VOL. 134	2014	NO. 1

COBRAIDED SMASH PRODUCT HOM-HOPF ALGEBRAS

BY
TIANSHUI MA (Xinxiang), HAIYING LI (Xinxiang) and TAO YANG (Nanjing)

Abstract

Let (A, α) and (B, β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products ($A \natural_{R} B, \alpha \otimes \beta$). Moreover, necessary and sufficient conditions for ($A \natural_{R} B, \alpha \otimes \beta$) to be a cobraided Hom-Hopf algebra are given.

1. Introduction. Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras) have recently been intensively investigated (see [1, 3, 5, 6, 11, 12, 13]). Hom-algebras are generalizations of algebras obtained by a twisting map; they have been introduced for the first time in [5]. The associativity is replaced by Hom-associativity; Hom-coassociativity for a Hom-coalgebra can be considered in a similar way. Also definitions and properties of Hombialgebras and Hom-Hopf algebras have been proposed (see [1, 3, 6, 12, 13]).

Caenepeel and Goyvaerts [1] studied the Hom-structures from the point of view of monoidal categories and found that Hom-algebras coincide with algebras in a symmetric monoidal category. Yau [12] defined the notion of cobraided Hom-bialgebras and showed that each cobraided Hom-bialgebra comes with solutions of the operator quantum Hom-Yang-Baxter equations, which are twisted analogues of the operator form of the quantum Yang-Baxter equation. Solutions of the Hom-Yang-Baxter equation can be obtained from comodules of suitable cobraided Hom-bialgebras. In [11], Yau introduced and characterized the concept of module Hom-algebras as a twisted version of usual module algebras.

Let H be a Hopf algebra and A an H-module algebra. Then we can construct a new Hopf algebra, their smash product $A \# H$ (see [7] or [8]). Extended forms of smash product can be found in [2, 4].

Let (H, β) be a Hom-Hopf algebra and (A, α) an (H, β)-module Homalgebra (introduced by Yau [11]). Then it is natural to ask: How to construct the smash product Hom-Hopf algebra and when is it cobraided?

The purpose of this article is to answer the above questions.

[^0]This article is organized as follows. In Section 2, we recall some definitions and results which will be used later. In Section 3, before constructing the smash product Hom-Hopf algebra ($A \natural H, \alpha \otimes \beta$) (Theorem 3.3), we give a more general case, the so-called R-smash product Hom-Hopf algebra $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ (Theorem 3.1). We remark that the smash product Hom-Hopf algebra (A দ $H, \alpha \otimes \beta$) in Theorem 3.3 is different from the one defined by Chen-Wang-Zhang [3], since here the construction of $(A$ দ $H, \alpha \otimes \beta)$ is based on the concept of the module Hom-algebra introduced by Yau [11], which differs from Chen-Wang-Zhang's [3]. Necessary and sufficient conditions for $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ to be a cobraided Hom-Hopf algebra are derived in Section 4 (Theorems 4.8 and 4.9). In the last section, we give a concrete example.
2. Preliminaries. Throughout this paper, we follow the definitions and terminology of [1, 11, 12], with all algebraic systems supposed to be over a field K. Given a K-space M, we write id_{M} for the identity map on M.

We now recall some useful definitions.
Definition 2.1. A Hom-algebra is a quadruple $\left(A, \mu, 1_{A}, \alpha\right)$ (abbr. (A, α)), where A is a K-linear space, $\mu: A \otimes A \rightarrow A$ is a K-linear map, $1_{A} \in A$ and α is an automorphism of A such that

$$
\begin{equation*}
\alpha\left(a a^{\prime}\right)=\alpha(a) \alpha\left(a^{\prime}\right), \quad \alpha\left(1_{A}\right)=1_{A}, \tag{HA1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha(a)\left(a^{\prime} a^{\prime \prime}\right)=\left(a a^{\prime}\right) \alpha\left(a^{\prime \prime}\right), \quad a 1_{A}=1_{A} a=\alpha(a), \tag{HA2}
\end{equation*}
$$

for $a, a^{\prime}, a^{\prime \prime} \in A$. Here we use the notation $\mu\left(a \otimes a^{\prime}\right)=a a^{\prime}$.
Definition 2.2. A Hom-coalgebra is a quadruple $\left(C, \Delta, \varepsilon_{C}, \beta\right)$ (abbr. (C, β)), where C is a K-linear space, $\Delta: C \rightarrow C \otimes C, \varepsilon_{C}: C \rightarrow K$ are K-linear maps, and β is an automorphism of C, such that
$(\mathrm{HC1}) \quad \beta(c)_{1} \otimes \beta(c)_{2}=\beta\left(c_{1}\right) \otimes \beta\left(c_{2}\right), \quad \varepsilon_{C} \circ \beta=\varepsilon_{C}$,
$(\mathrm{HC} 2) \quad \beta\left(c_{1}\right) \otimes c_{21} \otimes c_{22}=c_{11} \otimes c_{12} \otimes \beta\left(c_{2}\right), \quad \varepsilon_{C}\left(c_{1}\right) c_{2}=c_{1} \varepsilon_{C}\left(c_{2}\right)=\beta(c)$,
for $c \in A$. Here we use the notation $\Delta(c)=c_{1} \otimes c_{2}$ (summation implicitly understood).

Remarks. (a) Here we use β instead of β^{-1} in [1].
(b) The first equation in (HC2) is equivalent to

$$
\begin{equation*}
c_{1} \otimes c_{21} \otimes c_{22}=\beta^{-1}\left(c_{11}\right) \otimes c_{12} \otimes \beta\left(c_{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{11} \otimes c_{12} \otimes c_{2}=\beta\left(c_{1}\right) \otimes c_{21} \otimes \beta^{-1}\left(c_{22}\right) \tag{2}
\end{equation*}
$$

respectively.
(c) By (1), (2) and (HC2), we have

$$
\begin{equation*}
c_{11} \otimes c_{12} \otimes c_{21} \otimes c_{22}=\beta\left(c_{1}\right) \otimes \beta^{-1}\left(c_{211}\right) \otimes \beta^{-1}\left(c_{212}\right) \otimes c_{22} \tag{3}
\end{equation*}
$$

Definition 2.3. A Hom-bialgebra is a sextuple $\left(H, \mu, 1_{H}, \Delta, \varepsilon, \gamma\right)$ (abbr. (H, γ)), where $\left(H, \mu, 1_{H}, \gamma\right)$ is a Hom-algebra and $(H, \Delta, \varepsilon, \gamma)$ is a Homcoalgebra, such that Δ and ε are morphisms of Hom-algebras, i.e.

$$
\begin{aligned}
\Delta\left(h h^{\prime}\right) & =\Delta(h) \Delta\left(h^{\prime}\right), & \Delta\left(1_{H}\right) & =1_{H} \otimes 1_{H} \\
\varepsilon\left(h h^{\prime}\right) & =\varepsilon(h) \varepsilon\left(h^{\prime}\right), & \varepsilon\left(1_{H}\right) & =1
\end{aligned}
$$

Furthermore, if there exists a linear map $S: H \rightarrow H$ such that

$$
S\left(h_{1}\right) h_{2}=h_{1} S\left(h_{2}\right)=\varepsilon(h) 1_{H} \quad \text { and } \quad S(\gamma(h))=\gamma(S(h))
$$

then we call $\left(H, \mu, 1_{H}, \Delta, \varepsilon, \gamma, S\right)$ (abbr. (H, γ, S)) a Hom-Hopf algebra.
Let (H, γ) and $\left(H^{\prime}, \gamma^{\prime}\right)$ be two Hom-bialgebras. A linear map $f: H \rightarrow H^{\prime}$ is called a Hom-bialgebra map if $f \circ \gamma=\gamma^{\prime} \circ f$ and at the same time f is a bialgebra map in the usual sense.

Definition 2.4. Let (A, β) be a Hom-algebra. A left (A, β)-Hom-module is a triple $(M, \triangleright, \alpha)$, where M is a linear space, $\triangleright: A \otimes M \rightarrow M$ is a linear map, and α is an automorphism of M, such that

$$
\begin{align*}
& \alpha(a \triangleright m)=\beta(a) \triangleright \alpha(m) \tag{HM1}\\
& \beta(a) \triangleright\left(a^{\prime} \triangleright m\right)=\left(a a^{\prime}\right) \triangleright \alpha(m), \quad 1_{A} \triangleright m=\alpha(m) \tag{HM2}
\end{align*}
$$

for $a, a^{\prime} \in A$ and $m \in M$.
Remarks. (a) It is obvious that (A, μ, β) is a left (A, β)-Hom-module.
(b) When $\beta=\operatorname{id}_{A}$ and $\alpha=\operatorname{id}_{M}$, a left (A, β)-Hom-module is the usual left A-module.

Definition 2.5. Let (H, β) be a Hom-bialgebra and (A, α) a Homalgebra. If $(A, \triangleright, \alpha)$ is a left (H, β)-Hom-module and for all $h \in H$ and $a, a^{\prime} \in A$,

$$
\begin{align*}
& \beta^{2}(h) \triangleright\left(a a^{\prime}\right)=\left(h_{1} \triangleright a\right)\left(h_{2} \triangleright a^{\prime}\right), \tag{HMA1}\\
& h \triangleright 1_{A}=\varepsilon_{H}(h) 1_{A} \tag{HMA2}
\end{align*}
$$

then $(A, \triangleright, \alpha)$ is called an (H, β)-module Hom-algebra.
Remarks. (a) It is obvious that $\left(H, \mu_{H}, \beta\right)$ is an (H, β)-module Homalgebra.
(b) When $\alpha=\mathrm{id}_{A}$ and $\beta=\mathrm{id}_{H}$, an (H, β)-module Hom-algebra is the usual H-module algebra.
(c) Similar to the case of Hopf algebras, Yau [13] showed that (HMA1) is satisfied if and only if μ_{A} is a morphism of H-modules for suitable H-module structures on $A \otimes A$ and A, respectively.
(d) If $\beta^{2}=$ id in (HMA1), then we can get (6.1) of [3]. So the two definitions of module Hom-algebra are different, which leads to the difference of smash product Hom-Hopf algebra in our Theorem 3.3 and in Definition 6.2 of 3].

Definition 2.6. A cobraided Hom-Hopf algebra is an octuple ($H, \mu, 1_{H}$, $\Delta, \varepsilon, S, \alpha, \sigma)$ (abbr. (H, α, σ)) in which ($H, \mu, 1_{H}, \Delta, \varepsilon, S, \alpha$) is a Hom-Hopf algebra and σ is a bilinear form on H (i.e., $\sigma \in \operatorname{Hom}(H \otimes H, K)$), satisfying the following axioms (for all $h, g, l \in H$):

$$
\begin{equation*}
\sigma\left(h, 1_{H}\right)=\sigma\left(1_{H}, h\right)=\varepsilon(h), \tag{CHA1}
\end{equation*}
$$

(CHA2)

$$
\sigma(h g, \alpha(l))=\sigma\left(\alpha(h), l_{1}\right) \sigma\left(\alpha(g), l_{2}\right),
$$

(CHA3)

$$
\sigma(\alpha(h), g l)=\sigma\left(h_{1}, \alpha(l)\right) \sigma\left(h_{2}, \alpha(g)\right),
$$

(CHA4)

$$
\sigma\left(h_{1}, g_{1}\right) h_{2} g_{2}=g_{1} h_{1} \sigma\left(h_{2}, g_{2}\right),
$$

(CHA5)

$$
\sigma(\alpha(h), \alpha(g))=\sigma(h, g) .
$$

In this case, σ is called the Hom-cobraiding form.
Remarks. (a) When $\alpha=\operatorname{id}_{H}$, a cobraided Hom-Hopf algebra is exactly the usual cobraided (or coquasitriangular) Hopf algebra.
(b) The above definition is slightly different from the definitions in [12] or [13]. Here we replace the Hom-bialgebra by Hom-Hopf algebra and also add two conditions, (CHA1) and (CHA5). Similar to the Hopf algebra setting, the Hom-cobraiding form σ in Definition 2.6 is invertible.
(c) By Yau's results [12], each cobraided Hom-Hopf algebra comes with solutions of the operator quantum Hom-Yang-Baxter equations, which are twisted analogues of the operator form of the quantum Yang-Baxter equation.

Next, we generalize the concept of skew pairing to the Hom-setting.
Definition 2.7. Let $\left(A, \alpha, S_{A}\right)$ and (B, β, S_{B}) be two Hom-Hopf algebras, and $\vartheta \in \operatorname{Hom}(A \otimes B, K)$ a bilinear form. A Hom-skew pairing is a triple (A, B, ϑ) such that

$$
\begin{equation*}
\vartheta\left(a, 1_{B}\right)=\varepsilon_{A}(a), \quad \vartheta\left(1_{A}, b\right)=\varepsilon_{B}(b), \tag{SP1}
\end{equation*}
$$

$$
\begin{equation*}
\vartheta\left(a a^{\prime}, \beta(b)\right)=\vartheta\left(\alpha(a), b_{1}\right) \vartheta\left(\alpha\left(a^{\prime}\right), b_{2}\right), \tag{SP2}
\end{equation*}
$$

$$
\begin{equation*}
\vartheta\left(\alpha(a), b b^{\prime}\right)=\vartheta\left(a_{1}, \beta\left(b^{\prime}\right)\right) \vartheta\left(a_{2}, \beta(b)\right), \tag{SP3}
\end{equation*}
$$

for $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$.
Remarks. (a) When $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{B}$, we get the usual skew pairing.
(b) If (H, α, σ) is a cobraided Hom-Hopf algebra, then (H, H, σ) is a Hom-skew pairing.
(c) ϑ is (convolution) invertible with $\vartheta^{-1}(a, b)=\vartheta\left(S_{A}(a), b\right)$.
3. Smash product Hom-Hopf algebra. In this section, we introduce a class of Hom-Hopf algebras: R-smash products $A \natural_{R} B$, generalizing the R-smash product studied in [2]. As a special case, we obtain the Hom-smash
product based on the structure of module Hom-algebra introduced by Yau [11], [13].

Let A and B be two linear spaces, and $R: B \otimes A \rightarrow A \otimes B$ a linear map. In the following, we write $R(b \otimes a)=\sum a_{R} \otimes b_{R}$ for all $a \in A$ and $b \in B$, and the notations $\sum a_{r} \otimes b_{r}, \sum a_{R^{\prime}} \otimes b_{R^{\prime}}$ are the copies of $\sum a_{R} \otimes b_{R}$. As usual, we omit the summation sign " \sum ".

Theorem 3.1. Let $\left(A, \mu_{A}, 1_{A}, \alpha\right)$ and $\left(B, \mu_{B}, 1_{B}, \beta\right)$ be two Homalgebras, and $R: B \otimes A \rightarrow A \otimes B$ a linear map such that for all $a \in A, b \in B$,

$$
\begin{equation*}
\alpha(a)_{R} \otimes \beta(b)_{R}=\alpha\left(a_{R}\right) \otimes \beta\left(b_{R}\right) \tag{4}
\end{equation*}
$$

Then $\left(A \natural_{R} B, \alpha \otimes \beta\right)\left(A \natural_{R} B=A \otimes B\right.$ as a linear space $)$ with multiplication

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a \alpha^{-1}\left(a^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{R}\right) b^{\prime}
$$

where $a, a^{\prime} \in A, b, b^{\prime} \in B$, and with unit $1_{A} \otimes 1_{B}$ is a Hom-algebra if and only if the following conditions hold:

$$
\begin{equation*}
a_{R} \otimes 1_{B R}=\alpha(a) \otimes 1_{B}, \quad 1_{A R} \otimes b_{R}=1_{A} \otimes \beta(b) \tag{C1}
\end{equation*}
$$

$$
\begin{align*}
& \alpha(a)_{R} \otimes\left(b b^{\prime}\right)_{R}=a_{R r} \otimes \beta^{-1}\left(\beta(b)_{r}\right) b_{R}^{\prime} \tag{C2}\\
& \alpha\left(\left(a a^{\prime}\right)_{R}\right) \otimes \beta(b)_{R}=\alpha\left(a_{R}\right) \alpha\left(a^{\prime}\right)_{r} \otimes b_{R r} \tag{C3}
\end{align*}
$$

where $a, a^{\prime} \in A, b, b^{\prime} \in B$.
We call this Hom-algebra the R-smash product Hom-algebra and denote it by $\left(A \natural_{R} B, \alpha \otimes \beta\right)$.

Proof. (\Leftarrow) For all $a, a^{\prime}, a^{\prime \prime} \in A$ and, $b, b^{\prime}, b^{\prime \prime} \in B$, firstly, we prove that (HA1) holds. In fact,

$$
\begin{aligned}
(\alpha \otimes \beta)\left((a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)\right) & =\alpha\left(a \alpha^{-1}\left(a^{\prime}\right)_{R}\right) \otimes \underline{\beta\left(\beta^{-1}\left(b_{R}\right) b^{\prime}\right)} \\
& \stackrel{(\text { HA1 }}{=} \alpha(a) \underline{\alpha\left(\alpha^{-1}\left(a^{\prime}\right)_{R}\right)} \otimes \underline{b_{R}} \beta\left(b^{\prime}\right) \\
& \stackrel{(4)}{=} \alpha(a) a_{R}^{\prime} \otimes \beta^{-1}\left(\beta(b)_{R}\right) \beta\left(b^{\prime}\right) \\
& =((\alpha \otimes \beta)(a \otimes b))\left((\alpha \otimes \beta)\left(a^{\prime} \otimes b^{\prime}\right)\right)
\end{aligned}
$$

and

$$
(\alpha \otimes \beta)\left(1_{A} \otimes 1_{B}\right)=\alpha\left(1_{A}\right) \otimes \beta\left(1_{B}\right) \stackrel{(\mathrm{HA} 1)}{=} 1_{A} \otimes 1_{B}
$$

Secondly, we prove (HA2):

$$
\begin{aligned}
(\alpha(a) \otimes \beta(b))(& \left.\left(a^{\prime} \otimes b^{\prime}\right)\left(a^{\prime \prime} \otimes b^{\prime \prime}\right)\right) \\
& =\alpha(a) \underline{\alpha^{-1}\left(a^{\prime} \alpha^{-1}\left(a^{\prime \prime}\right)_{R}\right)_{r}} \otimes \beta^{-1}\left(\underline{\beta(b)_{r}}\right)\left(\beta^{-1}\left(b_{R}^{\prime}\right) b^{\prime \prime}\right) \\
& \stackrel{(\mathrm{C} 3)}{=} \alpha(a) \alpha^{-1}\left(\alpha\left(\alpha^{-1}\left(a_{r}^{\prime}\right)\right) \alpha^{-1}\left(a^{\prime \prime}\right)_{R R^{\prime}}\right) \otimes \beta^{-1}\left(b_{r R^{\prime}}\right)\left(\beta^{-1}\left(b_{R}^{\prime}\right) b^{\prime \prime}\right) \\
& =\underline{\alpha(a)\left(\alpha^{-1}\left(a_{r}^{\prime}\right) \alpha^{-1}\left(\alpha^{-1}\left(a^{\prime \prime}\right)_{R R^{\prime}}\right)\right) \otimes \beta^{-1}\left(b_{r R^{\prime}}\right)\left(\beta^{-1}\left(b_{R}^{\prime}\right) b^{\prime \prime}\right)}
\end{aligned}
$$

$$
\begin{array}{ll}
\stackrel{(\mathrm{HA} 2)}{=} & \left(a \alpha^{-1}\left(a_{r}^{\prime}\right)\right) \alpha^{-1}\left(a^{\prime \prime}\right)_{R R^{\prime}} \otimes \underline{\beta^{-1}\left(b_{r R^{\prime}}\right)\left(\beta^{-1}\left(b_{R}^{\prime}\right) b^{\prime \prime}\right)} \\
\stackrel{(\mathrm{HA} 2)}{=} & \left(a \alpha^{-1}\left(a_{r}^{\prime}\right)\right) \alpha^{-1}\left(a^{\prime \prime}\right)_{R R^{\prime}} \otimes \beta^{-1}\left(\underline{\left.\beta^{-1}\left(b_{r R^{\prime}}\right) b_{R}^{\prime}\right) \beta\left(b^{\prime \prime}\right)}\right. \\
\stackrel{(\mathrm{C} 2)}{=} & \left(a \alpha^{-1}\left(a^{\prime}\right)_{r}\right) a_{R}^{\prime \prime} \otimes \beta^{-1}\left(\left(\beta^{-1}\left(b_{r}\right) b^{\prime}\right)_{R}\right) \beta\left(b^{\prime \prime}\right) \\
= & \left((a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)\right)\left(\alpha\left(a^{\prime \prime}\right) \otimes \beta\left(b^{\prime \prime}\right)\right)
\end{array}
$$

and

$$
\begin{aligned}
(a \otimes b)\left(1_{A} \otimes 1_{B}\right) & =a \alpha^{-1}\left(1_{A}\right)_{R} \otimes \beta^{-1}\left(b_{R}\right) 1_{B} \\
& \stackrel{(\mathrm{HA} 1)}{=} a 1_{A R} \otimes \beta^{-1}\left(b_{R}\right) 1_{B} \\
& \stackrel{\text { (С1) }}{=} a 1_{A} \otimes b 1_{B} \\
& \stackrel{\text { HA2) }}{=} \alpha(a) \otimes \beta(b) .
\end{aligned}
$$

Similarly, $\left(1_{A} \otimes 1_{B}\right)(a \otimes b)=\alpha(a) \otimes \beta(b)$ holds.
$(\Rightarrow) \mathrm{By}(\mathrm{HA} 2)$, we have

$$
\begin{gather*}
1_{A} \alpha^{-1}(a)_{R} \otimes \beta^{-1}\left(1_{B R}\right) b=\alpha(a) \otimes \beta(b), \tag{5}\\
a \alpha^{-1}\left(1_{A}\right) \otimes \beta^{-1}\left(b_{R}\right) 1_{B}=\alpha(a) \otimes \beta(b) \tag{6}
\end{gather*}
$$

and

$$
\begin{align*}
\alpha(a) \alpha^{-1}\left(a^{\prime} \alpha^{-1}\left(a^{\prime \prime}\right)_{R}\right)_{r} & \otimes \beta^{-1}\left(\beta(b)_{r}\right)\left(\beta^{-1}\left(b_{R}^{\prime}\right) b^{\prime \prime}\right) \tag{7}\\
& =\left(a \alpha^{-1}\left(a^{\prime}\right)_{r}\right) a_{R}^{\prime \prime} \otimes \beta^{-1}\left(\left(\beta^{-1}\left(b_{r}\right) b^{\prime}\right)_{R}\right) \beta\left(b^{\prime \prime}\right)
\end{align*}
$$

Letting $b=1_{B}$ and $a=1$ in (5) and (6), respectively, we get (C1).
Letting $a=a^{\prime}=1_{A}$ and $b^{\prime \prime}=1_{B}$ in (7) and using (C1), we obtain (C2).
Likewise, (C3) can be obtained by letting $a=1_{A}$ and $b^{\prime}=b^{\prime \prime}=1_{B}$ in (7).

When $\alpha=\mathrm{id}_{A}$ and $\beta=\mathrm{id}_{B}$, we have
ExAMPLE 3.2 ([2]). Let $\left(A, \mu_{A}, 1_{A}\right)$ and $\left(B, \mu_{B}, 1_{B}\right)$ be two algebras, and $R: B \otimes A \rightarrow A \otimes B$ a linear map. Then $A \#_{R} B\left(A \#_{R} B=A \otimes B\right.$ as linear spaces) with multiplication

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a_{R}^{\prime} \otimes b_{R} b^{\prime}
$$

where $a, a^{\prime} \in A, b, b^{\prime} \in B$, and unit $1_{A} \otimes 1_{B}$ becomes an algebra if and only if the following conditions hold:

$$
\begin{aligned}
& a_{R} \otimes 1_{B R}=a \otimes 1_{B}, \quad 1_{A R} \otimes b_{R}=1_{A} \otimes b, \\
& a_{R} \otimes\left(b b^{\prime}\right)_{R}=a_{R r} \otimes b_{r} b_{R}^{\prime} \\
& \left(a a^{\prime}\right)_{R} \otimes b_{R}=a_{R} a_{r}^{\prime} \otimes b_{R r}
\end{aligned}
$$

where $a, a^{\prime} \in A, b, b^{\prime} \in B$.

Theorem 3.3. Let (H, β) be a Hom-bialgebra and $(A, \triangleright, \alpha)$ an (H, β) module Hom-algebra. Then $(A$ Ł $H, \alpha \otimes \beta)(A \natural H=A \otimes H$ as a linear space $)$ with multiplication

$$
(a \otimes h)\left(a^{\prime} \otimes h^{\prime}\right)=a\left(h_{1} \triangleright \alpha^{-1}\left(a^{\prime}\right)\right) \otimes \beta^{-1}\left(h_{2}\right) h^{\prime},
$$

where $a, a^{\prime} \in A, h, h^{\prime} \in H$, and unit $1_{A} \otimes 1_{H}$ is a Hom-algebra; we call it the smash product Hom-algebra and denote it by (A Ł $H, \alpha \otimes \beta$).

Proof. Define $R: H \otimes A \rightarrow A \otimes H$ by

$$
R(h \otimes a)=h_{1} \triangleright a \otimes h_{2}, \quad \forall a \in A, h \in H .
$$

Firstly, for all $a \in A$ and $h \in H$,

$$
\begin{aligned}
& \alpha(a)_{R} \otimes \beta(h)_{R}=\frac{\beta(h)_{1} \triangleright \alpha(a)}{\left({ }_{(\text {HC1) }}^{=}\right.} \underline{\beta(h)_{2}} \\
& \stackrel{\beta\left(h_{1}\right) \triangleright \alpha(a)}{(\text { HM1) }}=\beta\left(h_{2}\right) \\
& \stackrel{=}{=} \alpha\left(h_{1} \triangleright a\right) \otimes \beta\left(h_{2}\right)=\alpha\left(a_{R}\right) \otimes \beta\left(h_{R}\right),
\end{aligned}
$$

so (4) holds.
Secondly, we have

$$
\begin{aligned}
& a_{R} \otimes 1_{H R}=1 \triangleright a \otimes 1_{H} \stackrel{(\mathrm{HM} 2)}{=} \alpha(a) \otimes 1_{H}, \\
& 1_{A R} \otimes h_{R}=h_{1} \triangleright 1_{A} \otimes h_{2} \stackrel{(\mathrm{HMA} 2)}{=} 1_{A} \otimes \varepsilon\left(h_{1}\right) h_{2} \stackrel{(\mathrm{HC} 2)}{=} 1_{A} \otimes \beta(h) .
\end{aligned}
$$

Thirdly, we verify (C2) and (C3): for all $a, a^{\prime} \in A$ and $h, h^{\prime} \in B$,

$$
\begin{aligned}
\alpha(a)_{R} \otimes\left(h h^{\prime}\right)_{R} & =\left(h h^{\prime}\right)_{1} \triangleright \alpha(a) \otimes\left(h h^{\prime}\right)_{2} \\
& =\left(\underline{\left(h_{1} h_{1}^{\prime}\right) \triangleright \alpha(a) \otimes h_{2} h_{2}^{\prime}}\right. \\
& \stackrel{(\text { HM2 }}{=} \underline{\beta\left(h_{1}\right) \triangleright\left(h_{1}^{\prime} \triangleright a\right) \otimes \underline{h_{2}} h_{2}^{\prime}} \\
& \stackrel{(\mathrm{HC1} 1)}{=} \beta(h)_{1} \triangleright\left(h_{1}^{\prime} \triangleright a\right) \otimes \beta^{-1}\left(\beta(h)_{2}\right) h_{2}^{\prime} \\
& =a_{R r} \otimes \beta^{-1}\left(\beta(h)_{r}\right) h_{R}^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha\left(\left(a a^{\prime}\right)_{R}\right) \otimes \beta(h)_{R}=\alpha\left(\underline{\beta(h)_{1}} \triangleright\left(a a^{\prime}\right)\right) \otimes \underline{\beta(h)_{2}} \\
& \stackrel{(\mathrm{HC} 1)}{=} \alpha\left(\beta\left(h_{1}\right) \triangleright\left(a a^{\prime}\right)\right) \otimes \beta\left(h_{2}\right) \\
& \stackrel{(\mathrm{HM} 1)}{=} \beta^{2}\left(h_{1}\right) \triangleright \underline{\alpha\left(a a^{\prime}\right)} \otimes \beta\left(h_{2}\right) \\
& \stackrel{(\text { HA1 })}{=} \underline{\beta^{2}\left(h_{1}\right) \triangleright\left(\alpha(a) \alpha\left(a^{\prime}\right)\right) \otimes \beta\left(h_{2}\right)} \\
& \stackrel{(\text { HMA1) }}{=}\left(\underline{h_{11}} \triangleright \alpha(a)\right)\left(\underline{h_{12}} \triangleright \alpha\left(a^{\prime}\right)\right) \otimes \underline{\beta\left(h_{2}\right)} \\
& \stackrel{\left(\mathrm{HC}^{2} 2\right)}{=} \underline{\left(\beta\left(h_{1}\right) \triangleright \alpha(a)\right)}\left(h_{21} \triangleright \alpha\left(a^{\prime}\right)\right) \otimes h_{22} \\
& \stackrel{(\mathrm{HM} 1)}{=} \alpha\left(h_{1} \triangleright a\right)\left(h_{21} \triangleright \alpha\left(a^{\prime}\right)\right) \otimes h_{22} \\
& =\alpha\left(a_{R}\right) \alpha\left(a^{\prime}\right)_{r} \otimes h_{R r} .
\end{aligned}
$$

Remarks. (a) The smash product Hom-Hopf algebra $(A \natural H, \alpha \otimes \beta)$ is different from the one defined by Chen-Wang-Zhang in [3], since here the construction of $(A \natural B, \alpha \otimes \beta)$ is based on the concept of the module Hom-algebra introduced by Yau [11, while two of conditions (6.1), (6.2) in the module Hom-algebra of [3] are as in the case of a Hopf algebra.
(b) When $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{H}$, we get the usual smash product algebra $A \# H$ (see [7, 8]).

Lemma 3.4. Let (C, α) and (D, β) be two Hom-coalgebras. Then $(C \otimes D$, $\alpha \otimes \beta$) is a Hom-coalgebra with the following comultiplication and counit:

$$
\Delta(c \otimes d)=c_{1} \otimes d_{1} \otimes c_{2} \otimes d_{2}, \quad \varepsilon(c \otimes d)=\varepsilon_{C}(c) \varepsilon_{D}(d)
$$

for $c \in C$ and $d \in D$. We call it the tensor product Hom-coalgebra.

Proof. Straightforward.

Theorem 3.5. Let $\left(A, \alpha, S_{A}\right)$ and $\left(B, \beta, S_{B}\right)$ be two Hom-Hopf algebras, and $R: B \otimes A \rightarrow A \otimes B$ a linear map. Then the R-smash product Hom-algebra $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ equipped with the tensor product Hom-coalgebra structure becomes a Hom-bialgebra if and only if R is a coalgebra map, i.e.

$$
\begin{aligned}
a_{R 1} \otimes b_{R 1} \otimes a_{R 2} \otimes b_{R 2} & =a_{1 R} \otimes b_{1 R} \otimes a_{2 r} \otimes b_{2 r} \\
\varepsilon_{A}\left(a_{R}\right) \varepsilon_{B}\left(b_{R}\right) & =\varepsilon_{A}(a) \varepsilon_{B}(b)
\end{aligned}
$$

for $a \in A$ and $b \in B$.
Furthermore, the R-smash product Hom-bialgebra $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ is a Hom-Hopf algebra with antipode \bar{S} defined by

$$
\bar{S}(a \otimes b)=\alpha^{-1}\left(S_{A}(a)\right)_{R} \otimes \beta^{-1}\left(S_{B}(b)_{R}\right)
$$

Proof. We only prove that \bar{S} is an antipode of $\left(A \natural_{R} B, \alpha \otimes \beta\right)$. The rest is straightforward by direct computation. For all $a \in A$ and $b \in B$,

$$
\begin{aligned}
\left(\bar{S} * \operatorname{id}_{A \natural_{R} B}\right)(a \otimes b) & =\left(\alpha^{-1}\left(S_{A}\left(a_{1}\right)\right)_{R} \otimes \beta^{-1}\left(S_{B}\left(b_{1}\right)_{R}\right)\right)\left(a_{2} \otimes b_{2}\right) \\
& \left.=\alpha^{-1}\left(S_{A}\left(a_{1}\right)\right)_{R} \underline{\alpha^{-1}\left(a_{2}\right)_{r}} \otimes \beta^{-1} \underline{\left(\beta^{-1}\left(S_{B}\left(b_{1}\right)_{R}\right)_{r}\right.}\right) b_{2} \\
& \stackrel{(4)}{=} \alpha^{-1}\left(S_{A}\left(a_{1}\right)\right)_{R} \alpha^{-1}\left(a_{2 r}\right) \\
\beta^{-2} & \left.\beta_{B}\left(b_{1}\right)_{R r}\right) b_{2} \\
& \stackrel{(\mathrm{HA1})}{=} \alpha^{-1}\left(\underline{\alpha\left(\alpha^{-1}\left(S_{A}\left(a_{1}\right)\right)_{R}\right) a_{2 r}}\right) \otimes \beta^{-2}\left(\underline{S_{B}\left(b_{1}\right)_{R r}}\right) b_{2} \\
& \stackrel{(\mathrm{C} 3)}{=} \alpha^{-1}\left(S_{A}\left(a_{1}\right) a_{2}\right)_{R} \otimes \beta^{-2}\left(\beta\left(S_{B}\left(b_{1}\right)\right)_{R}\right) b_{2} \\
& =1_{A R} \varepsilon_{A}(a) \otimes \beta^{-2}\left(\underline{\left(\beta\left(S_{B}\left(b_{1}\right)\right)_{R}\right)} b_{2}\right. \\
& \stackrel{(\mathrm{C} 1)}{=} 1_{A} \varepsilon_{A}(a) \otimes S_{B}\left(b_{1}\right) b_{2} \\
& =1_{A} \otimes 1_{B} \varepsilon_{A}(a) \varepsilon_{B}(b)=1_{A} \otimes 1_{B} \bar{\varepsilon}(a \otimes b)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\operatorname{id}_{A \natural_{R} B} * \bar{S}\right)(a \otimes b)=\left(a_{1} \otimes b_{1}\right)\left(\alpha^{-1}\left(S_{A}\left(a_{2}\right)\right)_{R} \otimes \beta^{-1}\left(S_{B}\left(b_{2}\right)_{R}\right)\right) \\
&= a_{1} \underline{\alpha^{-1}\left(\alpha^{-1}\left(S_{A}\left(a_{2}\right)\right)_{R}\right)_{r} \otimes \beta^{-1}\left(b_{1 r}\right) \underline{\beta^{-1}\left(S_{B}\left(b_{2}\right)_{R}\right)}} \\
& \stackrel{(4)}{=} a_{1} \alpha^{-2}\left(S_{A}\left(a_{2}\right)\right)_{R r} \otimes \beta^{-1}\left(b_{1 r}\right) \beta^{-1}\left(S_{B}\left(b_{2}\right)\right)_{R} \\
&= a_{1} \underline{\alpha^{-1}\left(\alpha^{-1}\left(S_{A}\left(a_{2}\right)\right)\right)_{R r}} \\
& \otimes \underline{\beta^{-1}\left(\beta\left(\beta^{-1}\left(b_{1}\right)\right)_{r}\right) \beta^{-1}\left(S_{B}\left(b_{2}\right)\right)_{R}} \\
& \stackrel{(\mathrm{C} 2)}{=} a_{1} \alpha^{-1}\left(S_{A}\left(a_{2}\right)\right)_{R} \otimes \beta^{-1}\left(b_{1} S_{B}\left(b_{2}\right)\right) \\
&= a_{1} \underline{\alpha^{-1}\left(S_{A}\left(a_{2}\right)\right)_{R} \otimes \underline{1_{B R}} \varepsilon_{B}(b)} \\
& \stackrel{(\mathrm{C} 1)}{=} a_{1} S_{A}\left(a_{2}\right) \otimes 1_{B} \varepsilon_{B}(b) \\
&= 1_{A} \otimes 1_{B} \varepsilon_{A}(a) \varepsilon_{B}(b)=1_{A} \otimes 1_{B} \bar{\varepsilon}(a \otimes b),
\end{aligned}
$$

while

$$
\begin{aligned}
\bar{S}(\alpha(a) \otimes \beta(b)) & =\alpha^{-1}\left(S_{A}(\alpha(a))\right)_{R} \otimes \beta^{-1}\left(S_{B}(\beta(b))_{R}\right) \\
& =\alpha^{-1}\left(\alpha\left(S_{A}(a)\right)\right)_{R} \otimes \beta^{-1}\left(\beta\left(S_{B}(b)\right)_{R}\right) \\
& =S_{A}(a)_{R} \otimes \beta^{-1}\left(\beta\left(S_{B}(b)\right)_{R}\right) \\
& \stackrel{(4)}{=} \alpha\left(\alpha^{-1}\left(S_{A}(a)\right)_{R}\right) \otimes S_{B}(b)_{R}=(\alpha \otimes \beta)(\bar{S}(a \otimes b)),
\end{aligned}
$$

finishing the proof.
When $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{B}$, we have
Example 3.6 ([2). Let A and B be two Hopf algebras. Then the twisted tensor product algebra $A \#_{R} B$ equipped with the usual tensor product coalgebra structure is a bialgebra if and only if R is a coalgebra map.

Furthermore, the twisted tensor product bialgebra $A \#_{R} B$ is a Hopf algebra with antipode $S_{A \#_{R} B}$ defined by

$$
S_{A \#_{R} B}(a \otimes b)=S_{A}(a)_{R} \otimes S_{B}(b)_{R} .
$$

Theorem 3.7. Let (H, β) be a Hom-Hopf algebra and $(A, \triangleright, \alpha)$ an (H, β)-module Hom-algebra. Then the smash product Hom-algebra $(A \natural H$, $\alpha \otimes \beta)$ endowed with the tensor product Hom-coalgebra structure becomes a Hom-bialgebra if and only if

$$
\begin{equation*}
(h \triangleright a)_{1} \otimes(h \triangleright a)_{2}=\left(h_{1} \triangleright a_{1}\right) \otimes\left(h_{2} \triangleright a_{2}\right), \quad \varepsilon_{A}(h \triangleright a)=\varepsilon_{A}(a) \varepsilon_{H}(h) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{1} \otimes h_{2} \triangleright a=h_{2} \otimes h_{1} \triangleright a . \tag{9}
\end{equation*}
$$

Moreover, $(A$ Ł $H, \alpha \otimes \beta)$ is a Hom-Hopf algebra with antipode

$$
S_{A \sharp H}(a \otimes h)=S_{H}(h)_{1} \triangleright \alpha^{-1}\left(S_{A}(a)\right) \otimes \beta^{-1}\left(S_{H}(h)_{2}\right) .
$$

Proof. Let $R(h \otimes a)=h_{1} \triangleright a \otimes h_{2}$ for $a \in A$ and $h \in H$ in Theorem 3.5. Then R is a coalgebra map if and only if

$$
\begin{equation*}
\left(h_{1} \triangleright a\right)_{1} \otimes h_{21} \otimes\left(h_{1} \triangleright a\right)_{2} \otimes h_{22}=h_{11} \triangleright a_{1} \otimes h_{12} \otimes h_{21} \triangleright a_{2} \otimes h_{22} \tag{10}
\end{equation*}
$$ and

$$
\varepsilon_{A}(h \triangleright a)=\varepsilon_{A}(a) \varepsilon_{H}(h) .
$$

Moreover by (3) and (HC1), it is easy to deduce that the first equation in (8) and (9) are equivalent to (10).

Remarks. (a) Let (H, β) be a Hom-Hopf algebra. Assume that ($A, \triangleright, \alpha$) is a Hom-coalgebra and an (H, β)-Hom-module satisfying (8). Then we call $(A, \triangleright, \alpha)$ an (H, β)-module Hom-coalgebra.

When $\alpha=\operatorname{id}_{A}$ and $\beta=\operatorname{id}_{H}$, then an (H, β)-module Hom-coalgebra is exactly a module coalgebra in the usual sense (see [7).
(b) Theorem 3.7 is the Hom-version of the usual smash product Hopf algebra (see [7]).
4. Cobraided Hom-Hopf algebra. In this section, necessary and sufficient conditions for a smash product Hom-Hopf algebra to be cobraided are given.

Proposition 4.1. Let $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ be a R-smash product Hom-Hopf algebra. Define

$$
i: A \rightarrow A \natural_{R} B, \quad i(a)=a \otimes 1_{B}, \quad j: B \rightarrow A \natural_{R} B, \quad j(b)=1_{A} \otimes b,
$$

for all $a \in A$ and $b \in B$. Then i and j are both Hom-bialgebra maps.
Proof. Straightforward.
Let $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ be an R-smash product Hom-Hopf algebra, and $\sigma: A \natural_{R} B \otimes A \natural_{R} B \rightarrow K$ a bilinear form. Define

$$
\begin{array}{ll}
\tau: A \otimes A \rightarrow K, & \tau\left(a, a^{\prime}\right)=\sigma(i \otimes i)\left(a \otimes a^{\prime}\right), \\
v: B \otimes B \rightarrow K, & v\left(b, b^{\prime}\right)=\sigma(j \otimes j)\left(b \otimes b^{\prime}\right), \\
\varphi: A \otimes B \rightarrow K, & \varphi(a, b)=\sigma(i \otimes j)(a \otimes b), \\
\psi: B \otimes A \rightarrow K, & \psi(b, a)=\sigma(j \otimes i)(b \otimes a),
\end{array}
$$

for $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$.
The following two lemmas are obvious.
Lemma 4.2. Let $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ be an R-smash product Hom-Hopf algebra. If σ satisfies (CHA1), then for $a \in A$ and $b \in B$,

$$
\begin{aligned}
\tau\left(1_{A}, a\right) & =\tau\left(a, 1_{A}\right)=\varepsilon_{A}(a) \\
v\left(b, 1_{B}\right) & =v\left(1_{B}, b\right)=\varepsilon_{B}(b) \\
\varphi\left(1_{A}, b\right) & =\varepsilon_{B}(b), \quad \varphi\left(a, 1_{B}\right)=\varepsilon_{A}(a) \\
\psi\left(1_{B}, a\right) & =\varepsilon_{A}(a), \quad \psi\left(b, 1_{A}\right)=\varepsilon_{B}(b)
\end{aligned}
$$

Lemma 4.3. Let $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ be an R-smash product Hom-Hopf algebra. If σ satisfies (CHA5) for $\alpha \otimes \beta$, then, for $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{aligned}
\tau\left(\alpha(a), \alpha\left(a^{\prime}\right)\right) & =\tau\left(a, a^{\prime}\right) \\
v\left(\beta(b), \beta\left(b^{\prime}\right)\right) & =v\left(b, b^{\prime}\right) \\
\varphi(\alpha(a), \beta(b)) & =\varphi(a, b) \\
\psi(\beta(b), \alpha(a)) & =\psi(b, a)
\end{aligned}
$$

Lemma 4.4. Let $\left(A \natural_{R} B, \alpha \otimes \beta, \sigma\right)$ be a cobraided R-smash product HomHopf algebra. Then, for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{equation*}
\sigma\left(\alpha(a) \otimes \beta(b), \alpha\left(a^{\prime}\right) \otimes \beta\left(b^{\prime}\right)\right)=\varphi\left(a_{1}, b_{1}^{\prime}\right) \tau\left(a_{2}, a_{1}^{\prime}\right) v\left(b_{1}, b_{2}^{\prime}\right) \psi\left(b_{2}, a_{2}^{\prime}\right) \tag{11}
\end{equation*}
$$

Proof. By (CHA2) and (CHA3), for all $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime} \in A$ and $b, b^{\prime}, b^{\prime \prime}, b^{\prime \prime \prime}$ $\in B$, we have

$$
\left.\begin{array}{rl}
\sigma\left(a \alpha^{-1}\left(a^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{R}\right) b^{\prime}\right. & , a^{\prime \prime}
\end{array} \alpha^{-1}\left(a^{\prime \prime \prime}\right)_{r} \otimes \beta^{-1}\left(b_{r}^{\prime \prime}\right) b^{\prime \prime \prime}\right) . ~=~ \sigma\left(a_{1} \otimes b_{1}, a_{1}^{\prime \prime \prime} \otimes b_{1}^{\prime \prime \prime}\right) \sigma\left(a_{2} \otimes b_{2}, a_{1}^{\prime \prime} \otimes b_{1}^{\prime \prime}\right) .
$$

Letting $a^{\prime}=a^{\prime \prime \prime}=1_{A}$ and $b=b^{\prime \prime}=1_{B}$ in the above equation, we get (11).
LEmma 4.5. Let $\left(A \natural_{R} B, \alpha \otimes \beta, \sigma\right)$ be a cobraided R-smash product HomHopf algebra. Then, for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{equation*}
\varphi\left(\alpha\left(\alpha^{-1}(a)_{R}\right), b_{1}\right) v\left(b_{R}^{\prime}, b_{2}\right)=v\left(\beta\left(b^{\prime}\right), b_{1}\right) \varphi\left(\alpha(a), b_{2}\right) \tag{D1}
\end{equation*}
$$

$$
\begin{equation*}
\tau\left(\alpha\left(\alpha^{-1}(a)_{R}\right), a_{1}^{\prime}\right) \psi\left(b_{R}, a_{2}^{\prime}\right)=\psi\left(\beta(b), a_{1}^{\prime}\right) \tau\left(\alpha(a), a_{2}^{\prime}\right) \tag{D2}
\end{equation*}
$$

(D4) $\varphi\left(a_{1}, b_{R}\right) \tau\left(a_{2}, \alpha\left(\alpha^{-1}\left(a^{\prime}\right)_{R}\right)\right)=\tau\left(a_{1}, \alpha\left(a^{\prime}\right) \varphi\left(a_{2}, \beta(b)\right)\right.$,
(D5) $\psi\left(b_{1}, a_{1}\right)\left(\alpha\left(\alpha^{-1}\left(a_{2}\right)_{R}\right) \otimes b_{2 R}\right)=\left(\alpha\left(a_{1}\right) \otimes \beta\left(b_{1}\right)\right) \psi\left(b_{2}, a_{2}\right)$,
(D6) $\quad \varphi\left(a_{1}, b_{1}\right)\left(\alpha\left(a_{2}\right) \otimes \beta\left(b_{2}\right)\right)=\left(\alpha\left(\alpha^{-1}\left(a_{1}\right)_{R}\right) \otimes b_{1 R}\right) \varphi\left(a_{2}, b_{2}\right)$.
Proof. By (CHA2), for all $a, a^{\prime}, a^{\prime \prime} \in A$ and $b, b^{\prime}, b^{\prime \prime} \in B$, we can obtain

$$
\begin{align*}
& \sigma\left(a \alpha^{-1}\left(a^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{R}\right) b^{\prime}, \alpha\left(a^{\prime \prime}\right) \otimes \beta\left(b^{\prime \prime}\right)\right) \tag{12}\\
& \quad=\sigma\left(\alpha(a) \otimes \beta(b), a_{1}^{\prime \prime} \otimes b_{1}^{\prime \prime}\right) \sigma\left(\alpha\left(a^{\prime}\right) \otimes \beta\left(b^{\prime}\right), a_{2}^{\prime \prime} \otimes b_{2}^{\prime \prime}\right)
\end{align*}
$$

Letting $a=1_{A}$ and $b^{\prime}=b^{\prime \prime}=1_{B}$ in (12) yields (D1) by (11). Similarly, setting $a=a^{\prime \prime}=1_{A}$ and $b^{\prime}=1_{B}$ in (12), we get (D2) by (11).

By (CHA3), for all $a, a^{\prime}, a^{\prime \prime} \in A$ and $b, b^{\prime}, b^{\prime \prime} \in B$, we have

$$
\begin{align*}
& \sigma\left(\alpha(a) \otimes \beta(b), a^{\prime} \alpha^{-1}\left(a^{\prime \prime}\right)_{R} \otimes \beta^{-1}\left(b_{R}^{\prime}\right) b^{\prime \prime}\right) \tag{13}\\
& \quad=\sigma\left(a_{1} \otimes b_{1}, \alpha\left(a^{\prime \prime}\right) \otimes \beta\left(b^{\prime \prime}\right)\right) \sigma\left(a_{2} \otimes b_{2}, \alpha\left(a^{\prime}\right) \otimes \beta\left(b^{\prime}\right)\right)
\end{align*}
$$

(D3) can be obtained by letting $a=a^{\prime}=1_{A}$ and $b^{\prime \prime}=1_{B}$ in (13) and by (11). Likewise, one gets (D4) by putting $a^{\prime}=1_{A}$ and $b=b^{\prime \prime}=1_{B}$ in (13) and using (11).

By (CHA4), for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, we have

$$
\begin{align*}
\sigma\left(a_{1} \otimes b_{1}, a_{1}^{\prime} \otimes b_{1}^{\prime}\right) & \left(a_{2} \alpha^{-1}\left(a_{2}^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{2 R}\right) b_{2}^{\prime}\right) \tag{14}\\
& =\left(a_{1}^{\prime} \alpha^{-1}\left(a_{1}\right)_{R} \otimes \beta^{-1}\left(b_{1 R}^{\prime}\right) b_{1}\right) \sigma\left(a_{2} \otimes b_{2}, a_{2}^{\prime} \otimes b_{2}^{\prime}\right)
\end{align*}
$$

Letting $a=1_{A}$ and $b^{\prime}=1_{B}$ in (14), we get (D5); and (D6) is derived by letting $a^{\prime}=1_{A}$ and $b=1_{B}$ in (14).

Lemma 4.6. Given the cobraiding σ on an R-smash product Hom-Hopf algebra $\left(A \natural_{R} B, \alpha \otimes \beta\right)$, consider the induced maps τ, v, φ and ψ. Then
(1) (A, α, τ) and (B, β, v) are cobraided Hom-Hopf algebras,
(2) (A, B, φ) and (B, A, ψ) are Hom-skew pairings.

Proof. (1) Setting $b=b^{\prime}=b^{\prime \prime}=1_{B}$ in (12) and (13), we get (CHA2) and (CHA3) for τ, respectively. (CHA4) can be derived by letting $b=b^{\prime}=1_{B}$ in (14); then by Lemmas 4.2 and $4.3,(A, \alpha, \tau)$ is a cobraided Hom-Hopf algebra. Similarly, we can prove that (B, β, v) is a cobraided Hom-Hopf algebra.
(2) Letting $a^{\prime \prime}=1_{A}$ and $b=b^{\prime}=1_{B}$ in (12), and $a^{\prime}=a^{\prime \prime}=1_{A}$ and $b=1_{B}$ in (13), one can obtain (SP2) and (SP3) for φ, respectively. Then (A, B, φ) is a Hom-skew pairing by Lemmas 4.2 and 4.3. The rest of (2) can be demonstrated similarly.

Lemma 4.7. Let $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ be an R-smash product Hom-Hopf algebra. Suppose there exist forms $\tau: A \otimes A \rightarrow K, \varphi: A \otimes B \rightarrow K$, $\psi: B \otimes A \rightarrow K$, and $v: B \otimes B \rightarrow K$ such that
(1) (A, α, τ) and (B, β, v) are cobraided Hom-Hopf algebras,
(2) (A, B, φ) and (B, A, ψ) are Hom-skew pairings,
(3) the conditions (D1)-(D6) in Lemma 4.5 hold.

Then $\left(A \natural_{R} B, \alpha \otimes \beta, \sigma\right)$ is a cobraided Hom-Hopf algebra with the cobraided structure given by

$$
\sigma\left(\alpha(a) \otimes \beta(b), \alpha\left(a^{\prime}\right) \otimes \beta\left(b^{\prime}\right)\right)=\varphi\left(a_{1}, b_{1}^{\prime}\right) \tau\left(a_{2}, a_{1}^{\prime}\right) v\left(b_{1}, b_{2}^{\prime}\right) \psi\left(b_{2}, a_{2}^{\prime}\right)
$$

for $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$.
Proof. It is obvious that σ satisfies (CHA1) and (CHA5).

Next, we show that (CHA2) holds for σ. For all $a, a^{\prime}, a^{\prime \prime} \in A$ and $b, b^{\prime}, b^{\prime \prime}$ $\in B$,

$$
\begin{aligned}
& \sigma\left((a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right), \alpha\left(a^{\prime \prime}\right) \otimes \beta\left(b^{\prime \prime}\right)\right) \\
& =\sigma\left(a \alpha^{-1}\left(a^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{R}\right) b^{\prime}, \alpha\left(a^{\prime \prime}\right) \otimes \beta\left(b^{\prime \prime}\right)\right) \\
& =\varphi\left(\underline{\alpha^{-1}\left(a \alpha^{-1}\left(a^{\prime}\right)_{R}\right)_{1}}, b_{1}^{\prime \prime}\right) \tau\left(\underline{\alpha^{-1}\left(a \alpha^{-1}\left(a^{\prime}\right)_{R}\right)_{2}}, a_{1}^{\prime \prime}\right) \\
& \times v\left(\underline{\beta^{-1}\left(\beta^{-1}\left(b_{R}\right) b^{\prime}\right)_{1}}, b_{2}^{\prime \prime}\right) \psi\left(\underline{\beta^{-1}\left(\beta^{-1}\left(b_{R}\right) b^{\prime}\right)_{2}}, a_{2}^{\prime \prime}\right) \\
& \stackrel{(\mathrm{HA} 1),(\mathrm{HC} 1)}{=} \varphi\left(\alpha^{-1}\left(a_{1}\right) \alpha^{-1}\left(\alpha^{-1}\left(a^{\prime}\right)_{R 1}\right), b_{1}^{\prime \prime}\right) \tau\left(\alpha^{-1}\left(a_{2}\right) \alpha^{-1}\left(\alpha^{-1}\left(a^{\prime}\right)_{R 2}\right), a_{1}^{\prime \prime}\right) \\
& \times v\left(\beta^{-2}\left(b_{R 1}\right) \beta^{-1}\left(b_{1}^{\prime}\right), b_{2}^{\prime \prime}\right) \psi\left(\beta^{-2}\left(b_{R 2}\right) \beta^{-1}\left(b_{2}^{\prime}\right), a_{2}^{\prime \prime}\right) \\
& \stackrel{(\mathrm{CHA} 2),(\mathrm{SP} 2)}{=} \varphi\left(a_{1}, \beta^{-1}\left(b_{11}^{\prime \prime}\right)\right) \varphi\left(\underline{\alpha^{-1}\left(a^{\prime}\right)_{R 1}}, \beta^{-1}\left(b_{12}^{\prime \prime}\right)\right) \tau\left(a_{2}, \alpha^{-1}\left(a_{11}^{\prime \prime}\right)\right) \\
& \times \tau\left(\underline{\alpha^{-1}\left(a^{\prime}\right)_{R 2}}, \alpha^{-1}\left(a_{12}^{\prime \prime}\right)\right) v\left(\beta^{-1}\left(\underline{b_{R 1}}\right), \beta^{-1}\left(b_{21}^{\prime \prime}\right)\right) v\left(b_{1}^{\prime}, \beta^{-1}\left(b_{22}^{\prime \prime}\right)\right) \\
& \times \psi\left(\beta^{-1}\left(\underline{b_{R 2}}\right), \alpha^{-1}\left(a_{21}^{\prime \prime}\right)\right) \psi\left(b_{2}^{\prime}, \alpha^{-1}\left(a_{22}^{\prime \prime}\right)\right) \\
& =\varphi\left(a_{1}, \underline{\beta^{-1}\left(b_{11}^{\prime \prime}\right)}\right) \varphi\left(\alpha^{-1}\left(a^{\prime}\right)_{1 R}, \underline{\beta^{-1}\left(b_{12}^{\prime \prime}\right)}\right) \tau\left(a_{2}, \underline{\alpha^{-1}\left(a_{11}^{\prime \prime}\right)}\right) \\
& \times \tau\left(\alpha^{-1}\left(a^{\prime}\right)_{2 r}, \underline{\alpha^{-1}\left(a_{12}^{\prime \prime}\right)}\right) \times v\left(\beta^{-1}\left(b_{1 R}\right), \underline{\beta^{-1}\left(b_{21}^{\prime \prime}\right)}\right) v\left(b_{1}^{\prime}, \underline{\beta^{-1}\left(b_{22}^{\prime \prime}\right)}\right) \\
& \times \psi\left(\beta^{-1}\left(b_{2 r}\right), \underline{\alpha^{-1}\left(a_{21}^{\prime \prime}\right)}\right) \psi\left(b_{2}^{\prime}, \underline{\alpha^{-1}}\left(a_{22}^{\prime \prime}\right)\right) \\
& \stackrel{(3)}{=} \varphi\left(a_{1}, b_{1}^{\prime \prime}\right) \varphi\left(\underline{\alpha^{-1}\left(a^{\prime}\right)_{1 R}}, \underline{\beta^{-2}\left(b_{211}^{\prime \prime}\right)}\right) \tau\left(a_{2}, a_{1}^{\prime \prime}\right) \\
& \times \tau\left(\underline{\alpha^{-1}\left(a^{\prime}\right)_{2 r}}, \underline{\alpha^{-2}\left(a_{211}^{\prime \prime}\right)}\right) v\left(\underline{\beta^{-1}\left(b_{1 R}\right)}, \underline{\beta^{-2}\left(b_{212}^{\prime \prime}\right)}\right) v\left(b_{1}^{\prime}, \beta^{-1}\left(b_{22}^{\prime \prime}\right)\right) \\
& \times \psi\left(\underline{\beta^{-1}\left(b_{2 r}\right)}, \underline{\alpha^{-2}\left(a_{212}^{\prime \prime}\right)}\right) \psi\left(b_{2}^{\prime}, \alpha^{-1}\left(a_{22}^{\prime \prime}\right)\right) \\
& \stackrel{(4),(\mathrm{HC1})}{=} \varphi\left(a_{1}, b_{1}^{\prime \prime}\right) \underline{\varphi\left(\alpha\left(\alpha^{-1}\left(\alpha^{-1}\left(a^{\prime}\right)_{1}\right)_{R}\right), \beta^{-2}\left(b_{21}^{\prime \prime}\right)_{1}\right)} \tau\left(a_{2}, a_{1}^{\prime \prime}\right) \\
& \times \underline{\tau\left(\alpha\left(\alpha^{-1}\left(\alpha^{-1}\left(a^{\prime}\right)_{2}\right)_{r}\right), \alpha^{-2}\left(a_{21}^{\prime \prime}\right)_{1}\right)} \underline{v\left(\beta^{-1}\left(b_{1}\right)_{R}, \beta^{-2}\left(b_{21}^{\prime \prime}\right)_{2}\right)} \\
& \times v\left(b_{1}^{\prime}, \beta^{-1}\left(b_{22}^{\prime \prime}\right)\right) \psi\left(\beta^{-1}\left(b_{2}\right)_{r}, \alpha^{-2}\left(a_{21}^{\prime \prime}\right)_{2}\right) \psi\left(b_{2}^{\prime}, \alpha^{-1}\left(a_{22}^{\prime \prime}\right)\right) \\
& \stackrel{(\mathrm{D} 1),(\mathrm{D} 2)}{=} \varphi\left(a_{1}, \underline{b_{1}^{\prime \prime}}\right) \varphi\left(a_{1}^{\prime}, \underline{\beta^{-2}\left(b_{21}^{\prime \prime}\right)_{2}}\right) \tau\left(a_{2}, \underline{a_{1}^{\prime \prime}}\right) \tau\left(a_{2}^{\prime}, \underline{\alpha^{-2}\left(a_{21}^{\prime \prime}\right)_{2}}\right) \\
& \times v\left(b_{1}, \underline{\beta^{-2}\left(b_{21}^{\prime \prime}\right)_{1}}\right) v\left(b_{1}^{\prime}, \underline{\beta^{-1}\left(b_{22}^{\prime \prime}\right)}\right) \psi\left(b_{2}, \underline{\alpha^{-2}\left(a_{21}^{\prime \prime}\right)_{1}}\right) \psi\left(b_{2}^{\prime}, \underline{\alpha^{-1}\left(a_{22}^{\prime \prime}\right)}\right) \\
& \stackrel{(3)}{=} \varphi\left(a_{1}, \underline{\beta^{-1}\left(b_{11}^{\prime \prime}\right)}\right) \varphi\left(a_{1}^{\prime}, \underline{\beta^{-1}\left(b_{21}^{\prime \prime}\right)}\right) \tau\left(a_{2}, \underline{\alpha^{-1}\left(a_{11}^{\prime \prime}\right)}\right) \tau\left(a_{2}^{\prime}, \underline{\alpha^{-1}\left(a_{21}^{\prime \prime}\right)}\right) \\
& \times v\left(b_{1}, \underline{\beta^{-1}\left(b_{12}^{\prime \prime}\right)}\right) v\left(b_{1}^{\prime}, \underline{\beta^{-1}\left(b_{22}^{\prime \prime}\right)}\right) \psi\left(b_{2}, \underline{\alpha^{-1}\left(a_{12}^{\prime \prime}\right)}\right) \psi\left(b_{2}^{\prime}, \underline{\alpha^{-1}\left(a_{22}^{\prime \prime}\right)}\right) \\
& \stackrel{(\mathrm{HC} 1)}{=} \varphi\left(a_{1}, \beta^{-1}\left(b_{1}^{\prime \prime}\right)_{1}\right) \tau\left(a_{2}, \alpha^{-1}\left(a_{1}^{\prime \prime}\right)_{1}\right) v\left(b_{1}^{\prime}, \beta^{-1}\left(b_{2}^{\prime \prime}\right)_{2}\right) \psi\left(b_{2}^{\prime}, \alpha^{-1}\left(a_{2}^{\prime \prime}\right)_{2}\right) \\
& \times \varphi\left(a_{1}^{\prime}, \beta^{-1}\left(b_{2}^{\prime \prime}\right)_{1}\right) \tau\left(a_{2}^{\prime}, \alpha^{-1}\left(a_{2}^{\prime \prime}\right)_{1}\right) v\left(b_{1}, \beta^{-1}\left(b_{1}^{\prime \prime}\right)_{2}\right) \psi\left(b_{2}, \alpha^{-1}\left(a_{1}^{\prime \prime}\right)_{2}\right) \\
& =\sigma\left(\alpha(a) \otimes \beta(b), a_{1}^{\prime \prime} \otimes b_{1}^{\prime \prime}\right) \sigma\left(\alpha\left(a^{\prime}\right) \otimes \beta\left(b^{\prime}\right), a_{2}^{\prime \prime} \otimes b_{2}^{\prime \prime}\right) .
\end{aligned}
$$

(CHA3) for σ can be proved by a similar method.

Now we check (CHA4): for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$,

$$
\begin{aligned}
& \sigma\left(a_{1} \otimes b_{1}, a_{1}^{\prime} \otimes b_{1}^{\prime}\right)\left(a_{2} \otimes b_{2}\right)\left(a_{2}^{\prime} \otimes b_{2}^{\prime}\right) \\
& =u\left(\alpha^{-1}\left(a_{1}\right)_{1}, \beta^{-1}\left(b_{1}^{\prime}\right)_{1}\right) \tau\left(\alpha^{-1}\left(a_{1}\right)_{2}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{1}\right) v\left(\beta^{-1}\left(b_{1}\right)_{1}, \beta^{-1}\left(b_{1}^{\prime}\right)_{2}\right) \\
& \times \psi\left(\beta^{-1}\left(b_{1}\right)_{2}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{2}\right)\left(a_{2} \alpha^{-1}\left(a_{2}^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{2 R}\right) b_{2}^{\prime}\right) \\
& \stackrel{(\mathrm{HC} 1)}{=} \varphi\left(\alpha^{-1}\left(a_{11}\right), \beta^{-1}\left(b_{11}^{\prime}\right)\right) \tau\left(\alpha^{-1}\left(a_{12}\right), \alpha^{-1}\left(a_{11}^{\prime}\right)\right) v\left(\beta^{-1}\left(b_{11}\right), \beta^{-1}\left(b_{12}^{\prime}\right)\right) \\
& \times \psi\left(\beta^{-1}\left(b_{12}\right), \alpha^{-1}\left(a_{12}^{\prime}\right)\right)\left(a_{2} \alpha^{-1}\left(a_{2}^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{2 R}\right) b_{2}^{\prime}\right) \\
& \times \psi\left(\beta^{-1}\left(b_{1}\right)_{2}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{2}\right)\left(a_{2} \alpha^{-1}\left(a_{2}^{\prime}\right)_{R} \otimes \beta^{-1}\left(b_{2 R}\right) b_{2}^{\prime}\right) \\
& \stackrel{(2)}{=} \varphi\left(a_{1}, b_{1}^{\prime}\right) \tau\left(\alpha^{-1}\left(a_{21}\right), a_{1}^{\prime}\right) v\left(b_{1}, \beta^{-1}\left(b_{21}^{\prime}\right)\right) \psi\left(\beta^{-1}\left(b_{21}\right), \alpha^{-1}\left(a_{21}^{\prime}\right)\right) \\
& \times\left(\alpha^{-1}\left(a_{22}\right) \alpha^{-2}\left(a_{22}^{\prime}\right)_{R} \otimes \beta^{-1}\left(\beta^{-1}\left(b_{22}\right)_{R}\right) \beta^{-1}\left(b_{22}^{\prime}\right)\right) \\
& \stackrel{(\mathrm{HC} 1)}{=} \varphi\left(a_{1}, b_{1}^{\prime}\right) \tau\left(\alpha^{-1}\left(a_{2}\right)_{1}, a_{1}^{\prime}\right) v\left(b_{1}, \beta^{-1}\left(b_{2}^{\prime}\right)_{1}\right) \underline{\psi\left(\beta^{-1}\left(b_{2}\right)_{1}, \alpha^{-1}\left(a_{2}^{\prime}\right)_{1}\right)} \\
& \times\left(\alpha^{-1}\left(a_{2}\right)_{2} \underline{\alpha^{-1}\left(\alpha^{-1}\left(a_{2}^{\prime}\right)_{2}\right)_{R}} \otimes \underline{\beta^{-1}\left(\beta^{-1}\left(b_{2}\right)_{2 R}\right)} \beta^{-1}\left(b_{2}^{\prime}\right)_{2}\right) \\
& \stackrel{(\mathrm{D} 5)}{=} \varphi\left(a_{1}, b_{1}^{\prime}\right) \tau\left(\alpha^{-1}\left(a_{2}\right)_{1}, a_{1}^{\prime}\right) v\left(b_{1}, \beta^{-1}\left(b_{2}^{\prime}\right)_{1}\right) \psi\left(\beta^{-1}\left(b_{2}\right)_{2}, \alpha^{-1}\left(a_{2}^{\prime}\right)_{2}\right) \\
& \times\left(\alpha^{-1}\left(a_{2}\right)_{2} \alpha^{-1}\left(a_{2}^{\prime}\right)_{1} \otimes \beta^{-1}\left(b_{2}\right)_{1} \beta^{-1}\left(b_{2}^{\prime}\right)_{2}\right) \\
& \stackrel{(1),(\mathrm{HC} 1)}{=} \varphi\left(a_{1}, b_{1}^{\prime}\right) \underline{\tau\left(\alpha^{-1}\left(a_{2}\right)_{1}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{1}\right)} \underline{v\left(\beta^{-1}\left(b_{1}\right)_{1}, \beta^{-1}\left(b_{2}^{\prime}\right)_{1}\right)} \psi\left(b_{2}, a_{2}^{\prime}\right) \\
& \times\left(\underline{\alpha^{-1}}\left(a_{2}\right)_{2} \alpha^{-1}\left(a_{1}^{\prime}\right)_{2} \otimes \underline{\left.\beta^{-1}\left(b_{1}\right)_{2} \beta^{-1}\left(b_{2}^{\prime}\right)_{2}\right)}\right. \\
& \stackrel{(\mathrm{CHA} 4)}{=} u\left(a_{1}, b_{1}^{\prime}\right) \tau\left(\alpha^{-1}\left(a_{2}\right)_{2}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{2}\right) v\left(\beta^{-1}\left(b_{1}\right)_{2}, \beta^{-1}\left(b_{2}^{\prime}\right)_{2}\right) \psi\left(b_{2}, a_{2}^{\prime}\right) \\
& \times\left(\alpha^{-1}\left(a_{1}^{\prime}\right)_{1} \alpha^{-1}\left(a_{2}\right)_{1} \otimes \beta^{-1}\left(b_{2}^{\prime}\right)_{1} \beta^{-1}\left(b_{1}\right)_{1}\right) \\
& \text { (1), (HC1) } \\
& \underline{\varphi\left(\alpha^{-1}\left(a_{1}\right)_{1}, \beta^{-1}\left(b_{1}^{\prime}\right)_{1}\right)} \tau\left(a_{2}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{2}\right) v\left(\beta^{-1}\left(b_{1}\right)_{2}, b_{2}^{\prime}\right) \psi\left(b_{2}, a_{2}^{\prime}\right) \\
& \times\left(\alpha^{-1}\left(a_{1}^{\prime}\right)_{1} \underline{\alpha^{-1}\left(a_{1}\right)_{2}} \otimes \underline{\beta}^{-1}\left(b_{1}^{\prime}\right)_{2} \beta^{-1}\left(b_{1}\right)_{1}\right) \\
& \stackrel{(\mathrm{D} 6)}{=} \varphi\left(\alpha^{-1}\left(a_{1}\right)_{2}, \beta^{-1}\left(b_{1}^{\prime}\right)_{2}\right) \tau\left(a_{2}, \alpha^{-1}\left(a_{1}^{\prime}\right)_{2}\right) v\left(\beta^{-1}\left(b_{1}\right)_{2}, b_{2}^{\prime}\right) \psi\left(b_{2}, a_{2}^{\prime}\right) \\
& \times\left(\alpha^{-1}\left(a_{1}^{\prime}\right)_{1} \alpha^{-1}\left(\alpha^{-1}\left(a_{1}\right)_{1}\right)_{R} \otimes \beta^{-1}\left(\beta^{-1}\left(b_{1}^{\prime}\right)_{1 R}\right) \beta^{-1}\left(b_{1}\right)_{1}\right) \\
& \stackrel{(2),(3)}{=}\left(a_{1}^{\prime} \alpha^{-1}\left(a_{1}\right)_{R} \otimes \beta^{-1}\left(b_{1 R}^{\prime}\right) b_{1}\right) \varphi\left(\alpha^{-1}\left(a_{2}\right)_{1}, \beta^{-1}\left(b_{1}^{\prime}\right)_{2}\right) \\
& \times \tau\left(\alpha^{-1}\left(a_{2}\right)_{2}, \alpha^{-1}\left(a_{2}^{\prime}\right)_{1}\right) v\left(\beta^{-1}\left(b_{2}\right)_{1}, \beta^{-1}\left(b_{2}^{\prime}\right)_{2}\right) \psi\left(\beta^{-1}\left(b_{2}\right)_{2}, \alpha^{-1}\left(a_{2}^{\prime}\right)_{2}\right) \\
& =\left(a_{1}^{\prime} \otimes b_{1}^{\prime}\right)\left(a_{1} \otimes b_{1}\right) \sigma\left(a_{2} \otimes b_{2}, a_{2}^{\prime} \otimes b_{2}^{\prime}\right) .
\end{aligned}
$$

Therefore, $\left(A \natural_{R} B, \alpha \otimes \beta, \sigma\right)$ is a cobraided Hom-Hopf algebra.
Lemmas 4.2-4.7 imply
Theorem 4.8. An R-smash product Hom-Hopf algebra $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ is cobraided if and only if there exist forms $\tau: A \otimes A \rightarrow K, \varphi: A \otimes$ $B \rightarrow K, \psi: B \otimes A \rightarrow K$, and $v: B \otimes B \rightarrow K$ such that (A, α, τ) and
(B, β, v) are cobraided Hom-Hopf algebras, (A, B, φ) and (B, A, ψ) are Homskew pairings, and the conditions (D1)-(D6) of Lemma 4.5 hold. Moreover, the cobraided structure σ on $\left(A \natural_{R} B, \alpha \otimes \beta\right)$ has the decomposition

$$
\sigma\left(\alpha(a) \otimes \beta(b), \alpha\left(a^{\prime}\right) \otimes \beta\left(b^{\prime}\right)\right)=\varphi\left(a_{1}, b_{1}^{\prime}\right) \tau\left(a_{2}, a_{1}^{\prime}\right) v\left(b_{1}, b_{2}^{\prime}\right) \psi\left(b_{2}, a_{2}^{\prime}\right)
$$

Theorem 4.9. A smash product Hom-Hopf algebra $(A \natural H, \alpha \otimes \beta)$ is cobraided if and only if there exist forms $\tau: A \otimes A \rightarrow K, \varphi: A \otimes H \rightarrow K$, $\psi: H \otimes A \rightarrow K$, and $v: H \otimes H \rightarrow K$ such that (A, α, τ) and (H, β, v) are cobraided Hom-Hopf algebras, (A, H, φ) and (H, A, ψ) are Hom-skew pairings, and the conditions (D1) $-(\mathrm{D} 6)^{\prime}$ below hold: for all $a, a^{\prime} \in A$ and $h, h^{\prime} \in B$,
(D1)
$\varphi\left(\beta\left(h_{1}^{\prime}\right) \triangleright a, h_{1}\right) v\left(h_{2}^{\prime}, h_{2}\right)=v\left(\beta\left(h^{\prime}\right), h_{1}\right) \varphi\left(\alpha(a), h_{2}\right)$,
$(\mathrm{D} 2)^{\prime} \quad \tau\left(\beta\left(h_{1}\right) \triangleright a, a_{1}^{\prime}\right) \psi\left(h_{2}, a_{2}^{\prime}\right)=\psi\left(\beta(h), a_{1}^{\prime}\right) \tau\left(\alpha(a), a_{2}^{\prime}\right)$,
$(\mathrm{D} 3)^{\prime} \quad v\left(h_{1}, h_{2}^{\prime}\right) \psi\left(h_{2}, \beta\left(h_{1}^{\prime}\right) \triangleright a\right)=\psi\left(h_{1}, \alpha(a) v\left(h_{2}, \beta\left(h^{\prime}\right)\right)\right.$,
$(\mathrm{D} 4)^{\prime} \quad \varphi\left(a_{1}, h_{2}\right) \tau\left(a_{2}, \beta\left(h_{1}\right) \triangleright a^{\prime}\right)=\tau\left(a_{1}, \alpha\left(a^{\prime}\right) \varphi\left(a_{2}, \beta(h)\right)\right.$,
$(\mathrm{D} 5)^{\prime} \quad \psi\left(h_{1}, a_{1}\right)\left(\beta\left(h_{21}\right) \triangleright a_{2} \otimes h_{22}\right)=\left(\alpha\left(a_{1}\right) \otimes \beta\left(h_{1}\right)\right) \psi\left(h_{2}, a_{2}\right)$,
$(\mathrm{D} 6)^{\prime} \quad \varphi\left(a_{1}, h_{1}\right)\left(\alpha\left(a_{2}\right) \otimes \beta\left(h_{2}\right)\right)=\left(\beta\left(h_{11}\right) \triangleright a_{1} \otimes h_{12}\right) \varphi\left(a_{2}, h_{2}\right)$.
Moreover, the cobraided structure σ^{\prime} on $(A \natural H, \alpha \otimes \beta)$ has the decomposition
$\sigma^{\prime}\left(\alpha(a) \otimes \beta(h), \alpha\left(a^{\prime}\right) \otimes \beta\left(h^{\prime}\right)\right)=\varphi\left(a_{1}, h_{1}^{\prime}\right) \tau\left(a_{2}, a_{1}^{\prime}\right) v\left(h_{1}, h_{2}^{\prime}\right) \psi\left(h_{2}, a_{2}^{\prime}\right)$.
Proof. Let $R(h \otimes a)=h_{1} \triangleright a \otimes h_{2}$ for $a \in A$ and $h \in H$ in Theorem 4.8.
5. Applications. In this section, we apply the main results of Sections 3 and 4 to a concrete example.

The following result is clear.
Lemma 5.1. Let $K \mathbb{Z}_{2}=K\{1, a\}$ be a Hopf group algebra (see [9]). Then $\left(K \mathbb{Z}_{2}, \mathrm{id}_{K \mathbb{Z}_{2}}, v\right)$ is a cobraided Hom-Hopf algebra, where v is given by

v	1	a
1	1	1
a	1	-1

Let

$$
T_{2,-1}=K\left\{1, g, x, g x \mid g^{2}=1, x^{2}=0, x g=-g x\right\}
$$

be Taft's Hopf algebra (see [10]); its coalgebra structure and antipode are given by

$$
\begin{aligned}
\Delta(g)=g \otimes g, & \Delta(x)=x \otimes g+1 \otimes x, \quad \Delta(g x)=g x \otimes 1+g \otimes g x \\
& \varepsilon(g)=1, \quad \varepsilon(x)=0, \quad \varepsilon(g x)=0
\end{aligned}
$$

and

$$
S(g)=g, \quad S(x)=g x, \quad S(g x)=-x .
$$

Define a linear map $\alpha: T_{2,-1} \rightarrow T_{2,-1}$ by

$$
\alpha(1)=1, \quad \alpha(g)=g, \quad \alpha(x)=k x, \quad \alpha(g x)=k g x
$$

where $0 \neq k \in K$. Then α is an automorphism of Hopf algebras.
So we get a Hom-Hopf algebra

$$
H_{\alpha}=\left(T_{2,-1}, \alpha \circ \mu_{T_{2,-1}}, 1_{T_{2,-1}}, \Delta_{T_{2,-1}} \circ \alpha, \varepsilon_{T_{2,-1}}, \alpha\right)
$$

(see [6).
Lemma 5.2. Let H_{α} be the Hom-Hopf algebra defined above. Then $\left(H_{\alpha}, \alpha, \tau\right)$ is a cobraided Hom-Hopf algebra, where τ is given by

τ	1	g	x	$g x$
1	1	1	0	0
g	1	-1	0	0
x	0	0	0	0
$g x$	0	0	0	0

Proof. A straightforward but tedious computation.
Theorem 5.3. Let $K \mathbb{Z}_{2}$ be the Hopf group algebra and H_{α} the HomHopf algebra defined above. Define a module action $\triangleright: K \mathbb{Z}_{2} \otimes H_{\alpha} \rightarrow H_{\alpha}$ by

$$
\begin{aligned}
1_{K \mathbb{Z}_{2}} \triangleright 1_{H_{\alpha}} & =1_{H_{\alpha}}, & a \triangleright 1_{H_{\alpha}} & =1_{H_{\alpha}}, \\
1_{K \mathbb{Z}_{2}} \triangleright g & =g, & a \triangleright g & =g, \\
1_{K \mathbb{Z}_{2}} \triangleright x & =k x, & a \triangleright x & =-k x, \\
1_{K \mathbb{Z}_{2}} \triangleright g x & =k g x, & a \triangleright g x & =-k g x,
\end{aligned}
$$

Then by a routine computation we find that H_{α} is a $K \mathbb{Z}_{2}$-module Homalgebra. Therefore, by Theorem 3.3, $\left(H_{\alpha} \natural K \mathbb{Z}_{2}, \alpha \otimes \operatorname{id}_{K \mathbb{Z}_{2}}\right)$ is a smash product Hom-algebra.

Furthermore, $\left(H_{\alpha} \natural K \mathbb{Z}_{2}, \alpha \otimes \mathrm{id}_{K \mathbb{Z}_{2}}\right)$ with the tensor product Hom-coalgebra structure becomes a Hom-Hopf algebra, where the antipode \bar{S} is given by

$$
\begin{aligned}
\bar{S}\left(1_{H_{\alpha}} \otimes 1_{K \mathbb{Z}_{2}}\right) & =1_{H_{\alpha}} \otimes 1_{K \mathbb{Z}_{2}}, & \bar{S}\left(1_{H_{\alpha}} \otimes a\right) & =1_{H_{\alpha}} \otimes a, \\
\bar{S}\left(g \otimes 1_{K \mathbb{Z}_{2}}\right) & =g \otimes 1_{K \mathbb{Z}_{2}}, & \bar{S}(g \otimes a) & =g \otimes a, \\
\bar{S}\left(x \otimes 1_{K \mathbb{Z}_{2}}\right. & =-g x \otimes 1_{K \mathbb{Z}_{2}}, & \bar{S}(x \otimes a) & =-g x \otimes a, \\
\bar{S}\left(g x \otimes 1_{K \mathbb{Z}_{2}}\right) & =x \otimes 1_{K \mathbb{Z}_{2}}, & \bar{S}(g x \otimes a) & =x \otimes a .
\end{aligned}
$$

Lemma 5.4. Let $K \mathbb{Z}_{2}$ be the Hopf group algebra and H_{α} the Hom-Hopf algebra defined above. Define two linear maps $\varphi: H_{\alpha} \otimes K \mathbb{Z}_{2} \rightarrow K$ and $\psi: K \mathbb{Z}_{2} \otimes H_{\alpha} \rightarrow K$ as follows:

φ	1	a					
	1	1					
g	1	-1					
x	0	0			1	1	1
	1	-1	0	0	0		
$g x$	0	0					

Then $\left(H_{\alpha}, K \mathbb{Z}_{2}, \varphi\right)$ and $\left(K \mathbb{Z}_{2}, H_{\alpha}, \psi\right)$ are Hom-skew pairings.
Proof. Straightforward.
Theorem 5.5. With the notations above, the smash product Hom-Hopf algebra $\left(H_{\alpha} \natural K \mathbb{Z}_{2}, \alpha \otimes \operatorname{id}_{K \mathbb{Z}_{2}}, \sigma\right)$ is a cobraided Hom-Hopf algebra with cobraiding σ given as follows:

σ	$1 \otimes 1$	$1 \otimes a$	$g \otimes 1$	$g \otimes a$	$x \otimes 1$	$x \otimes a$	$g x \otimes 1$	$g x \otimes a$
$1 \otimes 1$	1	1	1	1	0	0	0	0
$1 \otimes a$	1	-1	-1	1	0	0	0	0
$g \otimes 1$	1	-1	-1	1	0	0	0	0
$g \otimes a$	1	1	1	1	0	0	0	0
$x \otimes 1$	0	0	0	0	0	0	0	0
$x \otimes a$	0	0	0	0	0	0	0	0
$g x \otimes 1$	0	0	0	0	0	0	0	0
$g x \otimes a$	0	0	0	0	0	0	0	0

Proof. It is easy to prove that the conditions (D1)'-(D6)' hold. We finish the proof by using Lemmas 5.1, 5.2, 5.4 and Theorem 4.9.

Acknowledgements. The authors are deeply indebted to the referee for his/her useful suggestions and some improvements to the original manuscript, and for calling our attention to [3]. This work was partially supported by the NNSF of China (No. 11101128) and the NSF of Henan Province (Nos. 12A110013, 122300410110, 2011GGJS-062).

REFERENCES

[1] S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), 2216-2240.
[2] S. Caenepeel, B. Ion, G. Militaru and S. L. Zhu, The factorization problem and the smash biproduct of algebras and coalgebras, Algebra Represent. Theory 3 (2000), 19-42.
[3] Y. Chen, Z. Wang and L. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013), 073515.
[4] T. S. Ma and S. H. Wang, General double quantum groups, Comm. Algebra 38 (2010), 645-672.
[5] A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
[6] A. Makhlouf and S. D. Silvestrov, Hom-algebras and hom-coalgebras, J. Algebra Appl. 9 (2010), 553-589.
[7] R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51.
[8] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Reg. Conf. Ser. Math. 82, Amer. Math. Soc., Providence, RI, 1993.
[9] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[10] E. J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA 68 (1971), 2631-2633.
[11] D. Yau, Module Hom-algebras, arXiv:0812.4695v1.
[12] D. Yau, Hom-quantum groups II: cobraided Hom-bialgebras and Hom-quantum geometry, arXiv:0907.1880.
[13] D. Yau, Hom-quantum groups III: Representations and module Hom-algebras, arXiv:0911.5402

Tianshui Ma (corresponding author), Haiying Li
College of Mathematics and Information Science Henan Normal University
453007 Xinxiang, China
E-mail: matianshui@yahoo.com
haiyingli2012@yahoo.com

Tao Yang
College of Science
Nanjing Agricultural University 210095 Nanjing, China
E-mail: tao.yang.seu@gmail.com

Received 26 April 2013;
revised 19 October 2013

[^0]: 2010 Mathematics Subject Classification: 16T05.
 Key words and phrases: Hom-smash product, cobraided Hom-Hopf algebra,Yang-Baxter equation.

