi|+ c2k
)

≤ (1 + µδ)c2
k exp(−λ12−[[εk]]/2).

Therefore

(5.14)
∑

1≤j≤2−lmk

P(|X(k,j) + V(k,j)| > T )

≤ 2−lmk(1 + µδ)c2
k exp(−2[[εk]]/2)

≤ (1 + µδ) exp(−λ12[[εk]]/2)2−l22[βk]+k

≤ (1 + µδ)cε,β,λ1,λ2 exp

(
−λ1

2
2[[εk]]/2

)
.
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From (5.12)–(5.14), we get

(5.15) π(L
Rl,j

(k)
,
L
Rl+1,2j−1

(k)
,Rl+1,2j

(k)

)

≤ (1 + λ0 + µδ)cε,β,λ1,λ2

×
[
exp(λ12−l2[[εk]]/2+[βk]) exp

(
−λ1

2
· 2−l2[εk]+[βk]

)
+ c exp

(
−λ1

2
· 2[[εk]]/2

)]
≤ (1 + λ0 + µδ)cε,β,λ1,λ2 exp

(
−λ1

4
· 2[[εk]]/2

)
.

Since Rl,j(k), j = 1, . . . , 2l, are independent r.v.’s, by the triangle inequality
one gets

π(LR(k)
,LY(k)+V(k)) = π(L

R0,0
(k)
,LY(k)+V(k))(5.16)

≤ π(L
R0,0

(k)
,L

R0,1
(k)
,R0,2

(k)
) + π(L

R0,1
(k)
,R0,2

(k)
,LY(k)+V(k))

≤ π(L
R0,0

(k)
,L

R0,1
(k)
,R0,2

(k)
) + π(L

R0,1
(k)
,R0,2

(k)
,L

R1,1
(k)
,...,R1,4

(k)
)

+ π(L
R1,1

(k)
,...,R1,4

(k)
,LY(k)+V(k))

...

≤
[βk]−1∑
l=0

π(L
Rl,1

(k)
,...,Rl,2

l

(k)

,L
Rl+1,1

(k)
,...,Rl+1,2l+1

(k)

).

By Lemma 9.4 and (5.15),

(5.17) π(L
Rl,1

(k)
,...,Rl,2

l

(k)

,L
Rl+1,1

(k)
,...,Rl+1,2l+1

(k)

)

≤
2l∑
j=1

π(L
Rl,j

(k)

,L
Rl+1,2j−1

(k)
,Rl+1,2j

(k)

)

≤ cε,β,λ1,λ22l(1 + λ0 + µδ) exp

(
−λ1

4
· 2[εk]/2

)
.

From (5.16) and (5.17), it follows that

π(LR(k)
,LY(k)+V(k)) ≤

[βk]−1∑
l=0

2l(1 + λ0 + µδ)cε,β,λ1,λ2 exp

(
−λ1

4
· 2[εk]/2

)
≤ 2[βk](1 + λ0 + µδ)cε,β,λ1,λ2 exp

(
−λ1

4
· 2[εk]/2

)
≤ (1 + λ0 + µδ)c

′
ε,β,λ1,λ2 exp

(
−λ1

8
· 2[εk]/2

)
.

Finally, using (5.11) finishes the proof of Part (b).
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6. Proof of Theorem 2.1. The proof is divided into several steps.
We first construct the coupling with independent r.v.’s. (Section 6.1) and
then with independent normal r.v.’s. (Section 6.2). In Section 6.3, we give

an explicit construction of the sequences (X̃i)1≤i≤N and (Wi)1≤i≤N and in
Sections 6.4–6.7 we put together and optimize the bounds.

6.1. Coupling with independent r.v.’s. Assume Conditions C1 and
C2 hold. The proposition below shows that the partial sums

∑
(l,i)�(k,j)X(l,i)

can be coupled with high probability with the partial sums
∑

(l,i)�(k,j) Y(l,i).

Proposition 6.1. Let α < δ, β > 1/2 and 0 < ρ < (1− β)/2. Then,
for any N ∈ N, on some extension of the initial probability space there is a
version (X ′(k,j))(k,j)∈KN of (X(k,j))(k,j)∈KN and a version (Y ′(k,j))(k,j)∈KN of

(Y(k,j))(k,j)∈KN such that

P
(

(2n)−1/2 sup
(k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − Y
′

(l,i))
∣∣∣ ≥ (2n)−ρ

)
≤ C1(2n)−1−α+(ε+ρ)(2+2α),

where ε ∈ (0, 1/2) is arbitrary and C1 = cε,β,λ1,λ2,α,ρ(1 + λ0 + µδ)
2+2δ for

some positive constant cε,β,λ1,λ2,α,ρ.

Proof. It is convenient to set k0 = [εn], Xk0,n = (X(k0), . . . , X(n)),

Yk0,n = (Y(k0), . . . , Y(n)) and Vk0,n = (V(k0), . . . , V(n)); the variables X̃k0,n =

Xk0,n + Vk0,n and Ỹk0,n = Yk0,n + Vk0,n are the smoothed versions of Xk0,n

and Yk0,n. By Proposition 5.1, with k0 = [εn], there exists a constant
cε,β,λ1,λ2 such that

(6.1) π(L
X̃k0,n

,L
Ỹk0,n

) ≤ ∆ = (1 + λ0 + µδ)cε,β,λ1,λ2 exp

(
−λ1

4
· 2ε2n/2

)
.

Using Strassen–Dudley’s theorem (see Lemma 9.1), we conclude that on
some extension of the initial probability space there are random vectors

S̃k0,n = (S(k0), . . . , S(n)) and T̃k0,n = (T(k0), . . . , T(n)) such that S̃k0,n
d
=

X̃k0,n, T̃k0,n
d
= Ỹk0,n and

(6.2) P(‖S̃k0,n − T̃k0,n‖∞ ≥ ∆) ≤ ∆.

We shall remove the smoothing from the vectors S̃k0,n and T̃k0,n. With-
out loss of generality we may assume that there is a random vector U with
uniform distribution on [0, 1]mk0,n and independent of (S̃k0,n, T̃k0,n). We

thus consider the transition kernels G1(x | y) := P(Xk0,n ≤ x | X̃k0,n = y)

and G2(x | y) := P(Yk0,n ≤ x | Ỹk0,n = y) and set X ′k0,n := G−1
1 (U | S̃k0,n),

V ′k0,n := S̃k0,n − X ′k0,n, Y ′k0,n := G−1
1 (U |Tk0,n) and V ′′k0,n := T̃k0,n − Y ′k0,n.
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The sequences X ′k0,n and Y ′k0,n are such that S̃k0,n = X ′k0,n + V ′k0,n, T̃k0,n =

Y ′k0,n + V ′′k0,n and X ′k0,n
d
= Xk0,n, Y

′
k0,n

d
= Yk0,n, V

′
k0,n

d
= V ′′k0,n

d
= Vk0,n. The

coordinates of the vectors X ′k0,n and Y ′k0,n are denoted by X ′(k,j) and Y ′(k,j),

(k, j) ∈ K. Since S̃(k,j) = X ′(k,j) + V ′(k,j) and T̃(k,j) = Y ′(k,j) + V ′′(k,j), we have,

for any x ≥ 1,

R = P
(

sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − Y
′

(l,i))
∣∣∣ ≥ 2x

)
≤ R1 +R2,

where

R1 = P
(

sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(S̃(l,i) − T̃(l,i))
∣∣∣ ≥ x),

R2 = P
(

sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(V ′(l,i) − V
′′

(l,i))
∣∣∣ ≥ x).

First, we shall control R1. Note that cardKN ≤ c2βn. For any sequence
(α(k,j))(k,j)∈K of positive numbers such that

∑
(k,j)∈K α(k,j) ≤ 1,{

sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
k0≤l, (l,i)�(k,j)

(S̃(l,i) − T̃(l,i))
∣∣∣ ≥ x}

⊆
⋃

k0≤k, (k,j)∈KN

{∣∣∣ ∑
k0≤l, (l,i)�(k,j)

(S̃(l,i) − T̃(l,i))
∣∣∣ ≥ x}

⊆
⋃

k0≤k, (k,j)∈KN

⋃
k0≤k, (l,i)�(k,j)

{|S̃(l,i) − T̃(l,i)| ≥ xα(l,i)}

=
⋃

k0≤k, (k,j)∈KN

{|S̃(k,j) − T̃(k,j)| ≥ xα(k,j)},

which implies that

R1 ≤
∑

k0≤k, (k,j)∈KN

P(|S̃(k,j) − T̃(k,j)| ≥ xα(k,j)).

Let p = 2 + 2α < 2 + 2δ. By Chebyshev’s inequality,

R1 ≤ x−p
∑

k0≤k, (k,j)∈KN

α−p(k,j)E|S̃(k,j) − T̃(k,j)|p.

By a truncation argument, with ∆ from (6.1) and (6.2),

R1 ≤ x−p∆p
∑

k0≤k, (k,j)∈KN

α−p(k,j)

+ x−p
∑

k0≤k, (k,j)∈KN

α−p(k,j)E|S̃(k,j) − T̃(k,j)|p1(|S̃(k,j) − T̃(k,j)| ≥ ∆).
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Let η ∈ (0, δ − α), p′ = p + 2η and γ = 2η
p+2η ≤ η. Applying Hölder’s

inequality one may write∥∥|S̃(k,j) − T̃(k,j)|1(|S̃(k,j) − T̃(k,j)| ≥ ∆)
∥∥
Lp

≤ ‖S̃(k,j) − T̃(k,j)‖Lp′P(|S̃(k,j) − T̃(k,j)| > ∆)γ/p.

By Condition C2, for some constant c > 0, we get

‖S̃(k,j) − T̃(k,j)‖Lp′ ≤ 2‖X(k,j)‖Lp′ + 2‖V ′(k,j)‖Lp′ ≤ c(1 + µδ)|Ik,j |;

consequently, (6.2) leads to

R1 ≤ x−p∆p
∑

k0≤k, (k,j)∈KN

α−p(k,j)

+ c(1 + µδ)
px−p

∑
k0≤k, (k,j)∈KN

α−p(k,j)|Ik,j |
p(P(|S̃(k,j) − T̃(k,j)| ≥ ∆))γ

≤ x−p∆p
∑

k0≤k, (k,j)∈KN

α−p(k,j)

+ c(1 + µδ)
px−p∆γ

∑
k0≤k, (k,j)∈KN

α−p(k,j)2
(k−[βk])p

≤ cε,β,λ1,λ2,η(1+λ0+µδ)
p+γ exp

(
−λ1

4
γ2ε

2n/2

)
x−p

∑
k0≤k≤n

∑
j≤2[βk]

α−p(k,j)2
kp.

Now, choosing α(k,j) = 2−kj−2, we obtain∑
k0≤k≤n

∑
j≤2[βk]

α−p(k,j)2
kp ≤

∑
k0≤k≤n

∑
j≤2[βk]

22kpj2p ≤ 22np
∑

k0≤k≤n

∑
j≤2[βk]

j2p

≤ 22np
∑

k0≤k≤n
2(2p+1)[βk] ≤ 22np2(2p+1)[βn]n ≤ 2ncα,β ,

which implies that

R1 ≤ cε,β,λ1,λ2,η(1 + λ0 + µδ)
p+γ exp

(
−1

4
γλ1 · 2ε

2n/2

)
2ncα,βx−p.

Since γ = 2η
p+2η ≤ η ≤ pη and x ≥ 1, we conclude that

(6.3) R1 ≤ A′ exp

(
−1

4
γλ1(2n)ε

2/2

)
for some A′ = c′ε,β,λ1,λ2,α,α′,η(1 + λ0 + µδ)

p(1+η).
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Now, we shall control R2. Using Doob’s inequality, for any λ > 2,

R2 ≤ 2P
(

sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
k0≤l, (l,i)�(k,j)

V ′(l,i)

∣∣∣ ≥ x)(6.4)

≤ 2x−λE
( ∑
k0≤l, (l,i)∈KN

|V ′(l,i)|
)λ
.

By Rosenthal’s inequality(
E
( ∑
k0≤l, (l,i)∈KN

|V ′(l,i)
∣∣∣)λ)1/λ

≤ cλ
( ∑
k0≤l, (l,i)∈KN

E(|V ′(l,i)|
2)
)1/2

(6.5)

+ cλ

( ∑
k0≤l, (l,i)∈KN

E(|V ′(l,i)|
λ)
)1/λ

≤ c′λ(2βn)1/2.

From (6.3)–(6.5) we obtain

P
(

sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − Y
′

(l,i))
∣∣∣ ≥ 2x

)
≤ A′ exp

(
−1

4
γλ1(2n)ε

2/2

)
+ cλ(2βn)λ/2x−λ.

Choosing x = 1
2(2n)1/2−ρ, we find

(6.6) P
(

(2n)−1/2 sup
k0≤k, (k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − Y
′

(l,i))
∣∣∣ ≥ (2n)−ρ

)
≤ A′ exp

(
−1

4
γλ1(2n)ε

2/2

)
+ cλ(2n)−

1
2
λ(1−β−2ρ).

So far we performed the construction for k ≥ k0. It remains to construct
the sequences X ′(k,j) and Y ′(k,j) for (k, j) � (k0 − 1,mk0−1). This construc-

tion can be performed by any method such that the sequences (X ′(k,j)) and

(Y ′(k,j)), where (k, j) � (k0 − 1,mk0−1), are independent and Y ′(k,j)
d
= X(k,j)

for the same (k, j). Indeed, let FX|Y1,...,Yk(x|y1, . . . , yk) be the conditional
distribution of X given [Y1 = y1, . . . , Yk = yk] and let (U(k,j)) be a sequence
of independent r.v.’s uniformly distributed on (0, 1). Denote for brevity the
constructed part by X′k0 = (X ′(k,j))k0≤k, (k,j)∈KN . Define X ′(k0−1,1) as the

conditional quantile transform

X ′(k0−1,1) = F−1
X(k0−1,1)|Xk0

(U(k0−1,1)|X′k0),

where Xk0 = (X(k,j))k0≤k, (k,j)∈KN . We continue setting

X ′(k0−1,j) = F−1
X(k,j)|Xk0

(U(k0−1,j−1)|X ′(k0−1,1), . . . , X
′
(k0−1,j−1)X

′
k0)
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for j = 2, . . . ,mk0−1. In the same way we extend the construction to all
X ′(k,j) with 1 ≤ k < k0 − 1. The construction of the sequence (Y ′(k,j)) for

(k, j) � (k0 − 1,mk0−1) is similar.

Since the sequence (Xk)k≥1 satisfies Condition C1, so does (X ′(k,j)). Us-

ing the maximal inequality stated in Proposition 8.1 below and noting that
the cardinality of the set {(k, j) : (k, j) � (k0 − 1,mk0−1)} is less than or
equal to 2βk0 ≤ 2εn, we obtain, for any η′ ∈

(
0, δ−α

(2+α+δ)2

)
,

E
(

sup
(k,j)�(k0−1,mk0−1)

∣∣∣ ∑
(l,i)�(k,j)

X ′(l,i)

∣∣∣p) ≤ A′′(2εn)
1
2
p

for come constant A′′ = c′′ε,β,λ1,λ2,δ,α,η(1 + λ0 + µδ)
p(1+η′). By Chebyshev’s

inequality, for any x > 0 we get

P
(

sup
(k,j)�(k0−1,mk0−1)

∣∣∣ ∑
(l,i)�(k,j)

X ′(l,i)

∣∣∣ ≥ x)
≤ x−pE sup

(k,j)�(k0−1,mk0−1)

∣∣∣ ∑
(l,i)�(k,j)

X ′(l,i)

∣∣∣p ≤ A′′x−p(2εn)
1
2
p.

Substituting x = (2n)1/2−ρ yields

P
(

(2n)−1/2 sup
(k,j)�(k0−1,mk0−1)

∣∣∣ ∑
(l,i)�(k,j)

X ′(l,i)

∣∣∣ ≥ (2n)−ρ
)
≤ A′′(2n)−

p
2

+p(ρ+ 1
2
ε).

A similar inequality can be proved with Y ′(l,i) instead of X ′(l,i). Combining

this with (6.6), we obtain

(6.7) P
(

(2n)−1/2 sup
(k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − Y
′

(l,i))
∣∣∣ ≥ 2(2n)−ρ

)
≤ A′′′

(
exp

(
−1

4
γλ1(2n)ε

2/2

)
+ (2n)−

1
2
λ(1−β−2ρ) + (2n)−

p
2

+p(ρ+ 1
2
ε)

)
for some A′′ = c′′′ε,β,λ1,λ2,δ,δ′,η,λ(1 + λ0 + µδ)

p(1+η+η′). Recall that p = 2 + 2α,

α < δ, β > 1/2 and ρ < (1− β)/2. Taking λ = 2+2α
1−β−2ρ > p, the right-hand

side of (6.7) does not exceed A′′′(2n)−1−α+(2+2α)(ρ+ε). It remains to choose
a sufficiently small η + η′ such that p(1 + η + η′) ≤ 2 + 2δ, which implies

A′′′ ≤ c′′′ε,β,λ1,λ2,α,ρ(1 + λ0 + µδ)
2+2δ.

The assertion of Proposition 6.1 follows.

6.2. Coupling with independent normal r.v.’s. Assume Conditions
C1–C3 hold. Without loss of generality we can consider that µi = 0, i ≥ 1,
and σ = 1. The following proposition shows that with high probability the
partial sums

∑
(l,i)�(k,j)X(l,i) can be coupled with the partial sums of some



24 I. GRAMA ET AL.

normal r.v.’s. Note the presence of two terms in the upper bound below.
One of them, called the dependence error, comes from replacing dependent
blocks by independent ones; the second one, called Sakhanenko’s error, is
due to the use of Sakhanenko’s strong approximation result for independent
blocks.

Proposition 6.2. Let α < δ, β > 1/2 and 0 < ρ < (1− β)/2. Then
for any N ∈ N, on some extension of the initial probability space there
exists a sequence of independent standard normal r.v.’s (W ′(k,j))(k,j)∈KN and

a version (X ′(k,j))(k,j)∈KN of the sequence (X(k,j))(k,j)∈KN such that

(6.8) P
(

(2n)−1/2 sup
(k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − σl,iW
′
(l,i))

∣∣∣ ≥ 2(2n)−ρ
)

≤ C2(2n)−1−α+(ε+ρ)(2+2α) (dependence error)

+ C2(2n)−βα+ρ(2+2α) (Sakhanenko’s error)

where σ2
l,i = Var(X(l,i)) and C2 = cε,β,λ1,λ2,α,ρ(1 + λ0 + µδ)

2+2δ.

Proof. Let p = 2 + 2α. Since |Ik,j | ≤ 2k−[βk], using Proposition 8.2 we
obtain

E|X(k,j)|p ≤ A|Ik,j |p/2 ≤ A(2k−[βk])p/2,

where A = cλ1,λ2,δ′,η(1 + λ0 + µδ)
p(1+η) and η > 0 is arbitrary. Taking into

account that mk = 2[βk] ≤ 2βk, we have∑
(k,j)∈KN

E|X(k,j)|p =

n∑
k=1

mk∑
j=1

E|X(k,j)|p ≤
n∑
k=1

mkA(2k−[βk])p/2(6.9)

≤ A2p/2
n∑
k=1

2k(β+ p
2

(1−β)) ≤ cα,βA(2n)β+ p
2

(1−β).

By (9.2) in the Appendix, on some probability space (Ω′′,F ′′,P′′), there
exist a version (Y ′′(k,j))(k,j)∈KN of (Y(k,j))(k,j)∈KN and independent standard

normal r.v.’s (W ′(k,j))(k,j)∈KN such that

P′′
(

sup
(k,j)∈K0

N

∣∣∣ ∑
(l,i)�(k,j)

(Y ′′(l,i) − σl,iW
′
(l,i))

∣∣∣ ≥ a) ≤ cp
ap

∑
(k,j)∈K0

N

E|X(k,j)|p.

Choosing a = (2βn)1/2−ρ and taking into account (6.9) we obtain

P′′
(

(2n)−1/2 sup
(k,j)∈K0

N

∣∣∣ ∑
(l,i)�(k,j)

(Y ′′(l,i) − σl,iW
′
(l,i))

∣∣∣ ≥ (2n)−ρ
)

≤ cp(2n)−p/2+ρpcα,βA(2n)β+ p
2

(1−β) ≤ c′α,βA(2n)−βα+ρ(2+2α).
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By Berkes–Philipp’s lemma [1, Lemma 2.1] we can reconstruct the sequences
(X ′(k,j))(k,j)∈KN , (Y ′(k,j))(k,j)∈KN , (Y ′′(k,j))(k,j)∈KN and (W ′(k,j))(k,j)∈KN on some

new probability space in such a way thatY ′(k,j) = Y ′′(k,j) a.s. for any (k, j) inKN .
Without loss of generality we shall consider this new probability space as an
extension of the initial one. Using Proposition 6.1 we obtain

P
(

2−n/2 sup
(k,j)∈KN

∣∣∣ ∑
(l,i)�(k,j)

(X ′(l,i) − σl,iW
′
(l,i))

∣∣∣ ≥ 2(2n
)−ρ

)

≤ C1(2n)−1−α+(ε+ρ)(2+2α) (dependence error)

+ c′δ,βA(2n)−βα+ρ(2+2α) (Sakhanenko’s error)

with C1 defined by Proposition 6.1. Taking into account that p = 2 + 2α,
α < δ and choosing η sufficiently small we get p(1 + η) ≤ 2 + 2δ, which
implies c′α,βA ≤ c′λ1,λ2,α,η(1 + λ0 + µδ)

2+2δ.

6.3. Construction of (X̃i)1≤i≤N and (Wi)1≤i≤N . As before, we sup-
pose that µi = 0, i ≥ 1 and σ2 = 1. Let (X ′(k,j))(k,j)∈KN and (W ′(k,j))(k,j)∈KN
be as in Proposition 6.2.

First we shall construct (Wi)1≤i≤N . Note that, by Condition C3, the
variances σ2

k,i = Var(X(k,j)) can be approximated by σ2|Ik,j | = |Ik,j |, but in
general do not coincide with |Ik,j |. Therefore to perform our construction we
have to replace each of the non-identically-distributed normal random vari-
ables σ2

k,jW
′
(k,j) by some sums of independent identically distributed stan-

dard normal random variables. Let (Wi)1≤i≤N be a sequence of independent
standard normal r.v.’s; let ξk,j be an extra standard normal random variable.
Set Ik,j := {i1, . . . , i|Ik,j |} with i1 � · · · � i|Ik,j | and let i∗k,j be the maximal

index j ∈ {i1, . . . , i|Ik,j |} for which the variance of the partial sum
∑j

i=i1
Wi

does not exceed σ2
k,j , i.e. i∗k,j = im∗k,j , where m∗k,j = min{|Ik,j |, [σ2

k,j ]}.

It is easy to check that W ′′(k,j) :=
∑i∗k,j

i=i1
Wi + ξk,jfk,j where f2

k,j =

|σ2
k,j−i∗k,j | is a normal random variable with mean 0 and variance σ2

k,j ; more-

over, we may consider W ′′(k,j) as a new version of σk,jW
′
(k,j). The random vari-

able
∑

k∈Ik,j (Wk −W ′′(k,j)), which is equal to
∑

i∗k,j+1≤k≤|Ik,j |(Wk − ξk,jfk,j),
also has a normal random variable of mean 0 and variance (|Ik,j | − i∗k,j)

+ f2
k,j =

∣∣σ2
k,j − |Ik,j |

∣∣. By Berkes–Philipp’s lemma, without loss of general-

ity, we can reconstruct the sequences (X ′(k,j))(k,j)∈KN , (σk,jW
′
(k,j))(k,j)∈KN ,

(W ′′(k,j))(k,j)∈KN and (W ′′(k,j))(k,j)∈KN on the same probability space in such

way that a.s. (σk,jW
′
(k,j))(k,j)∈KN = (W ′′(k,j))(k,j)∈KN . We shall assume that

this probability space is an extension of the initial on. Thus we have con-
structed theWi’s when i belongs to the union of all islands, I=

⋃
(k,j)∈KN Ik,j ,
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with the property that the ηk,j =
∑

i∈Ik,j Wi − σk,jW ′(k,j) are independent

normal and centered random variables with variances v2
k,j =

∣∣σ2
k,j − |Ik,j |

∣∣ ≤
τ |Ik,j |γ for any γ > 0. Therefore the sum

∑
(l,i)≤(n,m) ηl,i is normal with

mean 0 and variance
∑

(l,i)≤(n,m) v
2
k,i ≤ cβτ2(β+γ)n; by Doob’s inequality,

with p = 2 + 2α, it follows that

(6.10) P
(

(2n)−1/2 sup
(k,j)∈KN

∣∣∣ ∑
(l,i)≤(k,j)

ηl,i

∣∣∣ ≥ (2n)−ρ
)

≤ (2n)−p/2+ρpE
(∣∣∣ ∑

(l,i)≤(n,m)

ηl,i

∣∣∣p)
≤ cα,β(2n)−p/2+ρp(τ2(β+γ)n)p/2

= cα,βτ
1+α(2n)−(1−β)(1+α)+(ρ+γ/2)(2+2α)

where γ > 0 is arbitrary. When i belongs to the union of the gaps, J =⋃
(k,j)∈KN Jk,j , the variables Wi can be taken as any independent standard

normal random variables independent of the sequence (Wk)k∈I .

So far we have constructed the variables (X ′(k,j))(k,j)∈KN correspond-

ing to sums over the islands. Now we proceed to construct the compo-
nents of the sequence (X̃i)1≤i≤N . First, we proceed with the components
belonging to all islands. For each (k, j) ∈ KN , we construct a sequence

(X̃i)i∈Ik,j such that
∑

i∈Ik,j X̃i = X ′(k,j) and (X̃i)i=1,...,N
d
= (Xi)i=1,...,N . De-

note by FX |Y1,...,Yk(x | y1, . . . , yk) the conditional distribution of X given
[Y1 = y1, . . . , Yk = yk]. Without loss of generality, on the initial probability
space, there exists a sequence U1, . . . , UN of independent r.v.’s uniformly
distributed on (0, 1). Let i1, . . . , i|Ik,j | be the indices in the set Ik,j . The re-

quired construction is performed in the standard way by defining first X̃i1

as the conditional quantile transform

F−1
Xi1 |X(k,j)

(Uk,i1 |X ′(k,j))

and then by setting, for l = 2, . . . , |Ik,j |,

X̃il = F−1
Xil |Xi1 ,...,Xil−1

,X(k,j)
(Uil | X̃i1 , . . . , X̃il−1

, X ′(k,j)).

Thus we have constructed the vector X̃I = (X̃i)i∈I , where I =
⋃

(k,j)∈KN Ik,j

is the union of all islands, such that X̃I
d
= XI = (Xi)i∈I . In the same

way we construct the X̃i when i belongs to the union of the gaps, J =⋃
(k,j)∈KN Jk,j := {j1, . . . , j|J |}: set Xj1 = F−1

Xj1 |XI
(Uk,j1 | X̃I) and subse-

quently

X̃jl = F−1
Xjl |Xj1 ,...,Xjl−1

,XI
(Ujl |X̃j1 , . . . , X̃jl−1

, X̃I) for l = 2, . . . , |J |.
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6.4. Putting together the bounds. Denote by rk,j the right end of
the island Ik,j and let LN = {1} ∪ {rk,j : (k, j) ∈ KN} be the set of rk,j ’s
equipped with the lexicographical order �. For any r = rk,j ∈ LN let rnext

be the next element in the set LN , i.e. rnext = inf{r′ : r′ ∈ LN , r � r′}.
Let (X̃i)1≤i≤N and (Wi)1≤i≤N be the sequences constructed in Sec-

tion 6.3. Recall that by construction, for any r = rk,j ∈ LN , we have
{1, . . . , r} =

∑
(l,i)�(k,j) Jl,j ∪ Ik,j . First we replace, in the statement of The-

orem 2.1, the sup over the set {j : 1 ≤ j ≤ N} by the sup over the grid
LN and the sup of the oscillation term: in other words, the random variable
sup1≤j≤N |

∑
i≤j(X̃i −Wi)| is bounded by

(6.11) sup
r∈LN

∣∣∣∑
i≤r

(X̃i −Wi)
∣∣∣︸ ︷︷ ︸

(sup over the grid LN )

+ sup
r∈LN

sup
r≤r′≤min{rnext−1,N}

∣∣∣ ∑
r≤i≤r′

(X̃i −Wi)
∣∣∣︸ ︷︷ ︸

(oscillation term)

.

For any r = rk,j , we have∑
1≤i≤r

X̃i =
∑

(l,h)�(k,j)

( ∑
i∈Il,h

X̃i +
∑
i∈Jl,h

X̃i

)
(6.12)

=
∑

(l,h)�(k,j)

(X(l,h) +X(l,h)),

where X(l,h) =
∑

i∈Il,h X̃i and X(l,h) =
∑

i∈Jl,h X̃i. In the same way∑
1≤i≤r

Wi =
∑

(l,h)�(k,j)

( ∑
i∈Il,h

Wi +
∑
i∈Jl,h

Wi

)
(6.13)

=
∑

(l,h)�(k,j)

(W (l,h) +W (l,h))

where W (l,h) =
∑

i∈Il,hWi and W (l,h) =
∑

i∈Jl,hWi. From (6.11)–(6.13) we

obtain

(6.14) sup
1≤j≤N

∣∣∣∑
i≤j

(X̃i −Wi)
∣∣∣

≤ sup
(k,j)∈KN

∣∣∣ ∑
(l,h)≤(k,j)

(X(l,h) −W (l,h))
∣∣∣ (sup over islands)

+ sup
(k,j)∈KN

∣∣∣ ∑
(l,h)≤(k,j)

(X(l,h) −W (l,h))
∣∣∣ (sup over gaps)

+ sup
r∈LN

sup
r≤r′≤min{rnext−1,N}

∣∣∣ ∑
l≤i≤r′

(X̃i −Wi)
∣∣∣ (oscillation term)
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where the term “sup over islands” is bounded by the sum

(6.15) sup
(k,j)∈KN

∣∣∣ ∑
(l,h)≤(k,j)

(X(l,h) − σl,hW ′(l,h))
∣∣∣ (normal approximation)

+ sup
(k,j)∈KN

∣∣∣ ∑
(l,h)≤(k,j)

(σl,hW
′
(l,h) −W (l,h))

∣∣∣ (variance homogenization).

The term “normal approximation” has already been controlled in Proposi-
tion 6.2 where it is bounded by two terms, “dependence error” and “Sakha-
nenko’s error”. The “variance homogenization” term is controlled by (6.10).
As to “sup over gaps” and “oscillation term”, they will be considered in
(6.17) and (6.18) below.

6.5. Bound for the partial sums over gaps. Let p = 2 + 2α, where
α < δ. Since the blocks are indexed by l = k0, . . . , n and the total length of
the gaps in block l is less than (2 + [βl])2[βl]+[εl]−1, the total length Lgap of
all gaps satisfies

Lgap =
∑

(l,i)�(n,m)

|Jl,i| ≤
∑

k0≤l≤n
(2 + [βl])2[βl]+[εl]−1 ≤ cε,β2(β+ε)k.

By Proposition 8.1, we have, for any η > 0,∥∥∥∥ sup
(k,j)�(n,m)

∣∣∣ ∑
(l,i)≤(k,j)

X(l,i)

∣∣∣∥∥∥∥
Lp

≤ cλ1,λ2,α,δ,η(1 + λ0 + µδ)
1+η(Lgap)1/2

≤ cε,β,λ1,λ2,α,δ,η(1 + λ0 + µδ)
1+η(2(β+ε)n)1/2.

Using Chebyshev’s inequality with x = (2n)1/2−ρ, we get

(6.16) P
(

sup
(k,j)∈KN

∣∣∣ ∑
(l,i)≤(k,j)

X(l,i)

∣∣∣ ≥ x)
≤ 1

xp
E
(

sup
(k,j)�(n,m)

∣∣∣ ∑
(l,i)≤(k,j)

X(l,i)

∣∣∣)p
≤ A(2n)−p/2+ρp(2(β+ε)n)p/2

≤ A(2n)−(1−β−ε)p/2+ρp,

where A = cε,β,λ1,λ2,α,δ,η(1 + λ0 + µδ)
p(1+η). A similar bound can be estab-

lished with W (l,i) instead of X(l,i). From this bound and (6.16) it follows
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that, for any 0 < ρ < 1/4,

(6.17) P
(

(2n)−1/2 sup
(k,j)∈KN

∣∣∣ ∑
(l,i)≤(k,j)

(X(l,i) −W (l,i))
∣∣∣ ≥ (2n)−ρ

)
≤ A′(2n)−(1−β−ε)p/2+ρp

≤ A′(2n)−(1−β)(1+α)+(ρ+ε/2)(2+2α)

where A′ = c′ε,β,λ1,λ2,α,δ(1 + λ0 + µδ)
2+2δ.

6.6. Bound for the oscillation term. Denote r+ = min{rnext−1, N}
for brevity. First note that

r+ − r ≤ max
(k,j)∈KN

(|Ik,j |+ |Jk,j |) ≤ cε,β(2(β+ε)n + 2(1−β)n).

Let p = 2 + 2α where α < δ. By Proposition 8.1, for any η > 0,∥∥∥∥ sup
r∈LN

sup
r≤l≤r+

∣∣∣ ∑
r≤i≤l

X̃i

∣∣∣∥∥∥∥p
Lp
≤ A

(
sup
r∈LN

(r+ − r)
)p/2

≤ cε,βA(2(β+ε)n + 2(1−β)n)p/2,

where A = cλ1,λ2,α,δ,η(1+λ0 +µδ)
p(1+η). Therefore, by Chebyshev’s inequal-

ity, with x = 1
2(2n)1/2−ρ and ρ > 0,

P
(

sup
r∈LN

sup
r≤l≤r+

∣∣∣ ∑
r≤i≤l

X̃i

∣∣∣ ≥ x)
≤ x−pE

(
sup
r∈LN

sup
r≤l≤r+

∣∣∣ ∑
r≤i≤l

X̃i

∣∣∣)p ≤ cε,βAx−p(2(β+ε)n + 2(1−β)n)p/2

≤ c′ε,βA2p+npρ((2n)−(1+α)(1−β−ε) + (2n)−(1+α)β).

Choosing η small enough we have p(1 + η) ≤ 2 + 2δ and therefore

cε,β2pA ≤ A′ = c′ε,β,λ1,λ2,α,δ(1 + λ0 + µδ)
2+2δ.

Since a similar bound can be established with Wi instead of Xi, we obtain
the following bound for the oscillation term:

(6.18) P
(

(2n)−1/2 sup
r∈LN

sup
r≤l≤r+

∣∣∣ ∑
r≤i≤l

(X̃i −Wi)
∣∣∣ ≥ 2(2n)−ρ

)
≤ 2A′(2n)(2+2α)(ρ+ε/2)((2n)−(1+α)(1−β) + (2n)−(1+α)β).

6.7. Optimizing the bounds. Let α < δ, β > 1/2 and 0 < ρ <
(1− β)/2. Using (6.14), we may decompose the quantity

P
(

(2n)−1/2 sup
1≤j≤N

∣∣∣ j∑
i=1

(X̃i −Wi)
∣∣∣ ≥ 6(2n)−ρ

)
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into three terms, the first one “sup over islands” being itself decomposed in
two terms (see (6.15)); consequently, this quantity is decomposed into four
terms listed below:

• the first term “normal approximation” is controlled with Proposition
6.2, it is bounded by two terms named “dependence error” and “Sakha-
nenko’s error”,
• the second term “variance homogenization” is controlled in (6.10) with
γ = ε,
• the term “sup over gaps” is controlled in (6.17),
• the term “oscillation term” is controlled in (6.18).

Putting these bounds together, we obtain

P
(

(2n)−1/2 sup
1≤j≤N

∣∣∣ j∑
i=1

(Xi −Wi)
∣∣∣ ≥ 6(2n)−ρ

)
≤ A(2n)−(1+α)+(ρ+ε)(2+2α) (dependence error)

+A(2n)−βα+ρ(2+2α) (Sakhanenko’s error)

+A(2n)−(1−β)(1+α)+(ρ+ε/2)(2+2α) (variance homogenization error)

+A(2n)−(1−β)(1+α)+(ρ+ε/2)(2+2α) (gaps error)

+A((2n)−(1−β)(1+α) + (2n)−β(1+α))(2n)(ρ+ε/2)(2+2α) (oscillation error)

where A = cε,β,λ1,λ2,α(1 + τ1+α + (1 + λ0 + µδ)
2+2α).

For the moment let us ignore the factors containing ε, which have a small
contribution to the bound. The term “dependence error” is negligible with
respect to all other terms; equating the powers of the term “Sakhanenko’s
error” and the term “gaps error” (or equivalently “variance homogenization
error”) we get βα = (1 − β)(1 + α) i.e. β = 1+α

1+2α . Implementing β = 1+α
1+2α

in the above inequality yields

P
(

(2n)−1/2 sup
1≤l≤N

∣∣∣ l∑
i=1

(X̃i −Wi)
∣∣∣ ≥ 6(2n)−ρ

)
≤ A(2n)−1−δ+(ρ+ε)(2+2α) (dependence error)

+ 6A(2n)−
α(1+α)
1+2α

+(ρ+ε)(2+2α) (Sakhanenko’s error

+ variance homogenization error

+ gaps error + oscillation error).

Taking into account that α < δ and 2n ≤ N < 2n+1 we obtain

(6.19) P
(
N−1/2 sup

1≤l≤N

∣∣∣ l∑
i=1

(X̃i−Wi)
∣∣∣ ≥ 6N−ρ

)
≤ A′N−

α(1+α)
1+2α

+(ρ+ε)(2+2α)
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where A′ = cε,λ1,λ2,α,δ(1 + λ0 + µδ +
√
τ)2+2δ and ρ satisfies 0 < ρ < 1−β

2 =
α

2(1+2α) .

Note that the function g(α) = α(1+α)
1+2α − ρ(2 + 2α) is strictly increasing

on R+ when ρ < 1/4. Therefore we can get rid of the constant ε in the
bound by choosing α′ < α. If we let ∆ = g(α) − g(α′) > 0 and choose
ε sufficiently small, we obtain (2n)−g(α)+ε(2+2α) = (2n)−g(α

′)−∆+ε(2+2α) ≤
(2n)−g(α

′). Since α and α′ are arbitrary satisfying α′ < α < δ, the assertion
of Theorem 2.1 follows with α′ replacing α.

We have performed the construction of the sequences X̃(N) = (X̃)1≤i≤N
and W (N) = (W )1≤i≤N for each fixed N ≥ 1, where for each N the con-
structed sequences are in general different. Below we show how to obtain a
construction of the entire sequences (X̃)i≥1 and (W )i≥1.

Let Ω(N) = RN+1 × RN+1. Without loss of generality, for any ω =
(ω1, ω2) ∈ Ω(N), the sequences X̃(N) and W (N) can be reconstructed on

Ω(N) so that X̃i = ω1,i, Wi = ω2,i and their joint distribution, say P(N), is
preserved. Each measure P(N) can be extended (arbitrarily) onto the space
R∞ × R∞. From the bound (6.19) it follows that the sequence of measures
P(N) is tight. Therefore there is a weak limit which satisfies (6.19) and thus
provides the desired construction.

7. Proof of the results of Section 3 . Throughout this section we as-
sume that the Markov chain (Xn)n≥0 and the function f satisfy Hypotheses
M1–M4.

7.1. Proof of Proposition 3.1. First, we establish the following bound
for the characteristic functions φx,1, φx,2 and φx involved in Proposition 3.1.

Lemma 7.1. For any kgap,M1,M2 ∈ N, any sequence j0 < · · · < jM1+M2

and any t = (ti)i ∈ RM1, s = (si)i ∈ RM2 satisfying ‖(t, s)‖∞ ≤ ε0,

|φx(t, s)− φx,1(t)φx,2(s)| ≤ 2CQC
M1+M2
P (‖ν‖B′ + ‖δx‖B′)‖1‖Bκkgap .

Set for brevity φ1 = φx,1, φ2 = φx,2 and φ = φx. The characteristic
function φ can be rewritten in the following form:

φ(t, s) = (Pj0P
|J1|
t1

. . .P
|JM1

|
tM1

PkgapP
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)(x).

Since P = Π +Q we get Pk = Π +Qk, and thus

(7.1) φ(t, s) = φΠ(t, s) + φQ(t, s)

with

φΠ(t, s) := (Pj0P
|J1|
t1

. . .P
|JM1

|
tM1

ΠkgapP
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)(x),(7.2)
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φQ(t, s) := (Pj0P
|J1|
t1

. . .P
|JM1

|
tM1

QkgapP
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)(x).(7.3)

First, since ΠkgapP
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e = ν(P

|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)e, we

may write, setting ψ2(s) := ν(P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e),

φΠ(t, s) = ψ2(s)(Pj0P
|J1|
t1

. . .P
|JM1

|
tM1

e)(x) = ψ2(s)φ1(t).

Notice that φ2(s) = (Pkgap+jM1P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)(x); using the equal-

ity νP = ν, one gets ψ2(s) = ν(Pkgap+jM1P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e), which

allows us to control the difference between ψ2 and φ2, namely

ψ2(s)− φ2(s) = (ν − δx)(Pkgap+jM1P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)

= (ν − δx)(ΠP
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)

+ (ν − δx)(QkgapPjM1P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)

= (ν − δx)(e)ν(P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)

+ (ν − δx)(QkgapPjM1P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)

with (ν − δx)(e) = 0; consequently,

|ψ2(s)− φ2(s)| = |(ν − δx)(Qkgap+jM1P
|JM1+1|
sM1+1 . . .P

|JM1+M2
|

sM1+M2
e)|

≤ CQC1+M2
P κkgap(‖ν‖B′ + ‖δx‖B′)‖e‖B.

On the other hand, one easily gets

(7.4) |φQ(t, s)| ≤ CQC1+M1+M2
P κkgap‖e‖B‖δx‖B′ .

Writing φ(t, s) = φ1(t)φ2(s) + φ1(t)(ψ2(s)− φ2(s)) + φQ(t, s) and using the
previous inequalities, one finally gets

|φ(t, s)− φ1(t)φ2(s)| ≤ 2CQC
1+M1+M2
P (‖ν‖B′ + ‖δx‖B′)κkgap‖e‖B.

To prove Proposition 3.1, set k0 = max{1, log2CP} so that CP ≤ 2k0 .
Since maxm=1,...,M1+M2 card(Jm) ≥ 1, one gets

CM1+M2
P ≤ 2k0(M1+M2) ≤

(
1 + max

m=1,...,M1+M2

card(Jm)
)k0(M1+M2)

.

Now, Proposition 3.1 follows from Lemma 7.1.

7.2. Proof of Proposition 3.2. We need two auxiliary lemmas.

Lemma 7.2. For any l, k = 0, 1, . . . ,

(7.5) |CovPx(f(Xl), f(Xl+k))| ≤ A(x)κkγ/4,

for any positive constant γ satisfying 0 < γ ≤ min{1, 2δ}, where

A(x) = cδ
(
1 + CQC

2
P(‖ν‖B′ + ‖δx‖B′)‖e‖B + µ2+γ

δ (x)
)
.
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Proof. We give a proof involving Lemma 7.1. Let V and V ′ be two
independent identically distributed r.v.’s of mean 0, independent of Xl and
Xl+m and whose common characteristic function is supported in the interval
[−ε0, ε0] for some ε0 > 0. Set Yl = f(Xl) + V and Y ′l+k = f(Xl+k) + V ′.

Let φ̃1 (resp. φ̃2, φ̃(t, u)) be the characteristic function of Yl (resp. Y ′l+k,
(Yl, Y

′
l+k)). Set gT (x) = x1(|x|≤T ) and hT (x, y) = gT (x)gT (y) for x, y ∈ R.

Let ĝT (resp. ĥT ) be the Fourier transform of the function gT (resp. hT )
defined by

ĝT (t) =
�
eitxgT (x) dx,

ĥT (t, u) =
� �
ei(tx+uy)hT (x, y) dx dy = ĝT (t)ĝT (u).

For any T > 0 and l ≥ 1, k ≥ 0, one gets

(7.6) Exf(Xl)f(Xl+k) = ExYlY ′l+k = ExhT (Yl, Y
′
l+k) +R0

with

(7.7) |R0| ≤ Ex|YlY ′l+k|1(|Yl|>T ) + Ex|YlY ′l+k|1(|Y ′l+k|>T ).

By the inverse Fourier transform, one may write

Exf(Xl)f(Xl+k) =
1

(2π)2

� �
ĥT (t, u) φ̃(t, u) dt du+R0.

Analogously

(7.8) Exf(Xl) = ExYl = ExgT (Yl) +R1 =
1

2π

�
ĝT (t) φ̃1(t) dt+R1

and

Exf(Xl+k) = ExY ′l+k = ExgT (Y ′l+k) +R2 =
1

2π

�
ĝT (u) φ̃2(u) du+R2,

where

(7.9) R1 := ExYl1(|Yl|>T ) and R2 := ExY ′l+k1(|Y ′l+k|>T ).

This gives

(7.10) CovPx(f(Xl), f(Xl+k)) = Exf(Xl)f(Xl+k)− Exf(Xl)Exf(Xl+k)

=
1

(2π)2

� �
ĥT (t, u)(φ̃(t, u)− φ̃1(t)φ̃2(u)) dt du+R,

where

(7.11) R = R0 +R1ExgT (Y ′l+k) +R2ExgT (Yl) +R1R2.

Note that∣∣∣ � � ĥT (t, u)(φ̃(t, u)− φ̃1(t)φ̃2(u)) dt du
∣∣∣ ≤ ‖ĥT ‖L2‖φ̃− φ̃1φ̃2‖L2 .
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Since V, V ′ are independent of Xl, Xl+k, we have

φ̃(t, u) = φ(t, u)ExeitV ExeiuV
′

and
φ̃1(t) = φ1(t)ExeitV , φ̃2(u) = φ2(u)ExeiuV

′
,

where

φ(t, u) := Exeitf(Xl)+iuf(Xl+k) = (Pl−1PtP
k−1Pue)(x),

φ1(t) := Exeitf(Xl) = (Pl−1Pte)(x),

φ2(u) := Exeiuf(Xl+k) = (Pl−1Pte)(x).

Since the support of the characteristic functions of V and V ′ is the interval
[−ε0, ε0] the function φ̃− φ̃1φ̃2 vanishes outside the square [−ε0, ε0]2. Then,
by Lemma 7.1,

‖φ̃− φ̃1φ̃2‖L2 ≤ 2ε0 sup
|t|≤ε0, |u|≤ε0

|φ(t, u)− φ1(t)φ2(u)|(7.12)

≤ 4ε0CQC
3
Pκ

k(‖ν‖B′ + ‖δx‖B′)‖e‖B.
Using the inequality

(7.13) ‖ĥT ‖2L2 =
� �
h2
T (x, y) dx dy =

( �
g2
T (x) dx

)2
≤ 4

9
T 6,

one obtains

(7.14) |CovPx(f(Xl), f(Xl+k))|

≤ 2

3π2
T 3ε0CQC

3
Pκ

k
(
‖ν‖B′ + ‖δx‖B′

)
‖e‖B + |R|.

Now we shall give a bound for |R|. By Hölder’s inequality, with qδ =
1+δ
δ > 1,

Ex|Yl| |Y ′l+k|1(|Yl|>T ) ≤ (Ex|Yl|2+2δ)
1

2+2δ (Ex|Y ′l+k|2+2δ)
1

2+2δPx(|Yl| > T )
1
qδ .

Using Hypothesis M4, we have

(Ex|Yl|2+2δ)
1

2+2δ ≤ (Ex|f(Xl)|2+2δ)
1

2+2δ + (Ex|V |2+2δ)
1

2+2δ ≤ cδA0(x),

with A0(x) = µδ(x) + 1. Similarly (Ex|Y ′l+k|2+2δ)
1

2+2δ ≤ cδA0(x). On the
other hand, for any γ ∈ (0, 2δ], one gets

Px(|Yl| > T ) ≤ 1

T γqδ
Ex|Yl|γqδ ≤

cδ
T γqδ

Aγqδ0 (x).

Putting together these bounds gives

(7.15) Ex|Yl| |Y ′l+k|1(|Yl|>T ) ≤ cδT−γA
2+γ
0 (x).

In the same way we obtain, for any γ ∈ (0, 2δ],

(7.16) Ex|Yl| |Y ′l+k|1(|Y ′l+k| > T ) ≤ cδT−γA2+γ
0 (x).
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From (7.7), (7.15), (7.16), it follows that

(7.17) |R0| ≤ cδT−γA2+γ
0 (x).

From (7.16), taking k = 0 we get, for any γ ∈ (0, 2δ],

(7.18) max{R1, R2} ≤ sup
l≥0

(ExY 2
l 1(|Yl| > T ))1/2 ≤ cδT−γ/2A

1+γ/2
0 (x).

Since

|ExgT (Yl)| ≤ (Ex(|Yl|2+2δ))
1

2+2δ ≤ cδA0(x)

and

|ExgT (Y ′l+k)| ≤ cδA0(x),

from (7.17), (7.18) it follows that

(7.19) |R| ≤ cδT−γ/2A2+γ
0 (x)

for any γ ∈ (0, 2δ], where we assume without loss of generality that A0(x)
≥ 1. The inequalities (7.14) and (7.19) yield, for any γ ∈ (0, 2δ],

|CovPx(f(Xl), f(Xl+k))| ≤
2

3π2
T 3ε0CQC

3
Pκ

k(‖ν‖B′ + ‖δx‖B′)‖e‖B

+ cδT
−γ/2A2+γ

0 (x).

Choosing T = κ−k/4 and taking into account A2+γ
0 (x) ≤ cδ(1 + µ2+γ

δ (x)), it
follows that

|CovPx(f(Xl), f(Xl+k))| ≤ A(x)cδκ
kmin{1,γ/2}/4,

which finishes the proof of Lemma 7.2.

Lemma 7.3. Let 0 < γ ≤ min{1, 2δ}. Then:

(a) There exists a real number µ not depending on x such that, for any
k ≥ 1,

|Exf(Xk)− µ| ≤ cδA1(x)κkγ/4−1

where A1(x) = 1 + µδ(x)1+γ + ‖δx‖B′‖e‖BCPCQ. Moreover

∞∑
k=0

|Exf(Xk)− µ| ≤ µ(x) = cγ,κ,δA1(x).

(b) There exists a sequence of (possibly complex) numbers (sk)k≥0 not
depending on x such that

(7.20) |CovPx(f(Xl), f(Xl+k))− sk| ≤ cδA2(x)κlγ/4−1

where

A2(x) = 1 + µδ(x)2+γ

+ ‖δx‖B′‖e‖B
(
C2
PCQ(‖ν‖B′‖e‖B + CQ) + CPCQ(1 + ‖ν‖B′CP)

)
.
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Moreover, for k ≥ 0,

|sk| ≤ A2(x)κkγ/4−1

and

|s0|+ 2

∞∑
k=1

|sk| ≤ cγ,κ,δA2(x).

Proof. To avoid repetitions we first prove (b). We keep the notations

from the proof of Lemma 7.2. Denote φ̃0(t, u) = φ̃(t, u) − φ̃1(t)φ̃2(u). By
(7.10), for any l = 0, 1, . . . ,

CovPx(f(Xl), f(Xl+k)) =
1

(2π)2

� �
ĥT (t, u) φ̃0(t, u) dt du+R,

with R defined by (7.11). Since V, V ′ are independent of Xl, Xl+k,

φ̃(t, u) = (Exei0
∑l−1
j=1Xj+itXl+i0

∑l+k−1
j=l+1 Xj+iuXl+k)ExeitV ExeiuV

′
(7.21)

= (Pl−1PtP
k−1Pue)(x)ExeitV ExeiuV

′
.

Note that, for k, l ≥ 2,

(Pl−1PtP
k−1Pue)(x) = δx(Pl−1PtP

k−1Pue)

= δx(ΠPtP
k−1Pue) + δx(Ql−1PtP

k−1Pue)

= ν(PtP
k−1Pue)

+ δx(Ql−1PtΠPue) + ν(Ql−1PtQ
k−1Pue).

Since

|δx(Ql−1PtΠPue)| = |δx(Ql−1Pte)ν(Pue)| ≤ κl−1CQC
2
P‖δx‖B′‖ν‖B′‖e‖2B

and

|δx(Ql−1PtQ
k−1Pue)| ≤ κl+k−2C2

QC
2
P‖δx‖B′‖e‖B′ ,

we obtain

(7.22) |φ̃(t, u)− ψ̃(t, u; k)| ≤ κl−1C2
PCQ(‖ν‖B′‖e‖B + CQ)‖δx‖B′‖e‖B′ ,

where

ψ̃(t, u; k) = ν(PtP
k−1Pue)ExeitV ExeiuV

′
.

Note that ψ̃(t, u; k) does not depend on the initial state x since V and V ′

are independent of the Markov chain. In the same way

φ̃1(t) = (Pl−1Pte)(x)ExeitV , φ̃2(u) = (Pl+k−1Pue)(x)ExeiuV
′
,

where, for m ≥ 2,

(Pm−1Pte)(x) = δx(Pm−1Pte) = δx(ΠPte) + δx(Qm−1Pte)

= ν(Pte) + δx(Qm−1Pte).
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Since |δx(Qm−1Pte)| ≤ κm−1‖δx‖B′‖e‖BCPCQ, we get

|φ̃1(t)− ψ̃1(t)| ≤ κl−1‖δx‖B′‖e‖BCPCQ,(7.23)

|φ̃2(u)− ψ̃1(u)| ≤ κl+k−1‖δx‖B′‖e‖BCPCQ,(7.24)

where

(7.25) ψ̃1(t) = ν(Pte)ExeitV = ν(Pte)ExeitV
′

does not depend on the initial state x of the Markov chain.

Denote ψ̃0(t, u; k) = ψ̃(t, u; k) − ψ̃1(t)ψ̃1(u). From (7.23) and (7.24) it
follows that

(7.26) |φ̃0(t, u)− ψ̃0(t, u; k)|

≤ |φ̃(t, u)− ψ̃(t, u; k)|+ |φ̃1(t)φ̃2(u)− ψ̃1(t)ψ̃1(u)|

≤ |φ̃(t, u)− ψ̃(t, u; k)|+ |φ̃1(t)− ψ̃1(t)|+ |ν(Pte)| |(φ̃2(u)− ψ̃1(u))|
≤ κl−1‖δx‖B′‖e‖BC2

PCQ(‖ν‖B′‖e‖B + CQ)

+ κl−1‖δx‖B′CPCQ(1 + |ν(Pte)|)
≤ κl−1‖δx‖B′‖e‖B(C2

PCQ(‖ν‖B′‖e‖B + CQ) + CPCQ(1 + ‖ν‖B′CP))

≤ C(x)κl−1,

where

C(x) = ‖δx‖B′‖e‖B(C2
PCQ(‖ν‖B′‖e‖B + CQ) + CPCQ(1 + ‖ν‖B′CP)).

Denote by sk,T the complex number defined by

sk,T =
1

(2π)2

� �
ĥT (t, u)ψ̃0(t, u; k) dt du.

Note that sk,T does not depend on the initial state x of the Markov chain

since neither does ψ̃0(t, u; k). With this notation we have

CovPx(f(Xl), f(Xl+k))− sk,T = R′ +R,

where

R′ =
1

(2π)2

� �
ĥT (t, u)(φ̃0(t, u)− ψ̃0(t, u; k)) dt du.

Since ExeitV ExeiuV
′

has support in the square [−ε0, ε0]2, using (7.13) and
(7.26) it follows that

(7.27) |R′| ≤ 1

(2π)2
‖ĥT ‖L2‖φ̃0 − ψ̃0‖L2 ≤

T 3

3π2
ε2

0C(x)κl−1.

From (7.27) and (7.19), for any γ ∈ (0, 2δ] and any l, k = 0, 1, . . . ,

(7.28) |CovPx(f(Xl), f(Xl+k))− sk,T | ≤ C(x)
T 3

3π2
ε2

0κ
l−1 + cδT

−γA2+γ
0 (x),
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From (7.28), for any l, l′ = 2, 3, . . . one obtains

|CovPx(f(Xl), f(Xl+k))− CovPx(f(Xl′), f(Xl′+k))|

≤ cδT−γA0(x)2+γ + C(x)
2T 3

3π2
ε2

0κ
min{l,l′}−1.

Taking T = κ−
1
4

min{l,l′} we get, for any γ ≤ min{1, 2δ},

(7.29) |CovPx(f(Xl), f(Xl+k))− CovPx(f(Xl′), f(Xl′+k))|
≤ cδA(x)κmin{l,l′}γ/4−1,

where A(x) = A2+γ
0 (x) + C(x). The sequence CovPx(f(Xl), f(Xl+k)), l =

1, 2, . . . , is thus Cauchy; denote by sk(x) its limit as l → ∞. Taking the
limit as l→∞ in (7.28), we get

(7.30) |sk(x)− sk,T | ≤ C(x)
T 3

3π2
ε2

0κ
l−1 + cδT

−γA2+γ
0 (x).

Letting T = Tl = κ−l/4 this implies that liml→∞ sk,Tl = sk(x). Since sk,Tl
does not depend on x, we conclude that sk(x) is also a constant not depend-
ing on x, say sk. Taking the limit as l′ →∞ in (7.29) we obtain (7.20).

The second assertion of (b) follows from (7.20) and Lemma 7.2 upon
setting l = k.

The third assertion of (b) follows immediately from the second one.

Let us now prove (a). From (7.8), we have

|Exf(Xl)−mT | ≤
1

2π

�
|ĝT (t)| |φ̃1(t)− ψ̃1(t)| dt+ |R1|,

where

mT =
1

2π

�
ĝT (t) ψ̃1(t) dt,

R1 is defined by (7.9) and ψ̃1 is defined by (7.25). Note that mT is inde-

pendent of x since so is ψ̃(t). Taking into account the bounds in (7.18) and
(7.23), we get

|Exf(Xl)−mT | ≤ κl−1‖δx‖B′‖e‖BCPCQ
1

2π

�
|ĝT (t)| dt+ T−γcδA

1+γ
0 (x).

Recalling that gT (x) = x1(|x| ≤ T ), to bound
	
|ĝT (t)| dt we use the usual

isometry relation( �
|ĝT (t)| dt

)2
≤

�
|ĝT (t)|2 dt =

�
g2
T (x) dx =

2

3
T 3.

This implies, for any γ ≤ min{1, 2δ},

|Exf(Xl)−mT | ≤ cδ(‖δx‖B′‖e‖BCPCQT
3κl−1 + T−γA1+γ

0 (x)).
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Taking T = κ−l/4, we have

(7.31) |Exf(Xl)−mT | ≤ cδA1(x)κlγ/4−1,

where A1(x) = 1 + A1+γ
0 (x) + ‖δx‖B′‖e‖BCPCQ. From this inequality it

follows that

(7.32) |Exf(Xl)− Exf(Xk)| ≤ cδA1(x)κmin{l,k}γ/4−1,

which proves that the sequence (Exf(Xl))l≥1 is Cauchy and therefore has a
limit denoted µ(x). Since mT does not depend on x, letting l→∞ in (7.31)
we conclude that µ(x) = µ does not depend on x. Letting k →∞ in (7.32),
we get

|Exf(Xl)− µ| ≤ cδA1(x)κlmin{1,γ}/4−1,

which proves the first assertion of (a). The second follows from the first.

The bound (3.5) of Proposition 3.2 follows from part (a) of Lemma 7.3.
It remains to prove the bound (3.6).

Let 0 < γ ≤ min{1, 2δ}. First note that, from Lemmas 7.3 and 7.2 we
obtain, for k = 0, 1, . . . ,

|CovPx(f(Xl), f(Xl+k))− sk| ≤ A2(x)cδ,κκ
cγ,κ max{l,k},

where A2(x) is defined in Proposition 3.2. Then, for any k = 0, 1, . . . ,

m+n−1∑
l=m

m+n−l∑
k=1

|CovPx(f(Xl), f(Xl+k))− sk|

≤ A2(x)cδ,κ

m+n−1∑
l=m

m+n−l∑
k=1

e−cγ,κ max{l,k} ≤ A2(x)c′′δ,γ,κ.

Since

VarPx

(m+n−1∑
l=m

f(Xl)
)

=

m+n−1∑
l=m

VarPx(f(Xl))

+ 2

m+n−1∑
l=m

m+n−l∑
k=1

CovPx(f(Xl), f(Xl+k))

we get∣∣∣VarPx

(m+n−1∑
l=m

f(Xl)
)
−
(
ns0 +

m+n−1∑
l=m

m+n−l∑
k=1

(sk + s∗k)
)∣∣∣ ≤ A2(x)c′′δ,γ,κ.

Taking into account that, by Lemma 7.3, the sk are independent of x and
that |sk| ≤ A2(x)κkγ/4−1 we obtain

(7.33)
∣∣∣VarPx

(m+n−1∑
l=m

f(Xl)
)
− n

(
s0 +

∞∑
k=1

(sk + s∗k)
)∣∣∣ ≤ A2(x)c′′′δ,γ,κ.
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Dividing by n and taking the limit as n → ∞ in (7.33), we deduce that
s0 +

∑∞
k=1(sk+s∗k) converges to a non-negative number not depending on x,

say σ2 ≥ 0. Now (3.6) follows from (7.33).

7.3. Proof of Theorem 3.3. First note that Conditions C1 and C3
are satisfied by Propositions 3.1 and 3.2. Condition C2 is satisfied by Hypo-
thesis M4. Let µi(x) = Exf(Xi). Let α < δ and δ′ = 1

2(α+ δ). Since α < δ′,
from 2.1 with δ′ replacing δ, it follows that for any x ∈ X there exists
a probability space (Ω,F ,Px), a sequence of independent standard normal

r.v.’s (W ′i )i≥1 and a sequence of r.v.’s (Y ′i )i≥1 such that (Y ′i )i≥1
d
= (f(Xi))i≥1

and, for any 0 < ρ < 1
2

α
1+2α ,

(7.34) Px
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(Y ′i − µi(x)− σW ′i )
∣∣∣ > N−ρ

)
≤ C0(x)N−α

1+α
1+2α

+ρ(2+2α),

where C0(x) = C ′0(1 + λ0(x) + µδ′(x) +
√
τ(x))2+2δ′ and λ0(x), µδ(x), τ(x),

λ1, λ2 and σ2 are defined in Propositions 3.1 and 3.2. If µ(x) ≤ N
1
2
−ρ (with

µ(x) from Proposition 3.2) then using (7.34) we have

(7.35) Px
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(Y ′i − µ− σW ′i )
∣∣∣ > 2N−ρ

)
≤ Px

(
sup
k≤N

∣∣∣ k∑
i=1

(Y ′i − µi(x)− σW ′i )
∣∣∣ > 2N1/2−ρ − µ(x)

)
≤ C0(x)N−α

1+α
1+2α

+ρ(2+2α).

If µ(x) > N1/2−ρ, it is obvious that

(7.36) 1 ≤ (µ(x)N−1/2+ρ)2α ≤ µ(x)2αN−α+2ρα.

From (7.35) and (7.36) we get

Px
(
N−1/2 sup

k≤N

∣∣∣ k∑
i=1

(Y ′i − µ− σW ′i )
∣∣∣ > 2N−ρ

)
≤ (C0(x) + µ(x)2α)N−α

1+α
1+2α

+ρ(2+2α).

Taking into account the expressions for λ0(x), µδ(x), τ(x), λ1, λ2, µ(x) and
choosing γ small we obtain

C0(x) + µ(x)2α ≤ C(x) = C1(1 + ‖δx‖B′ + µδ(x))2+2δ,

where C1 is a constant depending only on δ, α, κ, CP, CQ, ‖e‖B, ‖ν‖B′ .
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Generally the measure Px and the constructed sequence (Y ′i )i≥1 both
depend on the initial state x. It is easy to reconstruct (Y ′i )i≥1 independently

of x. Indeed, on the canonical space Ω̃ = R∞×R∞ there is a probabil-
ity measure P̃x which coincides with the joint distribution of the sequence
(Y ′i ,W )i≥1. It is enough to redefine Y ′i = ω1,i and Wi = ω2,i as the coor-

dinate processes, where ω = (ω1, ω2) ∈ Ω̃. With this construction only the

measure P̃x depends on the initial state x. The measurability of the map
x∈ X 7→ P̃x(·) follows from the construction.

7.4. Proof of Theorem 3.4. In addition to conditions of Theorem 3.3
assume Hypothesis M5 holds. First we note that M5 ensures the existence
of the mean ν(f) = EνXk =

	
(ExXk) ν(dx) and of the mixed moment

Eν(XlXl+k) =
	
Ex(XlXl+k) ν(dx) with respect to the invariant measure.

By Proposition 3.2, we have limk→∞ ExXk = µ, ν-a.s. on X. Then by the
Lebesgue dominated convergence theorem

ν(f) = EνXk = lim
k→∞

�
(ExXk) ν(dx) =

�
( lim
k→∞

ExXk) ν(dx) = µ.

Without loss of generality we can assume that ν(f) = 0. Using Hypothesis
M5 and ν(f) = 0, we have�

CovPx(Xl, Xl+k) ν(dx) =
�
Ex(XlXl+k) ν(dx)−

�
Ex(Xl)Ex(Xl+k) ν(dx)

= Eν(XlXl+k)−
�
Ex(Xl)Ex(Xl+k) ν(dx)

= CovPν (X0, Xk)−
�
Ex(Xl)Ex(Xl+k) ν(dx).

By Proposition 3.2, liml→∞CovPx(Xl, Xl+k) = sk and liml→∞ Ex(Xl) = 0
for any x ∈ X. As before, integrating with respect to the stationary measure
and using the Lebesgue dominated convergence theorem, it follows that
sk = CovPν (X0, Xk). Thus the conclusions of Theorem 3.3 hold true with
µ = ν(f) and σ2 = σ2

ν , which proves Theorem 3.4.

8. Maximal inequalities. In this section we state two bounds which
are used repeatedly in the paper. The first one gives control on the Lp-norm
of the maxima of the partial sums of a sequence of dependent r.v.’s. This
proposition is a consequence of the second one which gives control on the
Lp-norm of the partial sums of a sequence of dependent r.v.’s. It is assumed
that Conditions C1 and C2 hold true.

Proposition 8.1. Let δ′ < δ and ε > 0. Then there is a constant
cλ1,λ2,δ,δ′,ε such that for any m,n ≥ 1,∥∥∥∥ sup

1≤k≤n

∣∣∣m+k−1∑
i=m

Xi

∣∣∣∥∥∥∥
L2+2δ′

≤ cλ1,λ2,δ,δ′,ε(1 + λ0 + µδ)
1+εn1/2.
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Proof. Denote for brevity Sm,n =
∑m+n−1

i=m Xi. Let δ′′ be such that δ′ <
δ′′ < δ. By Proposition 8.2 below (which we assume for the moment), for any
m,n ≥ 1 and ε > 0 we have ‖Sm,n‖L2+2δ′′ ≤ An1/2, where A = cλ1,λ2,δ′′,ε(1+

λ0 + µδ)
1+ε. Letting S′m,n = Sm,n/A, we get ‖S′m,n‖L2+2δ′′ ≤ n1/2 for any

m,n ≥ 1. By Theorem A in Serfling [35] (see also Billingsley [3, p. 102]), we
see follows that ‖ sup1≤k≤n S

′
m,n‖L2+2δ′′ ≤ n1/2 log2(4n) for any m,n ≥ 1.

Since δ′ < δ′′, it follows that∥∥∥ sup
1≤k≤n

S′m,n

∥∥∥
L2+2δ′

≤
∥∥∥ sup

1≤k≤n
S′m,n

∥∥∥
L2+2δ′′

≤ (n1/2 log2(4n))
2+2δ′′
2+2δ′ ≤ cδ,δ′n1/2,

from which we deduce ‖sup1≤k≤n Sm,n‖L2+2δ′ ≤ Acδ,δ′n1/2.

The following assertion is an adaptation of Proposition 4.1 in Gouëzel
[15]. In order to derive an explicit dependence of the constant involved in
the bound on some of the constants in Conditions C1 and C2 we give an
independent proof. Tracking this explicit dependence plays a crucial role in
the proof of Theorem 3.3 to work out the dependence of the bound on the
initial state of the Markov chain X0 = x.

Proposition 8.2. Let 0 < δ′ < δ and ε > 0. Then there is a constant
cλ1,λ2,δ′,ε such that, for any m,n ≥ 1,∥∥∥m+n−1∑

i=m

Xi

∥∥∥
L2+2δ′

≤ cλ1,λ2,δ′,ε(1 + λ0 + µδ)
1+εn1/2.

The proof of this proposition is given below. First we state several aux-
iliary assertions.

8.1. Auxiliary assertions

Proposition 8.3. There is a constant cλ1,λ2,ε such that, for any ε > 0,

(8.1)
∥∥∥m+n−1∑

i=m

Xi

∥∥∥
L2
≤ cλ1,λ2,ε(1 + λ0 + µδ)

1+εn1/2.

The proof is based on the following two lemmas.

Lemma 8.4. Let un = maxm≥1 ‖
∑m+n−1

i=m Xi‖2L2 , n ≥ 1. Then, for any
natural numbers a, b ≥ 1 and any α ∈ (0, 1/2), γ ∈ (0, δ),

ua+b ≤ A+ ua + ub + (cµδ)
2(a2α + b2α)

+ cµδ(a
α + bα)(A+ ua + ub)

1/2 + cu1/2
a + cu

1/2
b ,

where c > 1 and A = cλ1,λ2,γ,α(1 + λ0 + µδ)
2+γ .

Proof. Let m ∈ N. Assume that a ≤ b (the case a > b is treated in

the same manner). Denote Y1 =
∑m+a−1

i=m Xi, Y2 =
∑m+a+b−1

i=m+a+[bα]Xi and
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Y0 =
∑m+a+b−1

i=m Xi, where α ∈ (0, 1/2). Note that Y0 = Y1 + Y2 + Ygap,

where Ygap =
∑m+a+[bα]−1

i=m+a Xi. Therefore

(8.2) ‖Y0‖2L2 ≤ ‖Y1 + Y2‖2L2 + ‖Ygap‖2L2 + 2‖Y1 + Y2‖L2‖Ygap‖L2 .

We shall bound each of the terms on the right-hand side of (8.2).

Let V1 and V2 be two independent identically distributed r.v.’s of mean 0,
independent of Y1 and Y2 with a common characteristic function supported
in the interval [−ε0, ε0] for some ε0 ∈ (0, 1), and such that ‖Vi‖L2+2δ ≤ c.

Denote Ỹ1 = Y1 +V1 and Ỹ2 = Y2 +V2. Let Z1 and Z2 be independent copies
of Ỹ1 and Ỹ2. Since EeitV1 is supported in [−ε0, ε0], by Lemma 9.5, for any
T > 0,

π((Ỹ1, Ỹ2), (Z1, Z2)) ≤ T

π

( �

[−ε0,ε0]2

|φ(t, u)− ψ1(t)ψ2(u)|2 dt du
)1/2

+ P(max{|Ỹ1|, |Ỹ2|} > T ),

where φ is the characteristic function of the vector (Y1, Y2) and ψ1, and ψ2

are the characteristic functions of Y1 and Y2. Condition C1 implies that

|(φ(t, u)− ψ1(t)ψ2(u))| ≤ λ0(1 + b)2λ2 exp(−λ1[bα])

≤ λ0cλ1(1 + b)2λ2 exp(−λ1b
α).

Let T = eλ1b
α/2. Taking into account that

P(max{|Ỹ1|, |Ỹ2|} > T ) ≤ T−1Emax{|Ỹ1|, |Ỹ2|}
≤ T−1(‖Y1 + V1‖L2+2δ + ‖Y2 + V2‖L2+2δ)

≤ e−
λ1
2
bα
(
c+ (a+ b) max

l≥0
‖Xl‖L2+2δ

)
≤ cδe−

λ1
2
bαb(1 + µδ)

we obtain

π((Ỹ1, Ỹ2), (Z1, Z2)) ≤ 1

π
λ0(1 + b)2λ2e−

λ1
2
bα + cδbe

−λ1
2
bα(1 + µδ)

≤ ∆ = cδ,α(1 + b)2λ2e−
λ1
2
bα(1 + λ0 + µδ).

By Lemma 9.1 there is a coupling of (Ỹ1, Ỹ2) and (Z1, Z2) such that

P (‖(Ỹ1, Ỹ2)− (Z1, Z2)‖∞ ≥ ∆) ≤ ∆.

Let S = Ỹ1 + Ỹ2 − (Z1 + Z2). Taking into account that ‖Vi‖L2+2δ ≤ c, we
have

‖S‖L2+2δ = ‖Ỹ1 + Ỹ2 − (Z1 + Z2)‖L2+2δ ≤ 2‖Ỹ1 + Ỹ2‖L2+2δ(8.3)

≤ c(a+ b)
(

1 + max
l≥0
‖Xl‖L2+2δ

)
≤ cb(1 + µδ).
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Then, for any γ ∈ (0, δ),

‖S‖2L2 ≤ 4∆2 + E|S|21(|S| ≥ 2∆)(8.4)

≤ 4∆2 + ‖S‖2L2+2γP(|S| ≥ 2∆)
γ

1+γ

≤ 4∆2 + cb2(1 + µδ)
2∆

γ
1+γ

≤ 4c2(1 + b)4λ2(1 + λ0 + µδ)
2e−λ1b

α

+ 4b2(1 + µδ)
2c

γ
1+γ

δ,α (1 + b)
4λ2

γ
1+γ e

−λ1
2

γ
1+γ

bα
(1 + λ0 + µδ)

γ
1+γ

≤ A′,

where A′ = c′λ1,λ2,γ,α(1 + λ0 + µδ)
2+γ . From (8.3) and (8.4), it follows that

‖Ỹ1 + Ỹ2‖2L2 ≤ ‖S‖2L2 + ‖Z1‖2L2 + ‖Z2‖2L2(8.5)

≤ A′ + ‖Ỹ1‖2L2 + ‖Ỹ2‖2L2 .

Since ‖Vi‖L2 ≤ c, we have

(8.6) ‖Y1 + Y2‖L2 ≤ ‖Ỹ1 + Ỹ2‖L2 + 2c.

Taking into account (8.5) and (8.6), one gets

(8.7) ‖Y1 + Y2‖2L2 ≤ A′ + ‖Ỹ1‖2L2 + ‖Ỹ2‖2L2 + 4c‖Ỹ1‖L2 + 4c‖Ỹ2‖L2 + 4c2.

Since ‖Ỹk‖L2 ≤ ‖Yk‖L2 + c, we see that

‖Y1 + Y2‖2L2 ≤ A′ + (‖Y1‖L2 + c)2 + (‖Y2‖L2 + c)2(8.8)

+ 4c(‖Y1‖L2 + c) + 4c(‖Y2‖L2 + c) + 4c2

≤ A′ + ‖Y1‖2L2 + ‖Y2‖2L2 + 6c(‖Y1‖L2 + ‖Y2‖L2) + 14c2.

Since the gap is of size [bα],

(8.9) sup
m≥1
‖Ygap‖L2 ≤ [bα] max

i≥1
‖Xi‖L2+2δ ≤ bαµδ.

From (8.2), (8.8) and (8.9) we obtain

‖Y0‖2L2 ≤ A′ + ‖Y1‖2L2 + ‖Y2‖2L2 + b2αµ2
δ(8.10)

+ 2bαµδ(‖Y1‖L2 + ‖Y2‖L2)

+ 6c(‖Y1‖L2 + ‖Y2‖L2) + 14c2.

Now recall that ua = supm≥1 ‖Y1‖2L2 , ub = supm≥1 ‖Y2‖2L2 and ua+b =

supm≥1 ‖Y0‖2L2 . Using (8.9) we have ‖Y2‖L2 ≤ u1/2
b +‖Ygap‖L2 ≤ u1/2

b +bαµδ.
From this and (8.10) we deduce that

ua+b ≤ A′ + ua + ub + b2αµ2
δ + 2bαµδu

1/2
b + 2bαµδ(u

1/2
a + u

1/2
b + bαµδ)

+ 6c(u1/2
a + u

1/2
b + bαµδ) + 14c2.
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Rearranging the terms and taking into account that A′ > 1, we obtain

ua+b ≤ A′ + 14c2 + ua + ub + 3b2αµ2
δ

+ bαµδ(6c+ u1/2
a + u

1/2
b ) + 6cu1/2

a + 6cu
1/2
b .

Lemma 8.5. Assume that the sequence (un)n≥1 is such that un > 0 and

ua+b ≤ (ua + ub +A) + (a2α + b2α)B2

+ (aα + bα)B(ua + ub +A)1/2 + cu1/2
a + cu

1/2
b

for all a, b ≥ 1 and some A,B > 0, α ∈ (0, 1/2). Then

un ≤ cα(1 + u1 +A+B2)n.

Proof. Note that xy ≤ 1
2(εx2 + ε−1y2) for any x, y, ε > 0. Using the

assumption of the lemma, we have

ua+b ≤ (ua + ub +A) + (1 + ε−1)(a2α + b2α)B2

+
ε

2
(ua + ub +A) + ε−1c2 +

ε

2
uα +

ε

2
ub

≤ (1 + ε)(ua + ub +A) + ε−1c2 + (1 + ε−1)(a2α + b2α)B2.

Denote vk = max1≤n≤2k un, k ≥ 0. From the above inequality it follows that

vk+1 ≤ (1 + ε)(2vk +A) + ε−1c2 + (1 + ε−1)22αk+1B2.

Dividing by (2 + 2ε)k+1 we get

vk+1

(2 + 2ε)k+1
≤ 2vk +A

2(2 + 2ε)k
+ (1 + ε−1)

22αk+1

(2 + 2ε)k+1
(B2 + c2)

≤ vk
(2 + 2ε)k

+
A

2(2 + 2ε)k
+ (1 + ε−1)

22αk+1

(2 + 2ε)k+1
(B2 + c2).

Taking into account that α < 1/2, by induction, we obtain

vk
(2 + 2ε)k

≤ v0 +
A

2

∞∑
i=0

1

(2 + 2ε)i
+ 2(1 + ε−1)(B2 + c2)

∞∑
i=1

22αi

(2 + 2ε)i+1

≤ v0 +
A

2

2 + 2ε

1 + 2ε
+ 2(1 + ε−1)(B2 + c2)

1 + ε

ε

≤ v0 + c′ε(A+B2 + c2),

where c′ε depends only on ε. This implies that

vk = max
1≤n≤2k

un ≤ C0(2 + 2ε)k,

where C0 = v0 + c′ε(A + B2 + c2). Once again using the assumption of the
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lemma it follows that

vk+1 ≤ (2vk +A) + 22αk+1B2

+ 2αk+1B(2C0(2 + 2ε)k +A)1/2 + 2cC
1/2
0 (2 + 2ε)k/2

≤ (2vk +A) + 22αk+1B2

+ 2αk+1B(2C
1/2
0 (2 + 2ε)k/2 +A1/2) + 2cC

1/2
0 (2 + 2ε)k/2.

Dividing by 2k+1 and choosing ε = ε(α) so small that 2 + 2ε ≤ 21+(1/2−α),
one gets

vk+1

2k+1
≤ vk

2k
+

A

2k+1
+ 2(2α−1)k+1B2 + 2(α−1)k+1B(2C

1/2
0 2

k
2

+ k
2

( 1
2
−α) +A1/2)

+ 2−kcC
1/2
0 2

k
2

+ k
2

( 1
2
−α)

≤ vk
2k

+
A

2k+1
+ 2(2α−1)k+1B2 + 4BC

1/2
0 2(α− 1

2
) k
2 + 2(α−1)k+1BA1/2

+ cC
1/2
0 2−

k
2

( 1
2

+α).

Using induction, this implies

vk/2
k ≤ cα(A+ C0 +B2),

since ε depends only on α. From this we get u2k ≤ D2k for any k ≥ 1, where
D = c′α(1 + v0 + A + B2). Therefore, for any 2k−1 ≤ n ≤ 2k we conclude
that un ≤ D2k ≤ 2D2k−1 ≤ 2Dn.

Let α = 1/4. In the notations of Lemma 8.4, u1 ≤ maxm≥1 ‖Xm‖2L2+2δ

≤ µ2
δ . From Lemmas 8.4 and 8.5 with B = cµδ it follows, for any ε ∈ (0, δ),

that

max
m≥1

∥∥∥m+n−1∑
i=m

Xi

∥∥∥2

L2
= un ≤ cα(u1 +A+ c2µ2

δ)n

≤ c(cλ1,λ2,ε(1 + λ0 + µδ)
2+ ε

1+ε + 2µ2
δ)n

≤ c′λ1,λ2,ε(1 + λ0 + µδ)
2+εn,

which proves Proposition 8.3.

8.2. Proof of Proposition 8.2. Let m,n ∈ N and a = [n1−α] and
b = [nα+ρ], where α > 0 and ρ > 0 are such that 2α + ρ < 1. Note that
a > b and ba ≤ n1−ρ. Consider the intervals Ik = [m+ (k− 1)a,m+ ka− b),
Jk = [m + ka − b,m + ka) for k = 1, . . . , [nα], and Ifin = [m + ba,m + n),

such that [m,m + n) =
⋃[nα]
k=1(Ik ∪ Jk) ∪ Ifin. Here a − b > 0 and b > 0

are interpreted as the length of an island Ik and the length of a gap Jk
respectively.

Denote Yk =
∑

i∈Ik Xi, k = 1, . . . , [nα]. Let V1, . . . , V[nα] be independent
identically distributed r.v.’s of mean 0, independent of Y1, . . . , Y[nα] with
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a common characteristic function supported in [−ε0, ε0] for some ε0 > 0,

and such that ‖Vk‖L2+2δ ≤ c, k = 1, . . . , [nα]. Denote Ỹk = Yk + Vk. Let

Z1, . . . , Z[nα] be independent copies of Ỹ1, . . . , Ỹ[nα]. By Lemma 9.3,

(8.11) π((Ỹ1, . . . , Ỹ[nα]), (Z1, . . . , Z[nα]))

≤
[nα]∑
k=1

π((Ỹ1, . . . , Ỹk−1, Ỹk), (Ỹ1, . . . , Ỹk−1, , Zk)).

Since EeitVk is supported in [−ε0, ε0], by Lemma 9.5, for any T > 0 and
k ≤ [nα],

(8.12) π((Ỹ1, . . . , Ỹk−1, Ỹk), (Ỹ1, . . . , Ỹk−1, , Zk))

≤ T

π

( �

[−ε0,ε0]k

|φ(t, u)− ψ1(t)ψ2(u)|2 dt du
)1/2

+ P(‖(Ỹ1, . . . , Ỹk−1, Ỹk)‖∞ > T ),

where φ is the characteristic function of (Ỹ1, . . . , Ỹk−1, Ỹk), and ψ1 and ψ2

are the characteristic functions of the r.v.’s (Ỹ1, . . . , Ỹk−1) and Ỹk. Condition
C1 implies that

|φ(t, u)− ψ1(t)ψ2(u)| ≤ λ0(1 + a)k exp(−λ1b)(8.13)

≤ cλ1λ0(1 + n1−α)n
α

exp(−λ1n
α+ρ).

Let T = e
λ1
2
nα+ρ . By Chebyshev’s inequality, taking into account that k ≤

[nα], we have

(8.14) P(‖(Ỹ1, . . . , Ỹk−1, Ỹk)‖∞ > T )

≤ T−1
k∑
i=1

‖Yi + Vi‖L1 ≤ T−1
k∑
i=1

(‖Yi‖L2+2δ + c)

≤ e−
λ1
2
nα+ρ [nα]([n1−α]µδ + c) ≤ cne−

λ1
2
nα+ρ(1 + µδ).

From (8.12)–(8.14) we obtain

π((Ỹ1, . . . , Ỹk−1, Ỹk), (Ỹ1, . . . , Ỹk−1, , Zk))

≤ T

π
λ0ε

n
0 (1 + n1−α)n

α
e−λ1n

α+ρ
+ cαne

−λ1
2
nα+ρ(1 + µδ)

≤ cεn0n(1 + n1−α)n
α
e−

λ1
2
nα+ρ(1 + λ0 + µδ).

Inserting this bound in (8.11) we get
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π((Ỹ1, . . . , Ỹ[nα]), (Z1, . . . , Z[nα]))

≤ cεn0n1+α(1 + n1−α)n
α
e−

λ1
2
nα+ρ(1 + λ0 + µδ)

≤ ∆ = cα,λ1e
−λ1

4
nα+ρ(1 + λ0 + µδ).

According to Strassen–Dudley’s theorem (see Lemma 9.1) there is a coupling

of (Ỹ1, . . . , Ỹb) and (Z1, . . . , Zb) such that

P (‖(Ỹ1, . . . , Ỹ[nα])− (Z1, . . . , Z[nα])‖∞ ≥ ∆) ≤ ∆.

Let S = Ỹ1 + · · · + Ỹ[nα] − (Z1 + · · · + Z[nα]). Taking into account that
‖Vi‖L2+2δ ≤ c, we have

‖S‖L2+2δ = ‖Ỹ1 + · · ·+ Ỹ[nα] − (Z1 + · · ·+ Z[nα])‖L2+2δ(8.15)

≤ cnαa
(

1 + max
l≥1
‖Xl‖L2+2δ

)
≤ c′n(1 + µδ).

Let η ∈ (0, δ− δ′), p = 2 + 2δ′, p′ = p+ 2η ≤ 2 + 2δ and γ = γ(η) = 2η
p(p+2η) .

By Hölder’s inequality,

‖S2+2δ′1(|S| ≥ nα∆)‖L2+2δ′ ≤ ‖S‖Lp′ (P(|S| ≥ nα∆))γ

≤ ‖S‖L2+2δ(P(|S| ≥ nα∆))γ .

Using the bound |S| ≤ nα‖(Ỹ1, . . . , Ỹ[nα])− (Z1, . . . , Z[nα])‖∞, we have

‖S‖L2+2δ′ ≤ nα∆+ ‖S2+2δ′1(|S| ≥ nα∆)‖L2+2δ′

≤ nα∆+ ‖S‖L2+2δ(P(|S| ≥ nα∆))γ

≤ nα∆+ ‖S‖L2+2δ(P(‖(Ỹ1, . . . , Ỹ[nα])− (Z1, . . . , Z[nα])‖∞ ≥ ∆))γ

≤ nα∆+ cn(1 + µδ)∆
γ .

Taking into account the definition of ∆, we get

‖S‖L2+2δ′ ≤ nαcα,λ1e−
λ1
4
nα+ρ(1 + λ0 + µδ)(8.16)

+ cn(1 + µδ)(cα,λ1e
−λ1

4
nα+ρ(1 + λ0 + µδ))

γ

≤ A′ = c′λ1,λ2,γ,α,ρ(1 + λ0 + µδ)
1+γ .

From (8.15) and (8.16), it follows that

‖Ỹ1 + · · ·+ Ỹ[nα]‖L2+2δ′ ≤ ‖S‖L2+2δ′ + ‖Z1 + · · ·+ Z[nα]‖L2+2δ′(8.17)

≤ A′ + ‖Z1 + · · ·+ Z[nα]‖L2+2δ′ .

Since the r.v.’s Z1, . . . , Z[nα] are independent, by Rosenthal’s inequality
(Theorem 3 in [30]), there exists some constant cδ′ such that

(8.18) ‖Z1 + · · ·+ Z[nα]‖L2+2δ′

≤ cδ′
( [nα]∑
i=1

EZ2
i

)1/2
+ cδ′

( [nα]∑
i=1

E|Zi|2+2δ′
) 1

2+2δ′
.
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Taking into account that Yi =
∑

j∈Ii Xj and that |Ii| ≤ a − b ≤ n1−α, by
Proposition 8.3 we have

(8.19) EZ2
i = ‖Ỹi‖2L2 ≤ (c+ ‖Yi‖L2)2 ≤ c′λ1,λ2,γ(1 + λ0 + µδ)

2+γn1−α.

Note also that ‖Zi‖L2+2δ′ ≤ va−b+c, where vn=supm≥1 ‖
∑m+n−1

i=m Xi‖L2+2δ′ .
Therefore, from (8.18) and (8.19), it follows that

‖Z1 + · · ·+ Zb‖L2+2δ′

≤ A′ + cλ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γ/2n1/2 + cδ′

( [nα]∑
i=1

(va−b + c)2+2δ′
) 1

2+2δ′

≤ cλ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γn1/2 + cδ′va−bn

α
2+2δ′ .

Using (8.17), we get

‖Ỹ1 + · · ·+ Ỹ[nα]‖L2+2δ′ ≤ A′ + ‖Z1 + · · ·+ Z[nα]‖L2+2δ′

≤ c′λ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γn1/2 + cδ′va−bn

α
2+2δ′ .

Since Ỹk = Yk + Vk and ‖Vk‖L2+2δ ≤ c, we see that

‖Y1 + · · ·+ Y[nα]‖L2+2δ′

≤ c[nα] + ‖Ỹ1 + · · ·+ Ỹ[nα]‖L2+2δ′

≤ cnα + cλ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γn1/2 + cδ′va−bn

α
2+2δ′

≤ cλ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γn1/2 + cδ′va−bn

α
2+2δ′ ,

where for the last line we use the fact that α < 1−ρ
2 < 1

2 . Filling up the gaps
in the final interval Ifin, we get∥∥∥m+n−1∑

i=1

Xi

∥∥∥
L2+2δ′

≤ ‖Y1 + · · ·+ Y[nα]‖L2+2δ′

+

[nα]∑
k=1

∑
i∈Jk

‖Xi‖L2+2δ′ +
∥∥∥ m+n∑
i=m+a[nα]

Xi

∥∥∥
L2+2δ′

≤ cλ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γn1/2 + cδ′va−bn

α
2+2δ′

+ n2α+ρµδ + vn−[n1−α][nα].

From this, we deduce the inequality

vn ≤ cλ1,λ2,γ,α,ρ,δ′(1 + λ0 + µδ)
1+γn1/2(8.20)

+ n2α+ρµδ + cδ′v[n1−α]−[nα+ρ]n
α

2+2δ′ + vn−[n1−α][nα].

Denote vn = vn
(1+λ0+µδ)1+γ

. Then from (8.20), it follows that

vn ≤ cλ1,λ2,γ,α,ρ,δ′n1/2 + n2α+ρ + cδ′v[n1−α]−[nα+ρ]n
α

2+2δ′ + vn−[n1−α][nα].
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Fixing α = 1/6 and ρ = 1/6, we get

(8.21) vn ≤ cλ1,λ2,γ,δ′n1/2 + cδ′v[n5/6]−[n1/3]n
1
6

1
2+2δ′ + vn−[n5/6][n1/6].

We start with the inequality vn ≤ nq0 , where q0 = 1. Since n− [n1−α][nα]

≤ cn1−α, we have vn−[n1−α][nα] ≤ cn
5
6
q0 and v[n1−α]−[nα+ρ] ≤ cn

5
6
q0 . Imple-

menting this in (8.21) gives,

vn ≤ cλ1,λ2,γ,δ′n1/2 + cδ′n
5
6
q0+ 1

6
1

2+2δ′ ≤ c1r1,γ,δ′n
max{ 1

2
,q1},

where q1 = 5
6q0 + 1

6
1

2+2δ′ . Continuing in the same way, at iteration k+ 1, we
obtain

vn ≤ ckr1,γ,δ′nmax{1/2,qk+1},

where qk+1 = 5
6qk+ 1

6
1

2+2δ′ . Since limk→∞ qk = 1
2+2δ′ , there exists a constant

k0 <∞ such that qk0+1 ≤ 1/2. With this k0, we get

vn ≤ ck0λ1,λ2,γ,δ′n1/2.

Since γ = γ(η) = 2η
p(p+2η) ≤

2η
p2
, for any m ≥ 1 we have∥∥∥m+n∑

i=m

Xi

∥∥∥
L2+2δ′

≤ cλ1,λ2,η,δ′(1 + λ0 + µδ)
1+γn1/2

≤ cλ1,λ2,δ′,η(1 + λ0 + µδ)
1+ 2η

p2 n1/2.

Since η is arbitrary we obtain the assertion of Proposition 8.2.

9. Appendix

9.1. Some general bounds for the Prokhorov distance. Let (E, d)
be a metric space endowed with the metric d, and E be the Borel σ-algebra on
E. For any B ∈ E denote by Bε its ε-extension: Bε = {x ∈ E : d(x,E) ≤ ε}.
Let π(P,Q) be the Prokhorov distance between two probability measures
P and Q defined by

π(P,Q) = inf
{
ε : sup

B∈E
|P(B)−Q(Bε)| ≤ ε

}
.

The following assertion is known as the Strassen–Dudley theorem and is
a consequence of the results in Strassen [36] (see also Dudley [8]). Let
PE(P,Q) be the set of probability measures on E×E with given marginals
P and Q. Denote by DE,d(ε) the ε-extension of the diagonal in E × E, i.e.
DE,d(ε) = {(s, s′) ∈ E × E : d(s, s′) ≤ ε}, and by DE,d(ε) its complement.

Lemma 9.1 (Strassen–Dudley). If (E, d) is a complete separable metric
space, then

π(P,Q) = min{ε : ∃P ∈ PE(P,Q) such that P(DE,d(ε)) ≤ ε}.
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Let (E1, d1) and (E2, d2) be two complete separable metric spaces en-
dowed with Borel σ-algebras E1 and E2 respectively. Endow the product
space E = E1 × E2 with the metric d(x, y) = max{d1(x1, y1), d2(x2, y2)},
where x = (x1, x2), y = (y1, y2) ∈ E. Let E be the Borel σ-algebra on E.

Lemma 9.2. Consider r.v.’s X,Y ∈ E1 and Z ∈ E2 such that Z and
(X,Y ) are independent. Then

π(LX,Z ,LY,Z) = π(LX ,LY ).

Proof. Let P1 ∈ PE1(LX ,LY ) and P2 ∈ PE2(LZ ,LZ). If P2 is con-
centrated on the diagonal of E2 × E2, then with P = P1 × P2 we have
P(DE,d(ε)) = P1(DE1,d1(ε)). This means that

A = {ε : ∃P1 ∈ PE(LX ,LY ) such that P1(DE1,d1(ε)) ≤ ε}
= {ε : ∃P ∈ PE(LX,Z ,LY,Z) such that P(DE,d(ε)) ≤ ε} = B.

By Lemma 9.1, π(LX ,LY ) = inf A = inf B = π(LX,Z ,LY,Z).

Let (E1, d1), . . . , (En, dn) be complete separable metric spaces. On E =
E1× · · · ×En consider the metric d(x, y) = max{d1(x1, y1), . . . , dn(xn, yn)},
where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ E.

Lemma 9.3. Consider r.v.’s X=(X1, . . . , Xn) ∈ E and Y =(Y1, . . . , Yn)
∈ E. If X and Y are independent and Y1, . . . , Yn are independent, then

π(LX1,...,Xn ,LY1,...,Yn) ≤
n∑
k=1

π(LX1,...,Xk−1,Xk ,LX1,...,Xk−1,Yk).

Proof. The assertion of the lemma is obtained using the telescope rule
and Lemma 9.2.

Lemma 9.4. Consider r.v.’s X=(X1, . . . , Xn) ∈ E and Y =(Y1, . . . , Yn)
∈ E. If (X1, Y1) . . . , (Xn, Yn) are independent, then

π(LX1,...,Xn ,LY1,...,Yn) ≤
n∑
k=1

π(LXk ,LYk).

Proof. Use Lemmas 9.3 and 9.2.

The following is taken from [15].

Lemma 9.5. Let P and Q be two probability measures on (RN ,BN ).
Assume that the characteristic functions p̂(t) and q̂(t) pertaining to P and
Q are square integrable with respect to the Lebesgue measure in RN . Then

(9.1) π(P,Q) ≤ (T/π)N/2
( �

RN
|p̂(t)− q̂(t)|2 dt

)1/2
+ P(‖x‖∞ > T ).
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Proof. Assume first that P, Q have square integrable densities p and
q respectively. Denote CT = {x ∈ RN : ‖x‖∞ ≤ T} and BT = RN r CT .
Assume that A ∈ BN and let ε > 0. Then

|P(A)−Q(Aε)| = |P(Aε ∩ CT ) + P(Aε ∩BT )−Q(Aε)|
≤ |P(Aε ∩ CT )−Q(Aε ∩ CT )|+ P(BT )

=
∣∣∣ �

Aε∩CT

(p(x)− q(x)) dx
∣∣∣+ P(BT )

≤
�

RN
|p(x)− q(x)|1CT (x) dx+ P(‖x‖∞ > T ).

Using Hölder’s inequality, we get

π(P,Q) ≤ |P(A)−Q(Aε)|

≤
( �

RN
|p(x)− q(x)|2 dx

)1/2( �

RN
1CT (x) dx

)1/2
+ P(‖x‖∞ > T ).

Since, by Plancherel’s identity�

RN
|p(x)− q(x)|2 dx = (2π)−N

�

RN
|p̂(t)− q̂(t)|2 dt,

we obtain (9.1) for P and Q having square integrable densities.
If P and Q do not have densities, denote by Pv = P∗Gv and Qv = Q∗Gv

the smoothed versions of P and Q, where Gv is the normal distribution of
mean 0 and variance v2. Using (9.1) and the obvious inequality |p̂v(t) −
q̂v(t)| ≤ |p̂(t)− q̂(t)|, we obtain

π(Pv,Qv) ≤ (2π)−N/2(2T )N/2
( �

RN
|p̂(t)− q̂(t)|2 dt

)1/2
+ Pv(‖x‖∞ > T ).

Since π(Pv,P)→ 0 and π(Qv,Q)→ 0 it follows that π(Pv,Qv)→ π(P,Q)
as v → 0. Note also that lim supv→0 Pv(‖x‖∞ > T ) ≤ P(‖x‖∞ ≥ T ).
Inequality (9.1) follows for arbitrary P,Q.

9.2. Coupling independent and Gaussian r.v.’s. The following re-
sult is proved in Theorem 5 of Sakhanenko [32] (see also [31], [33], [34] for
related results). Let X1, . . . , Xn be a sequence of independent r.v.’s satisfy-
ing EXi = 0 and E|Xi|p <∞ for some p ≥ 2 and all 1 ≤ i ≤ n.

Theorem 9.6. On some probability space (Ω′,F ′,P′) there is a sequence
of independent normal r.v.’s Y1, . . . , Yn satisfying E′Yi = 0 and E′Y 2

i = EX2
i ,

1 ≤ i ≤ n, and a sequence of independent r.v.’s X ′1, . . . , X
′
n satisfying X ′i

d
=

Xi, 1 ≤ i ≤ n, such that

E′
(

max
1≤k≤n

∣∣∣ k∑
i=1

X ′i −
k∑
i=1

Yi

∣∣∣)p ≤ cp n∑
i=1

E|Xi|p.
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In particular, by Chebyshev’s inequality, for the same construction and
any a > 0,

(9.2) P′
(

max
1≤k≤n

∣∣∣ k∑
i=1

X ′i −
k∑
i=1

Yi

∣∣∣ > a
)
≤ cp
ap

n∑
i=1

E|Xi|p.
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