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Abstract. The aim of the present paper is to classify real hypersurfaces with pseudo-
D-parallel structure Jacobi operator, in non-flat complex space forms.

1. Introduction. An n-dimensional Kählerian manifold of constant
holomorphic sectional curvature c is called a complex space form and is
denoted by Mn(c). A complete and simply connected complex space form
is complex analytically isometric to a projective space CPn if c > 0, a hy-
perbolic space CHn if c < 0, or a Euclidean space Cn if c = 0. The induced
almost contact metric structure of a real hypersurface M of Mn(c) is de-
noted by (φ, ξ, η, g). The vector field ξ is defined by ξ = −JN , where J is
the complex structure of Mn(c) and N is a unit normal vector field.

Real hypersurfaces have been studied by many authors and under several
conditions ([B], [BD], [IR1], [IR2], [KR], [T], [T1]).

An important class of hypersurfaces consists of Hopf hypersurfaces, that
is, real hypersurfaces satisfying Aξ = αξ, where A is the shape operator and
α = g(Aξ, ξ).

Several authors have studied real hypersurfaces under conditions which
involve the structure Jacobi operator l given by lX = RξX = R(X, ξ)ξ
([OPS], [PS], [PSS]).

In [LPS], H. Lee, J. D. Pérez and Y. J. Suh introduced the notion of
pseudo-D-parallel structure Jacobi operator, that is, the case where l satisfies
the condition

(1.1) (∇X l)Y = κ{η(Y )φAX + g(φAX, Y )ξ}
where κ is a non-zero constant, X ∈ D and Y ∈ TM . They classified the
real hypersurfaces in CPn, n ≥ 3, satisfying (1.1).

However, the problem remains open for the case of CHn. In the present
paper the condition (1.1) is treated in an even more generalized form for
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both CPn and CHn: the constant κ is replaced by a C2 function satisfying
κ+ c/4 6= 0. Namely we prove the following:

Main Theorem. Let M be a real hypersurface of a complex space form
Mn(c), n ≥ 3, whose structure Jacobi operator satisfies condition (1.1) for
some non-vanishing C2 function κ. Then M is a Hopf hypersurface and κ
is a negative constant. Furthermore:

• If Mn(c) = CPn, then M is a geodesic hypersurface of radius r, satis-
fying cot2 r = −κ.
• If Mn(c) = CHn, then M is:

(i) a horosphere in CHn, where c = 4κ, or

(ii) a geodesic sphere of radius r = 1√
|c|

ln
(2√κ/c+1

2
√
κ/c−1

)
, where 4κ > c,

or

(iii) a tube of radius r = 1√
|c|

ln
(1+2
√
κ/c

1−2
√
κ/c

)
, where 4κ > c, around a

totally geodesic CHn−1.

2. Preliminaries. Let Mn be a Kählerian manifold of real dimen-
sion 2n, equipped with an almost complex structure J and a Hermitian
metric tensor G. Then for any vector fields X and Y on Mn(c), the follow-

ing relations hold: J2X = −X, G(JX, JY ) = G(X,Y ), ∇̃J = 0, where ∇̃
denotes the Riemannian connection of G.

Let M2n−1 be a real (2n − 1)-dimensional hypersurface of Mn(c), and
denote by N a unit normal vector field on a neighborhood of a point in
M2n−1 (from now on we shall write M instead of M2n−1). For any vector
field X tangent to M we have JX = φX+η(X)N , where φX is the tangent
component of JX, η(X)N is the normal component, and ξ = −JN , η(X) =
g(X, ξ), g = G|M .

By properties of the almost complex structure J and the definitions of
η and g, the following relations hold [BL]:

(i) φ2 = −I + η ⊗ ξ, (ii) η ◦ φ = 0, (iii) φξ = 0, (iv) η(ξ) = 1,(2.1)

(i) g(φX, φY ) = g(X,Y )− η(X)η(Y ), (ii) g(X,φY ) = −g(φX, Y ).(2.2)

The above relations define an almost contact metric structure on M which
is denoted by (φ, ξ, g, η). When an almost contact metric structure is defined
onM, we can define a local orthonormal basis {e1, . . . ,en−1, φe1, . . . ,φen−1, ξ},
called a φ-basis. Furthermore, let A be the shape operator in the direction
of N , and denote by ∇ the Riemannian connection of g on M . Then A is
symmetric and

(2.3) (i) ∇Xξ = φAX, (ii) (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ.
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As the ambient space Mn(c) is of constant holomorphic sectional curva-
ture c, the equations of Gauss and Codazzi are respectively given by:

R(X,Y )Z =
c

4

[
g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ
]

+ g(AY,Z)AX − g(AX,Z)AY,

(2.4)

(∇XA)Y − (∇YA)X =
c

4
[η(X)φY − η(Y )φX − 2g(φX, Y )ξ].(2.5)

The tangent space TpM , for every point p ∈ M , is decomposed as follows:
TpM = D⊥ ⊕ D, where D = ker(η) = {X ∈ TpM : η(X) = 0}.

Based on the above decomposition, by virtue of (2.3), we decompose the
vector field Aξ in the following way:

(2.6) Aξ = αξ + βU,

where β = |φ∇ξξ|, α is a smooth function on M and U = − 1
βφ∇ξξ ∈ ker(η),

provided that β 6= 0. If Aξ = αξ, then ξ is called a principal vector field.
Finally, the differentiation of a function f along a vector field X will be

denoted by (Xf). All manifolds, vector fields, etc., in this paper are assumed
to be connected and of class C∞.

3. Auxiliary lemmas. Let N = {p ∈ M : β 6= 0 in a neighborhood
of p}. We define the open subsets N1 and N2 of N by setting

N1 = {p ∈ N : α 6= 0 in a neighborhood of p},
N2 = {p ∈ N : α = 0 in a neighborhood of p}.

Then N1 ∪N2 is open and dense in the closure of N.

Lemma 3.1. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then the following relations hold on N1:

AU =

(
γ

α
− c

4α
+
β2

α

)
U + βξ + λW, AφU =

(
ε

α
− c

4α

)
φU+µZ,(3.1)

∇ξξ = βφU, ∇Uξ =

(
γ

α
− c

4α
+
β2

α

)
φU + λφW,

∇φUξ = −
(
ε

α
− c

4α

)
U + µφZ,

(3.2)

∇ξU = W1, ∇UU = W2, ∇φUU = W3 +

(
ε

α
− c

4α

)
ξ,(3.3)

∇ξ(φU) = φW1 − βξ, ∇U (φU) = φW2 −
(
γ

α
− c

4α
+
β2

α

)
ξ,

∇φU (φU) = φW3,

(3.4)

where W1,W2,W3 are vector fields on D satisfying W1,W2,W3 ⊥ U , W1,W2

⊥ ξ and W,Z are vector fields in span⊥{U, φU, ξ}.
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Proof. From (2.4) we get

(3.5) lX =
c

4
[X − η(X)ξ] + αAX − g(AX, ξ)Aξ,

which for X = U yields

(3.6) lU =
c

4
U + αAU − βAξ.

The scalar product of (3.6) with U yields

(3.7) g(AU,U) =
γ

α
− c

4α
+
β2

α
,

where γ = g(lU, U).
In addition, from (1.1), we have (∇φU l)ξ = κφAφU , which is expanded

by virtue of (2.3) and (3.5), giving(
c

4
+ κ

)
φAφU + αAφAφU + βg(AφU, φU)ξ = 0.

The inner product of the above relation with φU , because of the symmetry
of the shape operator A and (2.2)(ii), implies

(3.8) g(AU, φU) = 0.

The symmetry of A and (2.6) imply

(3.9) g(AU, ξ) = β.

From relations (3.7)–(3.9), we obtain

(3.10) AU =

(
γ

α
− c

4α
+
β2

α

)
U + βξ + λW,

where W ∈ span⊥{U, φU, ξ}. Combining the last equation with (3.6) we
obtain

(3.11) lU = γU + λαW.

Equation (3.5), for X = φU , gives lφU = (c/4)φU +αAφU , whose inner
product with φU (due to (3.8)) leads to

(3.12) g(AφU, φU) =

(
ε

α
− c

4α

)
,

where ε = g(lφU, φU). Furthermore, the symmetry of A and (2.6) give

(3.13) g(AφU, ξ) = 0.

Therefore, from (3.8), (3.12) and (3.13) we conclude the second relation
of (3.1). Using (2.3)(i), for X = ξ, X = U , X = φU and by virtue of (2.6),
(3.1), we obtain (3.2).

It is well known that

(3.14) Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).
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Let us set ∇ξU = W1 and ∇UU = W2. If we use (3.1), (3.2) and (3.14), it is
easy to verify that g(∇ξU,U) = 0 = η(∇ξU) and g(∇UU,U) = 0 = η(∇UU),
which means W1⊥{ξ, U} and W2⊥{ξ, U}.

On the other hand, using (3.14) and (3.2) we find η(∇φUU) = ε/α−c/4α
and g(∇φUU,U) = 0 which means that ∇φUU is decomposed as ∇φUU =
W3 + (ε/α− c/4α)ξ, W3⊥U . We also observe that

g(W3, ξ) = g

(
∇φUU +

(
ε

α
− c

4α

)
ξ, ξ

)
= g(∇φUU, ξ) +

ε

α
− c

4α

= (φUg(U, ξ))− g(U,∇φUξ) +
ε

α
− c

4α
,

which by virtue of (3.2) yields g(W3, ξ) = 0. So (3.3) has been proved too.
In order to prove (3.4), we use (2.3)(ii) with (i) X = ξ, Y = U , (ii) X =

Y = U , (iii) X = φU , Y = U , combined with (3.1), (3.3).

Let X ∈ span⊥{U, φU, ξ}. Then (1.1) implies that ∇X lφX − l∇XφX =
κg(AX,X)ξ. Taking the inner product of the last relation with ξ and using
(3.5) and (2.3)(i) we obtain

(3.15)

(
c

4
+ κ

)
g(AX,X) = −αg(AφX, φAX).

Similarly, (1.1) yields ∇φX lX − l∇φXX = −κg(AφX, φX)ξ, whose inner
product with ξ has the form(

c

4
+ κ

)
g(AφX, φX) = −αg(AφX, φAX).

The above equation and (3.15) lead to

(3.16) g(AX,X) = g(AφX, φX), ∀X ∈ span⊥{U, φU, ξ}.
Lemma 3.2. Let M be a real hypersurface of a complex space form Mn(c)

satisfying (1.1). Then λ = µ = 0 on N1.

Proof. Condition (1.1) yields (∇φU l)ξ = κφAφU , which is further ex-
panded with the aid of Lemma 3.1, giving(

c

4
+ κ

)
φAφU + αAφAφU + β

(
ε

α
− c

4α

)
Aξ = 0.

The inner products of the above equation with U , φZ and W (with the aid
of Lemma 3.1 and (3.16)) yield, respectively,

(3.17)

(i) (κ+ γ)

(
ε

α
− c

4α

)
+ αλµg(Z, φW ) = 0,

(ii)

(
c

4
+ κ

)
µ−

(
ε− c

4

)
λg(W,φZ) + αµg(AZ,Z) = 0,

(iii)

(
c

4
+ κ

)
µg(W,φZ)−

(
ε− c

4

)
λ+ αµg(AφZ,W ) = 0.
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Similarly, condition (1.1) yields (∇U l)ξ = κφAU which is further expanded
with the aid of Lemma 3.1, giving(

c

4
+ κ

)
φAU + αAφAU = 0.

The inner products of the above equation with φU and Z yield, respectively,

(3.18)

(i) (κ+ ε)

(
γ

α
− c

4α
+
β2

α

)
+ λµg(Z, φW ) = 0,

(ii)

(
c

4
+ κ

)
λg(Z, φW ) +

(
γ − c

4
+ β2

)
µ+ αλg(AφW,Z) = 0.

Again from (1.1) we have (∇φZ l)ξ = κφAφZ which is further expanded
with the aid of Lemma 3.1, (2.2)(ii), (2.3)(i) and (3.5), giving(

c

4
+ κ

)
φAφZ + αAφAφZ = 0.

The inner product of the last equation with φU , because of (2.2), (3.16) and
the symmetry of A, yields

(κ+ ε)λg(W,φZ)− αµg(AZ,Z) = 0.

Combining the above relation with (3.17)(ii) we obtain

(3.19) λg(W,φZ) = µ.

From (1.1), (2.2)(ii) and the symmetry of A we further get ∇Z lU − l∇ZU =
−κg(AφU,Z)ξ. Taking the inner product of the last relation with ξ, and
using (2.2)(ii), (2.3)(i), (3.14) and the symmetry of A, we find that µ = 0.
Therefore (3.17)(iii) yields (ε− c/4)λ = 0.

Let us assume there exists a point p1 ∈ N1 at which λ 6= 0. Then there
exists a neighborhood V1 of p1 such that λ 6= 0 in V1. This means ε = c/4,
and so Lemma 3.1 implies AφU = 0. Because of the last relation, (1.1) and
(2.3)(i), we have

(∇W l)ξ = κφAW ⇒ lφAW = −κφAW ⇒
(
c

4
+κ

)
φAW +αAφAW = 0.

The inner product of the above equation with φU , combined with AφU = 0,
(2.2)(i) and the symmetry of A, gives λ = 0, which is a contradiction.
Therefore there do no not exist points in N1 at which λ 6= 0 and so λ = 0
on N1.

We define the functionsκ1 = g(φU,W1),κ2 = g(φU,W2),κ3 = g(φU,W3),
which will be needed very often in what follows. Since λ = µ = 0, (3.17)(i)
and (3.18) are rewritten as

(3.20) (i) (κ+ γ)

(
ε

α
− c

4α

)
= 0, (ii) (κ+ ε)

(
γ

α
− c

4α
+
β2

α

)
= 0.
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Condition (1.1) yields (∇U l)U = κg(φAU,U), which is expanded from
Lemmas 3.1, 3.2 giving (Uγ)U+γ∇UU−lW2 = 0. This relation is multiplied
by U and φU (using also the symmetry of l and (3.5)) giving, respectively,

(3.21) (Uγ) = 0, (γ − ε)κ2 = 0.

In a similar way, from (1.1) we have (∇φU l)U = κg(φAφU,U), which is
expanded to give (φUγ)U + γW3 − lW3 = 0. The inner products of this
equation with U and φU (using also the symmetry of l and (3.5)) yield

(3.22) (φUγ) = 0, (γ − ε)κ3 = 0.

Finally, condition (1.1) for X = Y = φU gives (φUε)φU+εφW3− lφW3 = 0.
The inner product of this equation by φU (using also the symmetry of l and
(3.5)) yields

(3.23) (φUε) = 0.

Lemma 3.3. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then κ = −γ on N1.

Proof. Let us assume there exists a point p2 ∈ N1 at which κ 6= −γ.
Then there exists a neighborhood V2 of p2 such that κ 6= −γ in V2. This
means ε = c/4 (due to (3.20)(i)). Since ε = c/4, (3.20)(ii) yields γ−ε+β2 = 0
(also because κ+ c/4 6= 0). So we have proved that

(3.24) γ − ε = −β2 6= 0.

By making use of (3.21)–(3.24) we obtain (φUβ) = 0 and κ2 = 0. We are
going to combine the last two equations with ε = c/4, Lemmas 3.1, 3.2,
(3.24) and (2.5):

(∇UA)φU−(∇φUA)=− c
2
ξ ⇒ −A(∇UφU)−∇φUAU+A(∇φUU)=− c

2
ξ

⇒ −AφW2 +AW3 = − c
2
ξ.

The inner product of the above equation with ξ, because of the symmetry
of A, (2.2)(ii), (2.6), Lemmas 3.1, 3.2 and κ2 = 0, AφU = 0 yields c = 0,
which is a contradiction. Therefore, there do not exist points in N1 at which
κ 6= −γ and so κ = −γ on N1.

Lemma 3.4. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then γ = ε on N1.

Proof. Let us assume there exists a point p3 ∈ N1 at which γ 6= ε.
Then there exists a neighborhood V3 of p3 such that γ 6= ε in V3. So,
from Lemma 3.3 and equations (3.20)–(3.22) we obtain κ2 = κ3 = 0 and
γ − c/4 + β2 = 0. In addition the differentiation of the last relation along U
and φU , by virtue of (3.21), (3.22), yields (Uβ) = (φUβ) = 0. Summarizing
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the relations that hold on V3, we have

(3.25) (i) κ2 = κ3 = 0, (ii) γ − c

4
+ β2 = 0, (iii) (Uβ) = (φUβ) = 0.

From (2.5) we deduce (∇UA)ξ − (∇ξA)U = −(c/4)φU , which is expanded
with the aid of Lemmas 3.1–3.3 and relation (3.25), to give [(Uα)− (ξβ)]ξ+
βW2 − β2φU +AW1 = −(c/4)φU . The inner product of this equation with
φU (because of (3.25), the symmetry of A and Lemmas 3.1, 3.2) leads to

(3.26) −β2 +

(
ε

α
− c

4α

)
κ1 = − c

4
.

Again from (2.5) we have (∇φUA)ξ − (∇ξA)φU = (c/4)U , which is ex-
panded in a similar way to give[

(φUα) + 3β

(
ε

α
− c

4α

)
− αβ

]
ξ − [ε+ β2]U − ξ

(
ε

α
− c

4α

)
φU

+βW3 −
(
ε

α
− c

4α

)
φW1 +AφW1 = 0.

The inner product of the last equation by U yields

−β2 +

(
ε

α
− c

4α

)
κ1 = ε.

Comparing the above relation with (3.26) we are led to ε = −c/4, which by
virtue of Lemmas 3.1, 3.2 implies

AφU = − c

2α
φU.

We make use of the last two equations and (3.25), to write (∇UA)φU −
(∇φUA)U = −(c/2)ξ and obtain

c

2α2
φU − c

2α
φW2 −AφW2 −

βc

α
U,

whose inner product with U gives cβ=0, which is a contradiction. Therefore,
there do not exist points in N1 at which γ 6= ε and we have γ = ε on N1.

Next we make use of (2.5) with the following substitutions: (i) X = U ,
Y = ξ, (ii) X = φU , Y = ξ, (iii) X = U , Y = φU , with the aid of Lemmas
3.1–3.4.

Case (i).

[(Uα)− (ξβ)]ξ +

[
(Uβ)− ξ

(
γ

α
− c

4α
+
β2

α

)]
U

+

[
γ−
(
γ

α
− c

4α
+
β2

α

)(
γ

α
− c

4α

)]
φU+βW2−

(
γ

α
− c

4α
+
β2

α

)
W1+AW1 = 0.
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The inner products of the above equation with ξ,U and φU yield, respectively,

(3.27)

(i) (Uα) = (ξβ), (ii) (Uβ) = ξ

(
γ

α
− c

4α
+
β2

α

)
,

(iii) γ + κ2β −
(
γ

α
− c

4α
+
β2

α

)(
γ

α
− c

4α

)
− κ1

β2

α
= 0.

Case (ii).[
(φUα) + 3β

(
γ

α
− c

4α

)
− αβ

]
ξ

+

[
(φUβ) +

(
γ

α
− c

4α
+
β2

α

)(
γ

α
− c

4α

)
− β2

]
U

− ξ
(
γ

α
− c

4α

)
φU + βW3 −

(
γ

α
− c

4α

)
φW1 +AφW1 = 0.

The inner products of the above equation with ξ, φU andU yield, respectively,

(3.28)

(i) (φUα) + 3β

(
γ

α
− c

4α

)
− αβ − κ1β = 0, (ii) βκ3 = ξ

(
γ

α
− c

4α

)
,

(iii) γ − (φUβ)−
(
γ

α
− c

4α
+
β2

α

)(
γ

α
− c

4α

)
+ κ1

β2

α
+ β2 = 0.

Case (iii).[
−2

(
γ

α
− c

4α
+
β2

α

)(
γ

α
− c

4α

)
+ γ + β2 − (φUβ)

]
ξ

+

[
3β

(
γ

α
− c

4α

)
+
β3

α
− φU

(
γ

α
− c

4α
+
β2

α

)]
U + U

(
γ

α
− c

4α

)
φU

+

(
γ

α
− c

4α

)
φW2 −AφW2 −

(
γ

α
− c

4α
+
β2

α

)
W3 +AW3 = 0.

The inner products of the above equation with φU and U yield, respectively,

(3.29)

(i) κ2
β2

α
+ 3β

(
γ

α
− c

4α

)
+
β3

α
− φU

(
γ

α
− c

4α
+
β2

α

)
= 0,

(ii) U

(
γ

α
− c

4α

)
= κ3

β2

α
.

We analyze (3.29)(i) by replacing the terms (φUα), (φUβ) from (3.28)(i)
and (3.28)(iii), to obtain

φU

(
γ

α
− c

4α

)
=

3β

α

[(
γ

α
− c

4α

)2

− c

4

]
.

The last relation, because of (3.22) and (3.28)(i), yields

(3.30) κ1

(
γ

α
− c

4α

)
= c− γ.
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Finally, putting X = Y = W1 in (1.1) we get ∇W1 lW1 − l∇W1W1 =
(c/4)g(φAW1,W1)ξ. The inner product of the last equality with ξ, com-
bined with (2.2)(ii), (3.5), (3.14) and the restriction c/4 + κ 6= 0, gives
g(AW1, φW1) = 0. So, taking the inner product of the equation in Case (i)
with φW1, due to g(AW1, φW1) = 0 and (2.2)(ii), we get g(φW1,W2) = 0.
Furthermore, the inner product of the equation in Case (ii) with W1, be-
cause of g(AW1, φW1) = 0, (2.2)(ii) and (3.28), yields g(W1,W3) = κ1κ3.
Summarizing the relations we have proved in this last paragraph, we have

(3.31) g(φW1,W2) = 0, g(W1,W3) = κ1κ3.

4. The hypersurface M is Hopf

Lemma 4.1. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then γ is constant on N1.

Proof. From (3.21) and (3.22) we have [φU,U ]γ = 0. However the same
Lie bracket is calculated from Lemma 3.1 as

[φU,U ]γ = (W3γ)− (φW2γ) +

[
2

(
γ

α
− c

4α

)
+
β2

α

]
(ξγ).

Therefore the two expressions for [φU,U ]γ yield

(4.1) (W3γ)− (φW2γ) +

[
2

(
γ

α
− c

4α

)
+
β2

α

]
(ξγ) = 0.

Moreover, condition (1.1) yields (∇W3 l)U = κg(φAW3, U)ξ, which is ex-
panded by Lemma 3.2 and (3.11) to give (W3γ)U + γ∇W3U − l∇W3U =
κg(φAW3, U)ξ. The inner product of this equation with U , due to Lemma
3.2, the symmetry of l, (3.11) and (3.14), yields

(4.2) (W3γ) = 0.

In a similar way from (1.1) we have (φW2γ)U + γ∇φW2U − l∇φW2U =
κg(φAφW2, U)ξ, whose inner product with U yields

(φW2γ) = 0.

The above equation combined with (4.1), (4.2) leads to [2(γ/α − c/4α) +
β2/α](ξγ) = 0.

Let us assume there exists a point p4 ∈ N1 at which (ξγ) 6= 0. Then
there exists a neighborhood V4 of p4 such that (ξγ) 6= 0 in V4. Therefore,
from the last inequality and [2(γ/α− c/(4α)) + β2/α](ξγ) = 0 we get

2

(
γ

α
− c

4α

)
+
β2

α
= 0,

which is rewritten as γ/α−c/(4α)+β2/α = −(γ/α−c/(4α)). Differentiating
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the last equation along ξ and using (3.27), (3.28) we obtain

(4.3) (Uβ) = κ3β.

But since 2(γ/α−c/(4α))+β2/α = 0 in V4, we get 2(γ−c/4)+β2 = 0, which
is differentiated along U (also with the help of (3.21)), giving (Uβ) = 0. The
last equality is combined with (4.3) leading to κ3 = 0. From κ3 = 0, (3.21),
(3.29) and (3.27)(i) we have (ξβ) = 0. Since (ξβ) = 0, the differentiation
of 2(γ − c/4) + β2 = 0 along ξ gives (ξγ) = 0, which is a contradiction
on V4.

Therefore there do not exist points on N1 at which (ξγ) 6= 0 and so
(ξγ) = 0 on N1.

Now, for every vector field X ∈ span⊥{U, φU, ξ}, condition (1.1) yields
∇X lU − l∇XU = κg(φAX,U)ξ and hence (Xγ)U + γ∇XU − l∇XU =
κg(φAX,U)ξ, the inner product of which with U , in view of (3.11), (3.14)
and Lemma 3.2, yields (Xγ) = 0.

From the last equation, (ξγ) = 0 and (3.21), (3.22) the lemma follows.

Lemma 4.2. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then κ3 = 0 on N1.

Proof. From Lemma 4.1, (3.27), (3.28)(ii) and (3.29)(ii) we obtain

(4.4)

(Uα) = (ξβ) = − αβ2

γ − c/4
κ3, (ξα) = − α2β

γ − c/4
κ3,

(Uβ) = β

[
1− β2

γ − c/4

]
κ3.

By using (4.4), we differentiate (3.30) along U and ξ, respectively, to get

(4.5) (Uκ1) = − κ1β
2

γ − c/4
κ3, (ξκ1) = − κ1αβ

γ − c/4
κ3.

From (2.5) we have ∇W3Aξ−A∇W3ξ−∇ξAW3+A∇ξW3 = −(c/4)φW3,
which is expanded using (2.3)(i) and (2.6) to give (W3α)ξ + αφAW3 +
(W3β)U + β∇W3U − AφAW3 − ∇ξAW3 + ∇ξAW3 = −(c/4)φW3. Taking
the inner product of the last relation with ξ and applying (2.2)(ii), (2.3)(i),
(2.6), (3.14), the symmetry of A and Lemmas 3.1, 3.2, we see that

(4.6) (W3α) =

[
−3

(
γ

α
− c

4α

)
+ α+ 1

]
βκ3.

In a similar way, from (2.5) we have (∇φW2A)ξ − (∇ξA)φW2 = (c/4)W2,
which is rewritten as (φW2α)ξ+αφAφW2+(φW2β)U+β∇φW2U−AφAφW2−
∇ξAφW2 +A∇ξφW2 = (c/4)W2. Taking the inner product of the last equa-
tion with ξ and making similar calculations to those in the proof of (4.6) we
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are led to the equality

(4.7) (φW2α) =
αβ2

γ − c/4
κ2κ3.

Finally, (2.5) for X = φW1, Y = ξ gives (φW1α)ξ+αφAφW1 + (φW1β)U +
β∇φW1U − AφAφW1 −∇ξAφW1 + A∇ξφW2 = (c/4)W1, the inner product
of which with U yields (in a similar way to (4.6) and (4.7))

(4.8) (φW1β) = −κ1β
(

1− β2

γ − c/4

)
κ3.

By virtue of (3.28)(i), (3.29)(ii), (4.4) and (4.5), the Lie bracket [φU,U ]α
= (φU(Uα))− (U(φUα)) is calculated as follows:

[φU,U ]α = (φU(Uα)) + β

[
3

(
γ

α
− c

4α

)
− κ1 − α+

2κ1β
2

γ − c/4
+

2αβ2

γ − c/4

]
κ3.

However the same Lie bracket is calculated from [φU,U ]α = (∇φUU −
∇UφU)α, Lemmas 3.1, 3.4, and (4.6), (4.7), giving

[φU,U ]α = β

[
−3

(
γ

α
− c

4α

)
+ κ1 − α−

κ2αβ

γ − c/4
− αβ2

γ − c/4

]
κ3.

Comparing the two expressions for [φU,U ]α we end up with

(4.9) (φU(Uα))=β

[
−6

(
γ

α
− c

4α

)
+2κ1−

2κ1β
2

γ − c/4
− κ2αβ

γ − c/4
− 3αβ2

γ − c/4

]
κ3.

The Lie bracket [φU, ξ]β = (φU(ξβ)) − (ξ(φUβ)) is obtained from
(3.27)(i), (3.28)(ii), (3.28)(iii), (4.4) and Lemma 4.1:

[φU, ξ]β = (φU(ξβ)) + β

[
2

(
γ

α
− c

4α

)
+

2κ1β
2

γ − c/4
+

2αβ2

γ − c/4

]
κ3.

In addition we have [φU, ξ]β = (∇φUξ−∇ξφU)β, which is further expanded
with the aid of Lemmas 3.1, 3.2, 3.4 and (4.4), (4.8) as

[φU, ξ]β = β

[
−
(
γ

α
− c

4α

)
+
β2

α
+ κ1 −

κ1β
2

γ − c/4
− αβ2

γ − c/4

]
κ3.

The two expressions for [φU, ξ]β yield

(4.10) (φU(ξβ)) = β

[
−3

(
γ

α
− c

4α

)
+ κ1 +

β2

α
− 3κ1β

2

γ − c/4
− 3αβ2

γ − c/4

]
κ3.

We equate (4.9) with (4.10) (since (3.27) holds) and replace the terms κ1, κ2
using (3.30) and (3.27)(iii), which leads to[

4β

(
γ

α
− c

4α

)
− c

γ/α− c/(4α)
+

2β3

α

]
κ3 = 0.

Let us assume there exists a point p5 ∈ N1 at which κ3 6= 0. So there
exists a neighborhood V5 of p5 such that κ3 6= 0 in V5. Then from the above
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equation we have

(4.11) 4β

(
γ

α
− c

4α

)
− c

γ/α− c/(4α)
+

2β3

α
= 0,

which is rewritten as

4β

α2

(
γ − c

4

)2

− c+
2β3

α2

(
γ − c

4

)
= 0.

The differentiation of the last equation along ξ, due to Lemma 4.1 and (4.4),
yields [4β(γ/α− c/4α)− β3/α− 2(γ − c/4)]κ3, which implies

4β

(
γ

α
− c

4α

)
− β3

α
= 2

(
γ − c

4

)
,

since κ3 6= 0 on V5. Combining the above relation with (4.11) we get

(4.12)
3β3

α
+ 2

(
γ − c

4

)
= − αc

γ − c/4
.

Equation (4.12) is differentiated along ξ and, because of (4.4), κ3 6= 0, so
that we obtain

−6β3

α
=

αc

γ − c/4
.

The last equation and (4.12) give

(4.13)
3β3

α
= 2

(
γ − c

4

)
.

From (4.12) and (4.13) we get

4

(
γ − c

4

)
= − αc

γ − c/4
.

Differentiating this equation along ξ and using (4.4), we have κ3 = 0, which
is a contradiction on V5. Hence we conclude that V5 = ∅ and κ3 = 0 on N1.

Lemma 4.3. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then N1 = ∅.

Proof. From Lemma 4.2 and (4.4) we have [U, ξ]α = 0. In addition, from
Lemmas 3.1, 3.2, 3.4 we have

[U, ξ]α = (∇Uξ −∇ξU)α =

(
γ

α
− c

4α
+
β2

α

)
(φUα)− (W1α).

So we conclude that

(4.14)

(
γ

α
− c

4α
+
β2

α

)
(φUα)− (W1α) = 0.
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In order to obtain the term (W1α) we make use of (2.5) for X = W1, Y = ξ,
which results in

(W1α)ξ + αφAW1 + (W1β)U + β∇W1U −AφAW1 −∇ξAW1 +A∇ξW1

= − c
4
φW1.

We take the inner product of the above equation with ξ and make use of
(2.2)(ii), (2.3)(i), (2.6), (3.14) and Lemmas 3.1, 3.2, to get

(W1α) = −3β

(
γ

α
− c

4α

)
κ1 + αβκ1 + β|W1|2.

The combination of the above relation with (4.14), (3.28)(i) and (3.30) leads
eventually to

− c− γ
γ − c/4

α4+

[
3c−3

(
γ− c

4

)
+β2

c− γ
γ − c/4

+β2
]
α2−3

(
γ− c

4

)2

−3β2
(
γ− c

4

)2

= α2|W1|2.
Putting γ−c/4 = C1 = const 6= 0 (due to Lemmas 3.3, 4.1), we may rewrite
the above relation as

(4.15) −3c/4− C1

C1
α4 +

[
3c− 3C1 +

β2

C1

(
3c

4
− C1

)
+ β2

]
α2

− [3C1
2 + 3C1β

2] = α2|W1|2.
Because of (4.15), the quadratic function

f(α) = −3c/4− C1

C1
α4+

[
3c−3C1+

β2

C1

(
3c

4
−C1

)
+β2

]
α2− [3C1

2+3C1β
2]

is non-negative for every α. We are going to prove that f(α) is strictly
positive.

If instead we had f(α) = 0, then W1 = 0 and so κ1 = g(φU,W1) = 0.
In addition, from (3.30) we would have γ = c. Using W1 = κ1 = 0, γ = c,
(3.28)(i) and (4.14), we would obtain

(4.16)

(
3c

4
+ β2

)(
α− 9c

4α

)
= 0.

If we had 3c/4 + β2 = 0, then (3.28) combined with κ1 = 0, γ = c would
give c = 0, which is a contradiction. Therefore 3c/4 + β2 6= 0, and (4.16)
would yield

(4.17) α2 =
9c

4
> 0.

Moreover, from (4.4) and Lemma 4.2, we would get [U, ξ]β = 0, which by
virtue of [U, ξ]β = (∇Uξ − ∇ξU)β, Lemmas 3.1, 3.2, γ = c, W1 = 0 and
3c/4 + β2 6= 0 would give (φUβ) = 0. The last equation, together with
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(3.28)(iii), (4.17), γ = c, κ1 = 0, would eventually lead to β2 = −9c/8,
contradicting (4.17).

Since in the last paragraph we showed that f(α) 6= 0, by virtue of (4.15)
we have f(α) > 0. This can happen only if the discriminant Df of f(α) is
negative. But Df is calculated to be

Df =
9c2

16C1
2β

4 +

[
−9c

2
+

9c2

2C1
− 12

(
3c

4
− C1

)]
β29C1

2

+ 9c2 − 2cC1 − 12

(
3c

4
− C1

)
.

Thus, Df cannot always be negative, since it is a quadratic function of β4

and the coefficient of β4 is positive. Therefore we have a contradiction and
N1 = ∅.

Lemma 4.4. Let M be a real hypersurface of a complex space form Mn(c)
satisfying (1.1). Then the real hypersurface M is Hopf.

Proof. From Lemma 4.3, we have α = 0 on N. So, by virtue of (2.4) and
(2.6) we get

(4.18)

lX =
c

4
[X − η(X)ξ]− β2g(X,U)U,

lU =

(
c

4
− β2

)
U, lφU =

c

4
φU.

Condition (1.1) yields (∇U l)ξ = κφAU , which is expanded with the help
of (4.18), (2.2)(ii) and (2.3)(i), giving

(4.19) −
(
c

4
+ κ

)
φAU = g(AU, φU)β2U.

From (1.1) we have (∇φU l)φU = κg(φAφU, φU)ξ. Rewriting this relation
with the aid of (4.18), (3.14), (2.3)(i) and (2.2)(i) we obtain β2g(∇φUφU,U)U
= (c/4 + κ)g(AU, φU)ξ. The last equation, with c/4 + κ 6= 0 and the linear
independence of U, ξ, yields g(AU, φU) = 0. Combining g(AU, φU) = 0 and
(4.19) we obtain φAU = 0, hence φ2AU = 0, so −AU + g(AU, ξ)ξ = 0 and
therefore

(4.20) AU = βξ.

Putting X = φU , Y = U in (1.1) and making use of (2.2)(ii), (2.3)(i), (3.14),
(4.18), we have

2β(φUβ)U + β2∇φUU = −
(
c

4
+ κ

)
g(AφU, φU)ξ.

Taking the inner product of the above relation with U and φU we obtain,
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respectively,

(4.21) (φUβ) = 0, g(AφU, φU) = 0.

Next we make use of (4.20) and (4.21) in order to expand (∇UA)φU −
(∇φUA)U = −(c/2)ξ (which holds due to (2.5)); this leads to

∇UAφU −A∇UφU − β∇φUξ +A∇φUU = − c
2
ξ.

The inner product of the above relation with ξ, combined with (3.14), (4.20),
(4.21) and (2.3)(i), gives

(4.22) c = 2βg(∇UU, φU).

But from (1.1) and (4.20) we have ∇U lU − l∇UU = 0, which is expanded,
using (3.14), (4.18), (4.20), to give 2(Uβ)U + β∇UU = 0. The inner prod-
uct of the last equation with φU gives g(∇UU, φU) = 0, which shows, due
to (4.22), that c = 0. We have arrived at a contradiction, which means that
N2 = ∅. From Lemma 4.3 and since N1∪N2 is open and dense in the closure
of N, we have N = ∅. So, the real hypersurface M consists only of points
where β = 0, i.e. M is a Hopf hypersurface.

5. The classification. Let {ei, φei, ξ}, i = 1, . . . , n − 1, be a local
φ-basis. If we had α = 0 then from (2.4) it would follow that

(5.1) lX =
c

4
[X − η(X)ξ], lei =

c

4
ei, lφei =

c

4
φei.

Therefore, putting X = ei, Y = ξ in (1.1), and using (2.3), (5.1), c/4+κ 6= 0
we get Aei = 0. In a similar way putting X = φei, Y = ξ in (1.1) we obtain
Aφei = 0. So we have shown that A = 0. Applying (2.5) to X = ei, Y = φei
we have c = 0, which is a contradiction. Thus, the function α must be
non-zero. According to [NR] the function α must be constant.

Due to symmetry of A, the vector fields Aei, Aφei are decomposed as
follows:

(5.2) Aei =
∑
j

λijej +
∑
j

µijφej , Aφei =
∑
j

µjiej +
∑
j

νijφej ,

where λij = g(Aei, ej) = g(Aej , ei) = λji (i 6= j). In addition, from (2.4) we
have

(5.3)
lX =

c

4
[X − η(X)ξ] + αAX − α2η(X)ξ,

lei =
c

4
ei + αAei, lφei =

c

4
φei + αAφei.

Condition (1.1) for X = ei, Y = ξ, combined with (5.2), (5.3) and (2.3)(i),
yields

(5.4)

(
c

4
+ κ

)
φAei = −αAφAei.
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The inner product of (5.4) with ei yields

(5.5) µii = 0.

From (1.1) we have ∇ei lej − l∇eiej = −κµijξ (i 6= j). The inner product of
this relation with ξ, due to (5.1) and (2.3)(i), leads to

(5.6)

(
c

4
+ κ

)
µij = α

(∑
k

µikλjk −
∑
k

λikµjk

)
.

In a similar way, from (1.1) for X = ej , Y = ei (i 6= j) we eventually get(
c

4
+ κ

)
µji = α

(∑
k

µikλjk −
∑
k

λikµjk

)
.

So from the above equation and (5.6) we have

(5.7) µij = µji.

Furthermore, the inner product of (5.4) with ej (i 6= j), with the aid
of (5.2), leads to

(5.8)

(
c

4
+ κ

)
µij = α

(∑
k

λikµjk −
∑
k

λjkµik

)
.

Equation (5.4) is rewritten as(
c

4
+ κ

)
φAej = −αAφAej ,

whose the inner product with ei (i 6= j), due to (5.7) and by similar calcu-
lations, gives

−
(
c

4
+ κ

)
µij = α

(∑
k

λikµjk −
∑
k

λjkµik

)
.

The last equation and (5.8) imply that

(5.9) µij = 0.

From (1.1) we get ∇ei lφej − l∇eiφej = κλijξ. The inner product of this
relation with ξ, due to (5.1), (5.2), (5.7), (5.9) and (2.3)(i), leads to

(5.10)

(
c

4
+ κ

)
λij = −α

∑
k

λikνjk.

In a similar way we have ∇φei lej − l∇φeiej = −κνijξ, the inner product of
which with ξ yields (

c

4
+ κ

)
νij = −α

∑
k

λikνjk.

The above relation and (5.10) lead to

(5.11) λij = νij
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for all i, j = 1, . . . , n−1. Next we expand ∇ei lφej− l∇eiφej = κλijξ (i 6= j),
which holds due to (1.1), with the aid of (5.1), (5.2), (5.5), (5.9), (5.10),
getting

(5.12) α(∇eiA)φej =

(
c

4
+ κ+ α2

)
λijξ.

Similarly, by expanding of ∇φej lei − l∇φejei = −κλijξ (i 6= j) we obtain

(5.13) α(∇φejA)ei = −
(
c

4
+ κ+ α2

)
λijξ.

Also from (2.5) we have (∇eiA)φej = (∇φejA)ei (i 6= j). Therefore, the last
equation, (5.12) and (5.13) give

(5.14)

(
c

4
+ κ+ α2

)
λij = 0, i 6= j.

Similarly, from ∇ei lφei − l∇eiφei = κλiiξ and ∇φei lei − l∇φeiei = κλiiξ we
obtain, respectively, α(∇eiA)φei = (c/4 + κ + α2)λiiξ and α(∇φeiA)ei =
−(c/4 +κ+α2)λiiξ. The last two equations are combined with (∇eiA)φei−
(∇φeiA)ei = −(c/2)ξ (which holds because of (2.5)) to show

(5.15)

(
c

4
+ κ+ α2

)
λii = −αc

4
.

Evidently, c/4 + κ+α2 6= 0, otherwise from (5.15) we would have c = 0,
which is a contradiction. So from (5.2), (5.7), (5.9), (5.11), (5.14), (5.15) we
deduce Aei = λiiei, Aφei = λiiφei, where

(5.16) λii =
−αc

c+ 4κ+ 4α2
.

However, the term λii is also calculated from (1.1), for X = ei, Y = φei,
giving ∇ei lφei − l∇eiφei = κλiiξ. The inner product of this equation with
ξ yields λii = −(c/4α + κ/α). Therefore, from (5.15), (5.16), Aei = λiiei,
Aφei = λiiφei, we have finally proved

(5.17)

Aei = −
(
c

4α
+
κ

α

)
ei, Aφei = −

(
c

4α
+
κ

α

)
φei,

κ = −
(
c

4α
+
κ

α

)2

< 0.

Differentiating the last equality of (5.17) along ξ we obtain (ξκ)[2(c/4 + κ)
+α2] = 0. If we had (ξκ) 6= 0 we would also have 2(c/4+κ)+α2 = 0, which
would mean κ = const and (ξκ) = 0, thus a contradiction.

Therefore (ξκ) = 0 and by a similar reasoning (eiκ) = (φeiκ) = 0. This
means that the real hypersurface M has two constant principal curvatures,
α and −(c/4α+ κ/α).
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In case Mn(c) = CPn, according to [T1], M can only be a geodesic hy-
persphere, with α = 2 cot 2r, −(c/4α+κ/α) = cot r. The last two equations
lead to cot2 r = −κ.

In case Mn(c) = CHn, based on [M], M can be a horosphere (type A0),
a geodesic sphere of radius r, 0 < r < ∞ (type A1,0) or a tube of radius r
around a totally geodesic CHk (1 ≤ k ≤ n−2), where 0 < r <∞ (type A1,1).
In type A0 we have

α =
√
c, −

(
c

4α
+
κ

α

)
=

√
|c|
2

.

The last two equations lead to κ = c/4. In type A1,0 we have

α =
√
c coth(

√
|c| r), −

(
c

4α
+
κ

α

)
=

√
|c|
2

coth

(√
|c| r
2

)
.

The last two equations lead to

r =
1√
|c|

ln

(
2
√
κ/c+ 1

2
√
κ/c− 1

)
where 4κ > c. In type A1,1 we have

α =
√
c coth(

√
|c| r), −

(
c

4α
+
κ

α

)
=

√
|c|
2

tanh

(√
|c| r
2

)
.

The last two equations lead to

r =
1√
|c|

ln

(
1 + 2

√
κ/c

1− 2
√
κ/c

)
where 4κ < c.
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[OPS] M. Ortega, J. D. Pérez and F. G. Santos, Non-existence of real hypersurfaces with
parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain
J. Math. 36 (2006), 1603–1613.
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