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MODULES AND QUIVER REPRESENTATIONS
WHOSE ORBIT CLOSURES ARE HYPERSURFACES

BY

NGUYEN QUANG LOC (Hanoi) and GRZEGORZ ZWARA (Toruń)

Abstract. Let A be a finitely generated associative algebra over an algebraically
closed field. We characterize the finite-dimensional A-modules whose orbit closures are lo-
cal hypersurfaces. The result is reduced to an analogous characterization for orbit closures
of quiver representations obtained in Section 3.

1. Introduction and the main results. Throughout the paper k de-
notes a fixed algebraically closed field. By an algebra we mean an asso-
ciative finitely generated k-algebra with identity, and by a module a finite-
dimensional left module. Let d be a positive integer and denote by Md(k) the
algebra of d×d-matrices with entries in k. For an algebra A the set modA(d)
of A-module structures on the vector space kd, or equivalently the set of k-
algebra homomorphisms from A toMd(k), has a natural structure of an affine
variety. Indeed, if we fix a k-algebra isomorphism A ' k〈X1, . . . , Xt〉/J , with
t > 0 and a two-sided ideal J , then modA(d) can be identified with the closed
subset of (Md(k))

t given by the vanishing of the entries of all the matrices
ρ(X1, . . . , Xt) for ρ ∈ J . Moreover, the general linear group

GL(d) = GL(d, k)

acts on modA(d) by conjugation, and the GL(d)-orbits in modA(d) corre-
spond bijectively to the isomorphism classes of d-dimensional A-modules.
We denote by OM the GL(d)-orbit in modA(d) corresponding to (the iso-
morphism class of) a d-dimensional A-module M .

It is an interesting task to study geometric properties of the Zariski clo-
sure OM of OM . A general question is how they are related to the representa-
tion-theoretic properties of the algebra A and the corresponding A-modules.
We notice that, using the geometric equivalence described in [4], the above
problem is closely related to an analogous one for k-linear representations of
quivers. We refer to [3], [13], [14] and to a survey [15] for results on singu-
larities of orbit closures of modules or quiver representations.

2010 Mathematics Subject Classification: Primary 14B05; Secondary 14L30, 16G20.
Key words and phrases: module varieties, orbit closures, hypersurfaces, tangent space,
local ring, singularity.

DOI: 10.4064/cm134-1-2 [57] c© Instytut Matematyczny PAN, 2014



58 N. Q. LOC AND G. ZWARA

In [10], a characterization of the A-modulesM for which the orbit closure
OM is a non-singular variety is given. More precisely, we have the following
two theorems, where the first one follows from the second.

Theorem 1.1 ([10, Theorem 1.1]). The orbit closure OM is a non-
singular variety if and only if the algebra B = A/Ann(M) is hereditary
and Ext1B(M,M) = 0.

By definition, the finite-dimensional algebra B is hereditary if the functor
Ext2B(−,−) vanishes.

Theorem 1.2 ([10, Theorem 2.1]). Let Q be a quiver and d ∈ NQ0 be a
dimension vector. Let N be a representation in repQ(d) such that Ann(N)

is an admissible ideal in kQ. Then ON is a non-singular variety if and only
if Ann(N) = {0} and ON = repQ(d).

A (commutative, Noetherian) local ring (R,m) is called a hypersurface if
it has the form T/(f) for a regular local ring T and a non-unit f ∈ T . We say
an algebraic variety X is a hypersurface at a point x ∈ X if the local ringOX ,x
is a hypersurface, and X a local hypersurface if it is a hypersurface at each
of its points. Of course, non-singular varieties are local hypersurfaces. Other
simple examples of local hypersurfaces are hypersurfaces in affine spaces, i.e.,
the zero sets of a non-constant polynomial.

The assumptions on Ann(N) in Theorem 1.2 imply that N is a nilpotent
representation, i.e., {0} is the unique closed orbit in ON . Observe that ON
is non-singular if and only if it is non-singular at the point 0, as the singular
locus is a closed GL(d)-invariant subset of ON . It is therefore natural to ask
when ON is a singular hypersurface at 0. It turns out that this is the case
only when ON is a singular affine hypersurface.

For a finite-dimensional algebra B, there is a uniquely determined qui-
ver Γ , called the Gabriel quiver of B, and an admissible ideal I in the path
algebra kΓ such that the categories of modules over B and over kΓ/I are
equivalent.

Our first main result characterizes the orbit closures of modules which
are (singular) local hypersurfaces.

Theorem 1.3. Assume char k = 0. Let M be an A-module, B =
A/Ann(M), and let kΓ ⊇ I be as above such that mod(B) ' mod(kΓ/I).
The orbit closure OM is a singular local hypersurface if and only if one of
the following conditions holds:

(1) The algebra B is hereditary and Ext1B(M,M) ' k.
(2) I = 〈γ2〉, where γ is a loop in Γ at a vertex i with (dimM)i = 2,

and Ext1B(M,M) = 0.
(3) I = 〈ρ〉, where ρ is a relation in Γ from a vertex i to a vertex j with

(dimM)i = (dimM)j = 1, and Ext1B(M,M) = 0.
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Using the geometric equivalence described in [4] (see Section 2), Theo-
rem 1.3 will be a consequence of the following result proved in Section 3.

Theorem 1.4. Assume char k = 0. Let Q be a quiver and d = (di)i∈Q0

be a dimension vector. Let N be a representation in repQ(d) such that
Ann(N) is an admissible ideal in kQ. Then ON is a singular hypersurface if
and only if one of the following conditions holds:

(1) Ann(N) = 0 and Ext1kQ(N,N) ' k.
(2) Ann(N) = 〈γ2〉, where γ is a loop in Q at a vertex i with di = 2, and

Ext1kQ/〈γ2〉(N,N) = 0.
(3) Ann(N) = 〈ρ〉, where ρ is a relation in Q from a vertex i to a vertex j

with di = dj = 1, and Ext1kQ/〈ρ〉(N,N) = 0.

Moreover, ON is a singular hypersurface if and only if it is a singular hy-
persurface at the point 0.

In Section 2, we recall some notions on representations of quivers and
explain the geometric relation between the orbit closures of modules and of
quiver representations. We also deduce that a local hypersurface is preserved
by smooth morphisms, which implies that Theorem 1.3 is a consequence of
Theorem 1.4, proved in Section 3. For basic background on the representation
theory of algebras and quivers we refer to [1]. The results presented in this
paper form a part of the first author’s doctoral dissertation [9] written under
the supervision of the second author.

2. Representations of quivers and geometric relation of orbit
closures. Let Q = (Q0, Q1; s, t : Q1 → Q0) be a finite quiver, i.e., Q0 is a
finite set of vertices, Q1 is a finite set of arrows α : s(α)→ t(α), where s(α)
and t(α) denote the starting and terminating vertex of α, respectively. By
an oriented path (path, for short) of length m ≥ 1 in Q we mean a sequence
of arrows in Q1:

ω = αm . . . α1,

such that s(αl+1) = t(αl) for l = 1, . . . ,m − 1. In this situation we write
s(ω) = s(α1) and t(ω) = t(αm), and say that ω is a path from s(α1) to t(αm).
We agree to associate to each vertex i ∈ Q0 a path εi in Q of length zero
with s(εi) = t(εi) = i. We call a path ω of positive length with s(ω) = t(ω)
an oriented cycle. By a primitive cycle we mean an oriented cycle which does
not contain other oriented cycles as proper subpaths. A loop is an oriented
cycle of length one.

The paths in Q form a k-linear basis of the path algebra kQ, in which
the product of two paths ω and ρ is the path ωρ if s(ω) = t(ρ), and is
zero otherwise. Observe that the algebra kQ is finite-dimensional if and only
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if Q has no oriented cycles. A relation from a vertex i to a vertex j is a
k-linear combination of paths from i to j of length at least two. In particular,
a relation is an element in the vector space εj · kQ · εi. Given ρ in εj · kQ · εi,
we denote by 〈ρ〉 the two-sided ideal in kQ generated by ρ.

By a representation of Q we mean a collection V = (Vi, Vα) of finite-
dimensional k-vector spaces Vi, i ∈ Q0, together with linear maps Vα :
Vs(α) → Vt(α), α ∈ Q1. The dimension vector of the representation V is the
vector

dimV = (dimk Vi) ∈ NQ0 .

A morphism f : V → W between two representations is a collection of
linear maps fi : Vi → Wi, i ∈ Q0, such that ft(α)Vα = Wαfs(α) for each
α ∈ Q1. The category of representations of Q is an abelian k-linear category,
which is naturally equivalent to the category mod(kQ) of finite-dimensional
left kQ-modules. The category mod(kQ) is hereditary, which means that
Ext2kQ(−,−) = 0.

For a path ω = αm . . . α1 and a representation V we define
Vω = Vαm ◦ · · · ◦ Vα1 : Vs(ω) → Vt(ω)

and extend easily this definition to Vρ : Vi → Vj for any ρ in εj · kQ · εi,
where i, j ∈ Q0, as ρ is a linear combination of paths ω with s(ω) = i and
t(ω) = j. We set

Ann(V ) = {ρ ∈ kQ | Vεj ·ρ·εi = 0 for all i, j ∈ Q0},
which is a two-sided ideal in kQ. In fact, it is the annihilator of the
kQ-module corresponding to V with underlying vector space

⊕
i∈Q0

Vi.
LetRQ denote the two-sided ideal in kQ generated by the paths of length

one (i.e., arrows) in Q. A two-sided ideal I in kQ is called admissible if
(RQ)r ⊆ I ⊆ (RQ)2 for some integer r ≥ 2. For such an ideal I, the category
mod(kQ/I) of kQ/I-modules is equivalent to the full subcategory consisting
of all the representations V of Q such that Ann(V ) ⊇ I. We shall identify
these two categories.

Let d = (di)i∈Q0 ∈ NQ0 be a dimension vector. The representations
V = (Vi, Vα) of Q with Vi = kdi , i ∈ Q0, form an affine space

repQ(d) =
⊕
α∈Q1

Homk(Vs(α), Vt(α)) =
⊕
α∈Q1

Mdt(α)×ds(α)(k),

where Md′×d′′(k) stands for the space of d′ × d′′-matrices with entries in k.
The group

GL(d) =
⊕
i∈Q0

GL(di)

acts regularly on repQ(d) via

(gi)i∈Q0 ∗ (Vα)α∈Q1 = (gt(α) · Vα · g−1s(α))α∈Q1 .
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Given a representation W = (Wi,Wα) of Q with dimW = d, we denote by
OW the GL(d)-orbit in repQ(d) of representations isomorphic to W .

If I is an admissible ideal in kQ, then the representations V in repQ(d)
such that Ann(V ) ⊇ I form a closed GL(d)-stable subset repQ,I(d) of
repQ(d). This set is the underlying variety of the affine scheme repQ,I(d)
defined as follows. Let

k[repQ(d)] = k[Xα,p,q | α ∈ Q1, p ≤ dt(α), q ≤ ds(α)]
denote the algebra of polynomial functions on the affine space repQ(d).
Here, Xβ,p,q maps a representation W = (Wα) to the (p, q)-entry of the
matrix Wβ . Let Xα stand for the dt(α) × ds(α)-matrix whose (p, q)-entry is
the variable Xα,p,q, for any arrow α ∈ Q1. We define the dj × di-matrix Xρ

for ρ ∈ εj · kQ · εi, with entries in k[repQ(d)], in a similar way to that for
representations of Q. Then repQ,I(d) is the closed subscheme defined by
the ideal in k[repQ(d)] generated by the entries of all the matrices Xρ for
ρ ∈ εj · I · εi, where i, j ∈ Q0.

We need [6, Corollary 1.2] formulated in terms of representations:

Lemma 2.1. Let N ∈ repQ,I(d). Then Ext1kQ/I(N,N) = 0 if and only if
the orbit ON is open in the scheme repQ,I(d).

In the case when the scheme repQ,I(d) is reduced, Ext
1
kQ/I(N,N) = 0 if

and only if ON is open in repQ,I(d).
Now let A be an algebra and let M be an A-module of dimension d.

The annihilator Ann(M) of M is the kernel of the algebra homomorphism
A → Md(k) induced by M , thus the algebra B = A/Ann(M) is finite-
dimensional. Observe that modB(d) is a closed GL(d)-subvariety of modA(d)
containing OM . Moreover, M is faithful as a B-module.

The orbit closures in modB(d) and in repΓ (d) are closely related [4],
where Γ is the Gabriel quiver of B. Indeed, let {e1, . . . , en} be a complete
set of primitive pairwise orthogonal idempotents of B such that Bei 6' Bej
for i 6= j. Then the algebra eBe is the basic algebra associated to B, where
e = e1 + · · ·+ en (see [1, I.6]). We have an equivalence of module categories

F : mod(B)→ mod(kΓ/I),

where the quiver Γ is defined as follows: the vertices of Γ correspond bi-
jectively to the idempotents e1, . . . , en; for i, j ∈ Γ0, the arrows α : i → j
in Γ1 correspond bijectively to the vectors in some basis of the vector space
ej(rad(B)/rad2(B))ei. Moreover, I is an admissible ideal in kΓ such that
eBe ' kΓ/I. The functor F associates to any faithful B-module M the
module eM over the algebra eBe = kΓ/I, thus a representation N of Γ
with Ann(N) = I. In particular, N ∈ repΓ,I(d) for the dimension vector
d = (dimk eiM) ∈ NΓ0 . Note that d is nothing but the dimension vector
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dimM of M , viewed as an element of the Grothendieck group K0(B) of the
category mod(B). By [4], OM is isomorphic to the associated fibre bundle
GL(d) ×GL(d) ON . Thus OM and ON share all local geometric properties
which are preserved under smooth morphisms, including the normality, reg-
ularity in some codimension, Cohen–Macaulayness, etc.

We now deduce from a result of Avramov (see [2, Section 7]) that the
property of being local hypersurface is also preserved under smooth mor-
phisms. Recall that a local ring R is a hypersurface if it is the quotient of a
regular local ring by a principal ideal. If the local ring R is the quotient of a
regular local ring by some ideal (for example, the local ring of a point on an
algebraic variety), then it is a hypersurface if and only if its second deviation
ε2(R) is at most 1. Moreover, R is regular if and only if ε2(R) = 0. We recall
that the deviations εn(R), n ≥ 1, of a local ring R are unique integers such
that the Poincaré series of R is equal to∏∞

i=1(1 + t2i−1)ε2i−1(R)∏∞
i=1(1− t2i)ε2i(R)

,

where the products converge in the (t)-adic topology of the ring Z[[t]].
Lemma 2.2. Let ϕ : (R,m) → (S,n) be a flat, local homomorphism of

local rings. If the fibre S/mS is regular, then ε2(R) = ε2(S).

Proof. Using [2, Theorem 7.4.2] we have

ε2(R) ≤ ε2(S) = ε2(R) + ε2(S/mS)− δ
for some integer δ ≥ 0. By assumptions ε2(S/mS) = 0, thus ε2(R) = ε2(S).

It follows from Lemma 2.2 that if ϕ : X → Y is a smooth surjective
morphism of varieties, then X is a local hypersurface if and only if so is Y.
Now it is clear from our discussion that Theorem 1.4 will imply Theorem 1.3.

3. Proof of Theorem 1.4. If ON is a singular hypersurface, then it is
a singular hypersurface at the point 0. Therefore, let N = (Nα) be a rep-
resentation in repQ(d) such that Ann(N) is an admissible ideal in kQ and
ON is a singular hypersurface at 0. Recall that in particular N is a nilpotent
representation. This is equivalent to the fact that the endomorphism Nω is
nilpotent for any oriented cycle ω in Q. The assumption char k = 0 guaran-
tees that the space {f ∈ Endk(V ) | tr(f) = 0} is a simple GL(V )-submodule
of Endk(V ), where V is a finite-dimensional k-vector space and the group
GL(V ) acts on Endk(V ) by conjugation. Here, tr stands for the trace of a
linear endomorphism or of a square matrix.

We need two auxiliary results, whose proofs are straightforward.

Lemma 3.1. Let ξ = αm . . . α1 be a path in the quiver Q such that
dt(αl) ≥ 2 for l = 1, . . . ,m−1 and the arrows α1, . . . , αm are pairwise distinct.
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Then the entries of the matrix Xξ are irreducible polynomials in k[repQ(d)].
In particular, if ds(ξ) = dt(ξ) = 1, then the polynomial Xξ is irreducible in
k[repQ(d)].

Lemma 3.2. Let ω = βn . . . β1 be a primitive cycle in Q such that
dt(βl) ≥ 2 for l = 1, . . . , n. Then the polynomial tr(Xω) is irreducible in
k[repQ(d)].

3.1. Tangent spaces of orbit closures. The action of GL(d) on
repQ(d) induces an action on k[repQ(d)] by (g ∗ f)(W ) = f(g−1 ∗W ) for
g ∈ GL(d), f ∈ k[repQ(d)] and W ∈ repQ(d). Clearly, the defining ideal
I(ON ) of ON is invariant under the action of GL(d) on k[repQ(d)].

Now let NQ(d) denote the set of all nilpotent representations in repQ(d).
Observe that it is a closed GL(d)-invariant subset of repQ(d) containing ON .
We shall identify the tangent space T0(repQ(d)) of repQ(d) at the point 0
with repQ(d) itself. Thus the tangent space T0(ON ) is a subspace of repQ(d)
and is invariant under the action of GL(d), i.e., it is a GL(d)-submodule of
repQ(d).

Lemma 3.3. Let W = (Wα) be a tangent vector in T0(ON ). Then tr(Wγ)
= 0 for any loop γ ∈ Q1.

Proof. The set NQ(d) is the zero locus of the (non-leading) coefficients
of the characteristic polynomials of all square matrices Xω, where ω is any
oriented cycle in Q. Since ON ⊆ NQ(d), these coefficients belong to I(ON ).
In particular, tr(Xγ) ∈ I(ON ) for any loop γ ∈ Q1. By the definition of
tangent spaces, tr(Wγ) = 0.

We view the set

reptrQ(d) = {W = (Wα) ∈ repQ(d) | tr(Wγ) = 0 for any loop γ ∈ Q1}
as a vector subspace of repQ(d).

The following result holds for an arbitrary admissible representation N
(i.e., Ann(N) is an admissible ideal).

Proposition 3.4. If char k = 0, then T0(ON ) = reptrQ(d).

Let Vi = kdi and Ri,j be the vector space of formal linear combinations
of arrows α ∈ Q1 with s(α) = i and t(α) = j, for any i, j ∈ Q0. We identify

repQ(d) =
⊕
i,j∈Q0

Homk(Ri,j ,Homk(Vi, Vj)) and GL(d) =
⊕
i∈Q0

GL(Vi).

Applying Lemma 3.3, we get

T0(ON ) ⊆
⊕

i,j∈Q0, i 6=j
Homk(Ri,j ,Homk(Vi, Vj))⊕

⊕
i∈Q0

Homk(Ri,i,End
tr
k (Vi)),

where Endtrk (Vi) = {f ∈ Endk(Vi) | tr(f) = 0}.
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Since char k = 0, the space Endtrk (Vi), i ∈ Q0, is a simple GL(d)-
submodule of Endk(Vi). Moreover, the GL(d)-modules Homk(Vi, Vj), i 6= j,
are simple and pairwise non-isomorphic. Thus we have

T0(ON ) =
⊕

i,j∈Q0, i 6=j
{ϕ : Ri,j → Homk(Vi, Vj) | ϕ(Ui,j) = 0}

⊕
⊕
i∈Q0

{ψ : Ri,i → Endtrk (Vi) | ψ(Ui,i) = 0}

for some subspaces Ui,j of Ri,j , where i, j ∈ Q0.
As was shown in [10], we may assume that the spaces Ui,j are spanned

by arrows in Q1. Consequently,

(3.1) T0(ON ) = reptrQ′(d)

for some subquiver Q′ of Q such that Q′0 = Q0.
It is our aim to prove that in fact Q′ = Q. Note that the proof of [10,

Proposition 4.2] does not apply, since the quiver Q may contain oriented
cycles. Under the assumption char k = 0 we shall give a different proof,
which does not depend on whether Q has oriented cycles or not.

Let G be a linearly reductive group and X an affine G-variety. Then there
exists a unique Reynolds operator R : k[X ] → k[X ]G, where k[X ]G denotes
the invariant ring of G in k[X ] (for instance, see [5, 2.2]). Recall that a
Reynolds operator is a linear map R : k[X ] → k[X ]G such that R(f) = f
for all f ∈ k[X ]G and R(g ∗ f) = R(f) for all f ∈ k[X ], g ∈ G. If W is a
G-submodule of k[X ], then R(W ) =WG.

Proof of Proposition 3.4. Suppose, to the contrary, that there is an arrow
β : b→ a in Q1\Q′1. Since T0(ON ) ⊆ repQ′(d), we have Xβ,u,v ∈ m2+I(ON )
for u ≤ da and v ≤ db, where m is the maximal ideal in k[repQ(d)] generated
by all the variables. Hence there are polynomials fu,v ∈ k[repQ(d)] of order
at least 2, i.e., belonging to m2, such that Xβ,u,v − fu,v ∈ I(ON ).

Let ∆ be the quiver obtained from Q by appending an arrow γ : a→ b,
i.e., of reverse direction to β. Let C = ON ×Mdb×da(k) ⊆ rep∆(d). Consider
k[repQ(d)] as a subalgebra of k[rep∆(d)]; then I(C) = I(ON ) · k[rep∆(d)].
In particular, I(C) contains the polynomial

w =
∑
u≤da

∑
v≤db

(Xβ,u,v − fu,v) ·Xγ,v,u.

Let R : k[rep∆(d)] → k[rep∆(d)]
GL(d) be the Reynolds operator. For the

GL(d)-submodule I(C) of k[rep∆(d)] and the polynomial w ∈ I(C), we have

R(w) = R
(∑
u,v

Xβ,u,v ·Xγ,v,u

)
−R

(∑
u,v

fu,v ·Xγ,v,u

)
∈ I(C)GL(d).
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The polynomial
∑

u,vXβ,u,v ·Xγ,v,u is GL(d)-invariant, thus

R(w) =
∑
u,v

Xβ,u,v ·Xγ,v,u − z,

where the polynomial z = R(
∑

u,v fu,v ·Xγ,v,u) belongs to k[rep∆(d)]GL(d).
Consider the natural N∆1-grading on k[rep∆(d)] and observe that the

space of homogeneous polynomials of given degree with respect to this grad-
ing, together with 0, is a GL(d)-module. Hence the Reynolds operator maps
homogeneous polynomials to homogeneous polynomials of the same degree.
The same is true for homogeneous polynomials with respect to the usual
N-grading on k[rep∆(d)]. Thus z is a linear polynomial in the variablesXγ,v,u

and is of order at least 3 (in the usual N-grading).
By a result of Le Bruyn and Procesi [8, Theorem 1], the invariant algebra

k[rep∆(d)]
GL(d) is generated by the polynomials tr(Xω), where ω is any

oriented cycle in ∆. The usual degree of tr(Xω) equals the length of ω, while
the degree with respect to the variables Xγ,v,u is the multiplicity of the arrow
γ in the path ω. It follows that the polynomial z is a linear combination of
products

tr(Xω1) · . . . · tr(Xωr),

where ωl are oriented cycles in ∆, the arrow γ appears in only one of these
cycles and precisely once, and the sum of their lengths is at least 3. If
r ≥ 2, then the above product belongs to I(C). Indeed, then there exists
an oriented cycle ωl not containing γ, thus being an oriented cycle in Q.
Since the representation N is nilpotent, tr(Xωl) ∈ I(ON ) and consequently
tr(Xω1) · . . . · tr(Xωr) ∈ I(C).

Let z′ be the polynomial obtained from z by deleting all summands of
the form tr(Xω1) · . . . · tr(Xωr) for r ≥ 2. Then z′ is a linear combination of
polynomials tr(Xω), where ω is an oriented cycle in ∆ of length at least 3
passing precisely once through the arrow γ, and∑

u,v

Xβ,u,v ·Xγ,v,u − z′ ∈ I(C).

Observe that the polynomial tr(Xω) does not depend on the choice of the
starting vertex of ω. Indeed, if ω = ω′ω′′, then ω′′ω′ is also an oriented cycle
and

tr(Xω′ω′′) = tr(Xω′ ·Xω′′) = tr(Xω′′ ·Xω′) = tr(Xω′′ω′).

Let Ω be the set of all paths in Q of length at least 2 from b to a. Then

z′ =
∑
ω∈Ω

λ(ω) · tr(Xωγ) =
∑
ω∈Ω

λ(ω) ·
∑
u,v

Xω,u,vXγ,v,u, λ(ω) ∈ k,
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and consequently,∑
u,v

(
Xβ,u,v −

∑
ω∈Ω

λ(ω) ·Xω,u,v

)
·Xγ,v,u ∈ I(C).

Since I(C) = I(ON ) · k[rep∆(d)], it follows that for any u ≤ da, v ≤ db, we
have

Xβ,u,v −
∑
ω∈Ω

λ(ω) ·Xω,u,v ∈ I(ON ).

This means that all the entries of the matrixXβ−ρ belong to the ideal I(ON ),
where ρ =

∑
ω∈Ω λ(ω)·ω. Therefore β−ρ belongs to Ann(N). Since β−ρ does

not belong to (RQ)2, the ideal Ann(N) is not admissible, a contradiction.

Corollary 3.5. ON is a closed GL(d)-subvariety of codimension 1 in
reptrQ(d).

Proof. By assumption, ON is a singular hypersurface at 0. This implies
that

dimON = dimk T0(ON )− 1 = dimk rep
tr
Q(d)− 1.

Since ON is contained in NQ(d), it is also contained in reptrQ(d). Hence the
corollary follows.

3.2. The case when Q is acyclic. First, we consider the case when
Q is acyclic, i.e., there are no oriented cycles (in particular no loops) in Q.
Then reptrQ(d) = repQ(d).

A non-zero polynomial f in k[repQ(d)] is called a GL(d)-semi-invariant
(of weight χ) if g ∗ f = χ(g) · f for all g ∈ GL(d), where χ : GL(d) → k∗

is a k-regular character of GL(d). The following result is a consequence of
Corollary 3.5.

Corollary 3.6. There exists an irreducible GL(d)-semi-invariant F
such that I(ON ) = (F ).

Proof. By Corollary 3.5, ON is an irreducible hypersurface in repQ(d),
thus I(ON ) = (F ) for some irreducible polynomial F . Since the variety ON
is GL(d)-invariant, we get the equality (g ∗ F ) = (F ) of ideals, for any
g ∈ GL(d). Consequently,

g ∗ F = χ(g) · F
for some non-zero scalar χ(g), g ∈ GL(d). The map χ : GL(d)→ k∗ is easily
seen to be a k-regular character of GL(d).

Since codimrepQ(d)ON = dimk Ext
1
kQ(N,N) by the Artin–Voigt formula

(see [11]), we also obtain:

Corollary 3.7. Ext1kQ(N,N) ' k.
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We consider two gradings on the algebra k[repQ(d)] = k[Xα,p,q], induced
by two torus actions. We choose a standard maximal torus T in GL(d)

consisting of g = (gi), where all gi ∈ GL(di) are diagonal matrices. Let Q̃0

denote the set of pairs (i, p) with i ∈ Q0 and 1 ≤ p ≤ di. Then the action of
T on repQ(d) leads to a ZQ̃0-grading on k[repQ(d)] with

d̃egXα,p,q = et(α),p − es(α),q,

where {ei,p}(i,p)∈Q̃0
is the standard basis of ZQ̃0 identified with the group of

k-regular characters of T .
The torus (k∗)|Q0|, being the center of GL(d), is contained in the torus T .

Its action on repQ(d) is the restriction of the action of T . Thus there is a
ZQ0-grading on k[repQ(d)] with

degXα,p,q = et(α) − es(α),

where {ei}i∈Q0 is the standard basis of ZQ0 . Observe that any GL(d)-semi-
invariant is homogeneous with respect to both gradings.

The following lemma is obvious.

Lemma 3.8. Assume that Q is acyclic and let h be a monomial in
k[repQ(d)].

(1) If deg h = 0, then h = 1.
(2) If deg h = ej − ei ∈ ZQ0 for vertices i 6= j, then

h = Xαm,pm,qm ·Xαm−1,pm−1,qm−1 · . . . ·Xα1,p1,q1

for some path ω = αm . . . α1 of length m ≥ 1 from i to j in Q and
indices 1 ≤ pl ≤ dt(αl), 1 ≤ ql ≤ ds(αl), l = 1, . . . ,m.

(3) If d̃eg h = ej,1 − ei,1 ∈ ZQ̃0 for vertices i 6= j, then additionally
pm = q1 = 1 and qm = pm−1, qm−1 = pm−2, . . . , q2 = p1.

Lemma 3.9. Let f be a GL(d)-semi-invariant in k[repQ(d)] such that
deg f = ej − ei for vertices i 6= j and di = dj = 1. Then f = Xρ for some ρ
in εj · kQ · εi.

Proof. Clearly d̃eg f = ej,1−ei,1. By Lemma 3.8, f is a linear combination

f =
∑

λ(αm, pm−1, αm−1, . . . , p1, α1)

·Xαm,1,pm−1 ·Xαm−1,pm−1,pm−2 · . . . ·Xα2,p2,p1 ·Xα1,p1,1,

where the sum runs over all paths ω = αm . . . α1 in Q from i to j and integers
1 ≤ pl ≤ dt(αl) for l = 1, . . . ,m− 1.

We claim that the scalars λ(αm, pm−1, αm−1, . . . , α1, p1) depend only on
the path αm . . . α1. Indeed, let p′l ≤ dt(αl) and p

′
l 6= pl for some 1 ≤ l ≤ m. In

particular, dt(αl) ≥ 2. We choose g = (ga) ∈ GL(d) such that ga for a 6= t(αl)
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is the identity matrix and gt(αl) = Idt(αl)
+ Epl,p′l , where Epl,p′l is the matrix

whose (pl, p
′
l)-entry is 1 while the other entries are 0. Then the monomial

Xαm,1,pm−1 · . . . ·Xαl+1,pl+1,pl ·Xαl,p
′
l,pl−1

· . . . ·Xα1,p1,1

appears in g ∗ f with the coefficient

λ(αm, pm−1, . . . , αl+1, p
′
l, . . . , p1, α1)− λ(αm, pm−1, . . . , αl+1, pl, . . . , p1, α1).

Since g ∗ f is a homogeneous polynomial of degree ej,1− ei,1, this coefficient
must be 0, which proves the claim.

Let Ω denote the set of all paths ω in Q from i to j. Then there are
scalars λ(ω), ω ∈ Ω, such that

f =
∑

ω=αm...α1∈Ω
λ(ω) ·

∑
p1≤dt(α1)

. . .
∑

pm−1≤dt(αm−1)

Xαm,1,pm−1 · . . . ·Xα1,p1,1.

Hence f = Xρ for ρ =
∑

ω∈Ω λ(ω) · ω ∈ εj · kQ · εi.

Let i1, . . . , ir, j1, . . . , js be vertices (not necessarily distinct) in Q0 such
that

(3.2)
r∑
l=1

dil =

s∑
m=1

djm .

For any 1 ≤ l ≤ r, 1 ≤ m ≤ s, let ρl,m ∈ εjm · kQ · εil be a linear combi-
nation of paths in Q from il to jm. We form an s × r-block matrix whose
(m, l)-block is the djm × dil-matrix Xρl,m . By (3.2), this is a square ma-
trix with entries in k[repQ(d)]. Its determinant is a GL(d)-semi-invariant
in k[repQ(d)], called a determinantal semi-invariant . By [12, Theorem 2.3],
the algebra of GL(d)-semi-invariants in k[repQ(d)] is spanned, as a vec-
tor space, by the determinantal semi-invariants. In particular, the semi-
invariant F in Corollary 3.6 is a linear combination of such determinantal
semi-invariants.

Observe that if il = jm for some l ≤ r andm ≤ s, and ρl,m = λ·εil , λ ∈ k∗,
so that Xρl,m = λ · Idil , then the determinant of the s × r-block matrix
above is equal to that of a suitable (s − 1) × (r − 1)-block matrix associ-
ated to the other vertices, without il and jm. Thus we can assume that the
elements ρl,m ∈ εjm · kQ · εil are linear combinations of paths of positive
length.

Proposition 3.10. If Ann(N) 6= 0, then Ann(N) = 〈ρ〉, where ρ is a
relation from a vertex i to a vertex j with di = dj = 1, and Ext1kQ/〈ρ〉(N,N)
= 0.

Proof. We use the ZQ0-grading on k[repQ(d)] with

degXα,p,q = et(α) − es(α) =: eα, α ∈ Q1.
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The semi-invariant F is homogeneous with respect to this grading, thus it
is a linear combination of determinantal semi-invariants of the same degree.
We consider such a non-zero determinantal semi-invariant and assume that
it is given by the vertices i1, . . . , ir, j1, . . . , js with the equality (3.2) satisfied.
We denote the entries of the corresponding square matrix by xp,q. There is
a permutation σ of the columns of the matrix such that

x1,σ(1) · . . . · xn,σ(n) 6= 0,

where n =
∑
dil . Assume x1,σ(1) belongs to the (1, l)-block Xρl,1 of the

square matrix for some 1 ≤ l ≤ r. Then x1,σ(1) 6= 0 implies that there is a
non-zero combination of paths from il to j1 and

deg x1,σ(1) =
∑
α∈Q1

c1,αeα = ej1 − eil ,

where c1,α ∈ {0, 1} and the arrows α for which c1,α = 1 form a path from
il to j1. Of course, similar arguments can be applied for x2,σ(2), . . . , xn,σ(n)
with

deg xp,σ(p) =
∑
α∈Q1

cp,αeα, cp,α ∈ {0, 1}, 2 ≤ p ≤ n.

Thus

degF = deg(x1,σ(1) · . . . · xn,σ(n)) =
∑
α∈Q1

(c1,α + · · ·+ cn,α)eα

=
∑
α∈Q1

aαeα for aα = c1,α + · · ·+ cn,α.

By assumption, there is a non-zero element ω in εj′ · Ann(N) · εi′ for
some vertices i′ and j′. Observe that the common zero set of the polynomi-
als Xω,u,v for u ≤ dj′ , v ≤ di′ is a closed GL(d)-invariant subset in repQ(d)

containing ON . Thus Xω,1,1 ∈ (F ), so Xω,1,1 = Fh for a homogeneous poly-
nomial h in k[repQ(d)]. It follows that degF + deg h = ej′ − ei′ . Clearly
deg h =

∑
bαeα for some non-negative integers bα, α ∈ Q1. Hence we con-

clude that aα + bα ∈ {0, 1} and the arrows α for which aα + bα = 1 form
a path ξ from i′ to j′ (see Lemma 3.8). Taking into account the informa-
tion about cp,α, this implies that the vertices i1, . . . , ir, j1, . . . , js lie on ξ.
Furthermore, by renumbering the vertices we may assume that

degF = (ej1 − ei1) + · · ·+ (ejl′ − eil′ )
for some l′ ≤ r, s and distinct vertices i1, . . . , il′ , j1, . . . , jl′ such that the
subpaths of ξ from i1 to j1, . . . , from il′ to jl′ have no arrow in common.
Then di1 = · · · = dil′ = dj1 = · · · = djl′ = 1, as degF =

∑s
m=1 djmejm −∑r

l=1 dileil . It follows from Lemma 3.9 that, up to a scalar, F = Xρ1 ·. . .·Xρl′

for some ρp ∈ εjp · kQ · εip , 1 ≤ p ≤ l′. Since F is irreducible, l′ = 1 and
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F = Xρ1 . In particular ρ1 belongs to the admissible ideal Ann(N), so it is a
relation in Q from i1 to j1.

We show next that Ann(N) = 〈ρ1〉. Let ω ∈ εj′ · Ann(N) · εi′ be a
non-zero linear combination of paths ωl, for i′, j′ ∈ Q0. Then Xω,1,1 is a
multiple of Xρ1 . This implies that each arrow on the path ρ1 appears also
on ωl for all l, as Xω,1,1 is a linear combination of Xωl,1,1. The quiver Q has
no oriented cycles, thus ρ1 must be a subpath of ωl. Therefore ωl ∈ 〈ρ1〉 and
consequently ω ∈ 〈ρ1〉.

By Lemma 3.1, the scheme repQ,〈ρ1〉(d) = Spec(k[repQ(d)]/(Xρ1)) is
reduced. Moreover, ON = repQ,〈ρ1〉(d). Hence Ext1kQ/〈ρ1〉(N,N) = 0, by
Lemma 2.1.

3.3. The case when Q contains a loop. Next, we consider the case
when the quiver Q contains a loop. Let γ : i → i be a loop in Q and
denote by Q′′ the subquiver of Q consisting of the vertex i and the loop γ.
The obvious GL(d)-equivariant linear projection π : reptrQ(d) → reptrQ′′(di)

induces a dominant morphism ON → ON ′′ with N ′′ = π(N). It follows that

Ireptr
Q′′ (di)

(ON ′′) = IreptrQ(d)(ON ) ∩ k[reptrQ′′(di)].

By Corollary 3.5, we have IreptrQ(d)(ON ) = (f) for some f in the polynomial
ring

k[reptrQ(d)] = k[repQ(d)]/({tr(Xρ) | ρ is a loop in Q}).

Therefore Ireptr
Q′′ (di)

(ON ′′) = (f) if f ∈ k[reptrQ′′(di)], and Ireptr
Q′′ (di)

(ON ′′) = 0

otherwise. Consequently,

dim reptrQ′′(di)− dimON ′′ ≤ 1.

On the other hand, we have:

Lemma 3.11. dim reptrQ′′(di)− dimON ′′ ≥ di − 1.

Proof. The representation N ′′ is easily seen to be nilpotent, thus ON ′′ is
contained in the closed set of nilpotent representations NQ′′(di) in repQ′′(di).
It is known that NQ′′(di) is a complete intersection of codimension di, where
its defining ideal is generated by the (non-leading) coefficients of the char-
acteristic polynomial of Xγ (see [7]). Therefore

dimON ′′ ≤ dimNQ′′(di) = di
2 − di.

Moreover
dim reptrQ′′(di) = dim repQ′′(di)− 1 = di

2 − 1,

thus the claim follows.

Recall that a primitive cycle is an oriented cycle which does not contain
other oriented cycles as proper subpaths.
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Corollary 3.12. The loop γ : i → i is the only primitive cycle in Q,
di = 2 and I(ON ) = (Xγ,1,1 +Xγ,2,2, Xγ,1,1Xγ,2,2 −Xγ,1,2Xγ,2,1).

Proof. Let ω be a primitive cycle in Q. The coefficients of the charac-
teristic polynomial of Xω belong to I(ON ), as ON ⊆ NQ(d). Consequently,
their images in k[reptrQ(d)] belong to (f), i.e., these images are polynomial
multiples of f . On the other hand, they are polynomials of variables Xα,p,q

only, where α is an arbitrary arrow in ω.
Now the above inequalities show that di = 1 or di = 2. If di = 1, then

Nγ = 0, thus γ ∈ Ann(N) and Ann(N) is not admissible, a contradiction.
Hence di = 2. Since the irreducible polynomial

detXγ = −X2
γ,1,1 −Xγ,1,2Xγ,2,1

in k[reptrQ(d)] belongs to (f), we see that, up to a scalar, f = detXγ . The
expression of f involves the variables Xγ,1,1, Xγ,1,2 and Xγ,2,1, thus there
cannot exist a second primitive cycle in Q.

Proposition 3.13. Ann(N) = 〈γ2〉 and Ext1kQ/〈γ2〉(N,N) = 0.

Proof. Clearly 〈γ2〉 ⊆ Ann(N). Let ξ ∈ εb · Ann(N) · εa be a non-
zero linear combination of paths ξl, for a, b ∈ Q0. The zero set of the
polynomials Xξ,u,v for u ≤ db, v ≤ da contains ON , thus in particular
Xξ,1,1 ∈ I(ON ) = (trXγ , detXγ). Since Xξ,1,1 is a linear combination of
the polynomials Xξl,1,1, this implies that γ appears on each path ξl. Then
from the formula for Xξl,1,1 we deduce that the variable Xγ,1,2 or Xγ,2,1 ap-
pears in some term pl of Xξl,1,1, which is also a term of Xξ,1,1. For instance,
in the extreme case ξl = αm . . . α1γ, the variable Xγ,2,1 appears in such a
term of Xξl,1,1.

Since

Xξ,1,1 = (Xγ,1,1 +Xγ,2,2)h+ (Xγ,1,1Xγ,2,2 −Xγ,1,2Xγ,2,1)h
′

for some h, h′ ∈ k[repQ(d)], each term pl must be divided by another vari-
able Xγ,p,q. This can happen only when γ appears on each path ξl at least
twice. Hence ξl ∈ 〈γ2〉 for all l (notice that γ is the only primitive cycle
in Q), and so is ξ.

It is easy to see that the ideal (trXγ , detXγ) in k[repQ(d)] is prime.
Thus the scheme repQ,〈γ2〉(d) is reduced. Hence Ext1kQ/〈γ2〉(N,N) = 0, by
Lemma 2.1.

3.4. The case when Q contains an oriented cycle and no loop.
Finally, we consider the case when the quiver Q contains an oriented cycle
of length at least 2, which is not a power of a loop. In view of Corollary 3.12,
this implies that Q does not contain loops. Hence reptrQ(d) = repQ(d) and
Corollary 3.6 applies.
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Let ω = βn . . . β1 (n ≥ 2) be a primitive cycle in Q.

Lemma 3.14. min{dt(βl) | 1 ≤ l ≤ n} = 1.

Proof. Suppose that dt(βl) ≥ 2 for all l. Since ON ⊆ NQ(d), the co-
efficients of the characteristic polynomial of the square matrix Xω belong
to (F ). By Lemma 3.2, the polynomial

tr(Xω) = Xω,1,1 + · · ·+Xω,r,r

is irreducible, where r = ds(β1). Thus up to a scalar, F = tr(Xω). Conse-
quently, the sum of the principal 2× 2 minors of Xω is a multiple of tr(Xω).
Observe that this sum has the term

h = −(Xβn,1,2Xβn−1,2,2 . . . Xβ2,2,2Xβ1,2,2)(Xβn,2,1Xβn−1,1,1 . . . Xβ2,1,1Xβ1,1,1)

(which is a term of Xω,1,1Xω,2,2−Xω,1,2Xω,2,1). Since it is clear that h cannot
be a term of a multiple of tr(Xω), we get a contradiction.

Replacing ω by one of its cyclic permutations of the form βl−1 . . . β1βn . . .
βl+1βl, we may assume that ds(β1) = 1, so that Xω is a polynomial in
k[repQ(d)]. The oriented cycle ω can be decomposed as a product ωr . . . ω1,
where ωl’s are subpaths of ω satisfying the assumptions of Lemma 3.1, for
1 ≤ l ≤ r. Since Xω = Xωr . . . Xω1 belongs to the prime ideal I(ON ) and
the polynomials Xω1 , . . . , Xωr are irreducible, it follows that up to a scalar,
F = Xωl for some l. Letting ρ = ωl, we obtain I(ON ) = (Xρ).

If ω′ is another primitive cycle inQ which differs from ω and its cyclic per-
mutations, then ω′ must contain ρ as a subpath. Up to a cyclic permutation
we have ω = ηρ and ω′ = η′ρ for subpaths η and η′; thus ds(η) = dt(η) = 1
and ds(η′) = dt(η′) = 1. Then there exist scalars λ, µ, not both zero, such that
λ ·Nη+µ ·Nη′ = 0. Equivalently, we have λ ·Xη+µ ·Xη′ ∈ I(ON ). However,
this is impossible, since the polynomials Xρ and Xη, and Xρ and Xη′ con-
tain no variables in common. Hence ω is the only (up to cyclic permutations)
primitive cycle in Q.

Corollary 3.15. I(ON ) = (Xρ), where ρ : i → j is a subpath of the
only primitive cycle (not being a loop) in Q and di = dj = 1.

Proposition 3.16. The subpath ρ is a relation, Ann(N) = 〈ρ〉 and
Ext1kQ/〈ρ〉(N,N) = 0.

Proof. Apply the final part of the proof of Proposition 3.10.

Proof of Theorem 1.4. We have shown that one of the conditions (1),
(2), (3) is necessary in Corollary 3.7 (for the condition (1)), in Corollary 3.12
and Proposition 3.13 (for the condition (2)) and in Proposition 3.10, Corol-
lary 3.15 and Proposition 3.16 (for the condition (3)).
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Conversely, if the condition (1) is satisfied, then codimrepQ(d)ON = 1. If
the condition (2) holds, then the orbitON is open in the scheme repQ,〈γ2〉(d),
by Lemma 2.1. Hence ON is open in the variety repQ,〈γ2〉(d), which is isomor-
phic to the zero set of the polynomial X2

γ,1,1+Xγ,1,2Xγ,2,1 in the affine space
{W ∈ repQ(d) | tr(Wγ) = 0} and is irreducible. Thus ON = repQ,〈γ2〉(d).
If the condition (3) holds, the orbit ON is open in the variety repQ,〈ρ〉(d).
Hence ON is an irreducible component of repQ,〈ρ〉(d), and this component
is of codimension one in repQ(d).

We see that in all three cases, ON is a hypersurface, and it is singular,
by Theorem 1.2. This finishes the proof of Theorem 1.4.

Acknowledgments. The second author gratefully acknowledges sup-
port from the Research Grant No. N N201 269135 of the Polish Ministry of
Science and Higher Education.

REFERENCES

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of
Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math.
Soc. Student Texts 65, Cambridge Univ. Press, 2006.

[2] L. Avramov, Infinite free resolutions, in: Six Lectures on Commutative Algebra,
Progr. Math. 166, Birkhäuser, 1998, 1–118.

[3] G. Bobiński and G. Zwara, Schubert varieties and representations of Dynkin quivers,
Colloq. Math. 94 (2002), 285–309.

[4] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991),
159–171.

[5] H. Derksen and G. Kemper, Computational Invariant Theory, Encyclopedia Math.
Sci. 130, Springer, 2002.

[6] P. Gabriel, Finite representation type is open, in: Representations of Algebras, Lec-
ture Notes in Math. 488, Springer, 1975, 132–155.

[7] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85
(1963), 327–404.

[8] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Trans. Amer.
Math. Soc. 317 (1990), 585–598.

[9] N. Q. Loc, Closures of orbits of modules that are hypersurfaces, Ph.D. dissertation,
Toruń, 2010, 100 pp. (in Polish).

[10] N. Q. Loc and G. Zwara, Regular orbit closures in module varieties, Osaka J. Math.
44 (2007), 945–954.

[11] C. M. Ringel, The rational invariants of tame quivers, Invent. Math. 58 (1980),
217–239.

[12] A. Schofield and M. Van den Bergh, Semi-invariants of quivers for arbitrary dimen-
sion vectors, Indag. Math. (N.S.) 12 (2001), 125–138.

[13] G. Zwara, Immersions of module varieties, Colloq. Math. 82 (1999), 287–299.
[14] G. Zwara, An orbit closure for a representation of the Kronecker quiver with bad

singularities, Colloq. Math. 97 (2003), 81–86.

http://dx.doi.org/10.4064/cm94-2-10
http://dx.doi.org/10.1016/0021-8693(91)90288-J
http://dx.doi.org/10.2307/2373130
http://dx.doi.org/10.1007/BF01390253
http://dx.doi.org/10.1016/S0019-3577(01)80010-0
http://dx.doi.org/10.4064/cm97-1-8


74 N. Q. LOC AND G. ZWARA

[15] G. Zwara, Singularities of orbit closures in module varieties, in: Representations of
Algebras and Related Topics, A. Skowroński and K. Yamagata (eds.), Eur. Math.
Soc., 2011, 661–725.

Nguyen Quang Loc
Faculty of Mathematics and Computer Science
Hanoi National University of Education
136 Xuan Thuy
Hanoi, Vietnam
E-mail: nqloc2007@gmail.com

Grzegorz Zwara
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: gzwara@mat.umk.pl

Received 4 March 2013;
revised 5 October 2013 (5892)


	1 Introduction and the main results
	2 Representations of quivers and geometric relation of orbit closures
	3 Proof of Theorem 1.4
	3.1 Tangent spaces of orbit closures
	3.2 The case when Q is acyclic
	3.3 The case when Q contains a loop
	3.4 The case when Q contains an oriented cycle and no loop

	REFERENCES

