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Abstract. The aim of the present paper is to classify real hypersurfaces with pseudo-
D-parallel structure Jacobi operator, in non-flat complex space forms.

1. Introduction. An n-dimensional Kéahlerian manifold of constant
holomorphic sectional curvature c is called a complex space form and is
denoted by M,(c). A complete and simply connected complex space form
is complex analytically isometric to a projective space CP" if ¢ > 0, a hy-
perbolic space CH" if ¢ < 0, or a Euclidean space C™ if ¢ = 0. The induced
almost contact metric structure of a real hypersurface M of M,(c) is de-
noted by (¢,&,7,g). The vector field ¢ is defined by & = —JN, where J is
the complex structure of M, (c) and N is a unit normal vector field.

Real hypersurfaces have been studied by many authors and under several
conditions ([B], [BDI, [IR1], [IR2], [KR], [T, [T1]).

An important class of hypersurfaces consists of Hopf hypersurfaces, that
is, real hypersurfaces satisfying A¢ = a&, where A is the shape operator and
a = g(AE, ).

Several authors have studied real hypersurfaces under conditions which
involve the structure Jacobi operator [ given by [X = R:X = R(X, )¢
(lopsl, [PS], [PSS]).

In [LPS], H. Lee, J. D. Pérez and Y. J. Suh introduced the notion of
pseudo-D-parallel structure Jacobi operator, that is, the case where [ satisfies
the condition

(1.1) (VxDY = r{n(Y)pAX + g(¢AX,Y)E}

where k is a non-zero constant, X € D and Y € T'M. They classified the
real hypersurfaces in CP™, n > 3, satisfying (L.1).

However, the problem remains open for the case of CH™. In the present
paper the condition is treated in an even more generalized form for
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both CP™ and CH": the constant & is replaced by a C? function satisfying
k + ¢/4 # 0. Namely we prove the following:

MAIN THEOREM. Let M be a real hypersurface of a complex space form
M, (c), n > 3, whose structure Jacobi operator satisfies condition for
some non-vanishing C? function k. Then M is a Hopf hypersurface and k
s a negative constant. Furthermore:

o If My, (c) = CP"™, then M is a geodesic hypersurface of radius r, satis-
fying cot’ r = —k.
o If My,(c) =CH™, then M is:

(i) a horosphere in CH", where ¢ = 4k, or

. . . _ 1 24/k/c+1
(ii) ngeadeszc sphere of radius r = i ID(Q\/’%*l)’ where 4k > c,
(iii) a tube of radius r = #ln(pr2 R/C), where 4k > ¢, around a

1-24/kK/c

Vel
totally geodesic CH™ 1.

2. Preliminaries. Let M, be a Ké&hlerian manifold of real dimen-
sion 2n, equipped with an almost complex structure J and a Hermitian
metric tensor G. Then for any vector fields X and Y on M,(c), the follow-
ing relations hold: J2X = —X, G(JX,JY) = G(X,Y), V.J = 0, where V
denotes the Riemannian connection of G.

Let My,—1 be a real (2n — 1)-dimensional hypersurface of M, (c), and
denote by N a unit normal vector field on a neighborhood of a point in
My,—1 (from now on we shall write M instead of Ma,_1). For any vector
field X tangent to M we have JX = ¢X +n(X)N, where ¢X is the tangent
component of JX, n(X)N is the normal component, and { = —JN, n(X) =
9(X,8), 9 =Glu.

By properties of the almost complex structure J and the definitions of
n and g, the following relations hold [BL]:

(21) (1) ¢*=—-T+n@¢& (i)nop=0, (i) ¢ =0, (iv)n(§) =1,
(2.2) (i) 9(6X,0Y) = g(X,Y) = n(X)n(Y), (i) g(X,9Y) = —g(¢X,Y).

The above relations define an almost contact metric structure on M which
is denoted by (¢, &, g,n). When an almost contact metric structure is defined
on M, we can define a local orthonormal basis {ey, . ..,e,—_1, deq, . .., pen_1, £},
called a ¢-basis. Furthermore, let A be the shape operator in the direction
of N, and denote by V the Riemannian connection of g on M. Then A is
symmetric and

(2.3) (i) Vx§ = 0AX, (i) (Vx9)Y =n(Y)AX — g(AX,Y)E.
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As the ambient space M, (c) is of constant holomorphic sectional curva-
ture ¢, the equations of Gauss and Codazzi are respectively given by:

c
(24) R(X.Y)Z = $[9(Y, 2)X = g(X, 2)Y + g(6Y, Z)6X — g(6X, Z)oY
—29(¢X,Y)pZ] + g(AY, Z)AX — g(AX, Z)AY,
c
(25) (VxA)Y —(VyA)X = Z[W(X)qﬁY —n(Y)pX —29(¢X, Y)E].
The tangent space T),M, for every point p € M, is decomposed as follows:
T,M = D' @D, where D = ker(n) = {X € T,M : n(X) = 0}.

Based on the above decomposition, by virtue of (2.3)), we decompose the
vector field A€ in the following way:

(2.6) A€ = af + BU,

where § = [¢V¢£], o is a smooth function on M and U = —%(ngf € ker(n),
provided that 8 # 0. If A¢ = &, then € is called a principal vector field.

Finally, the differentiation of a function f along a vector field X will be
denoted by (X f). All manifolds, vector fields, etc., in this paper are assumed
to be connected and of class C*°.

3. Auxiliary lemmas. Let N = {p € M : § # 0 in a neighborhood
of p}. We define the open subsets N7 and Ny of N by setting

N1 ={p € N: a # 0 in a neighborhood of p},
Ny ={p € N: a =0 in a neighborhood of p}.
Then N7 U Nj is open and dense in the closure of N.

LEMMA 3.1. Let M be a real hypersurface of a complex space form My/(c)
satisfying (1.1)). Then the following relations hold on Ni:

2
(3.1) AU = (” - Sy 5>U +BE+ AW, AU = (E - C>¢U+MZ,
a 4o «Q a 4o
2
Ve ot Vue= (1= L Dgu s rom,

(3.2) o
Veué = — (a — 4a>U + poZ,

(3.3) VeU=Wi, VyU=Ws, VeU=W;+ (; - C>§,

VeloU) = oW - g6, Vo) =owa - (1o Lo D

Veu (oU) = oWs,
where W1, Wa, W3 are vector fields on D satisfying Wi, Wo, W3 1L U, W1, Wy
L & and W, Z are vector fields in span{U, ¢U, £}.

(3.4)
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Proof. From ([2.4]) we get

(3.5) IX = Z[X —n(X)€] + aAX - g(AX,§)A¢,
which for X = U yields
(3.6) U = EU + aAU — BAE.
The scalar product of (3.6 with U yields
v_c B
. A =L _ - 4=
(3.7) gAvU) =T - ==

where v = g(IU,U).
In addition, from (1.1)), we have (Vy4il)§ = kpApU, which is expanded
by virtue of (2.3)) and (3.5)), giving

(Z i ,1> pAQU + aApAgU + Bg(AgU, U )€ = 0.

The inner product of the above relation with ¢U, because of the symmetry
of the shape operator A and ({2.2))(ii), implies

(3.8) g(AU, ¢U) = 0.
The symmetry of A and (2.6) imply
(3.9) 9(AU.§) = B.
From relations (3.7)—(3.9), we obtain
2
(3.10) AU = (7—C+ﬂ>U+ﬁ§+/\W,
a 4o«

where W € spant{U, ¢U, ¢}. Combining the last equation with (3.6) we
obtain

(3.11) WU =~U + XaW.

Equation (§3.5)), for X = ¢U, gives [¢U = (¢/4)pU + aApU, whose inner
product with ¢U (due to (3.8))) leads to

€ c
12 A =[--—
(3.12) olaov.o0) = (£ ).
where € = g(I¢pU, ¢U). Furthermore, the symmetry of A and (2.6) give
(3.13) 9(AgU,€) = 0.

Therefore, from (3.8), (3.12) and (3.13)) we conclude the second relation
of (3.1)). Using (2.3))(i), for X =&, X = U, X = ¢U and by virtue of (2.6),
(3.1), we obtain ([3.2)).

It is well known that
(3.14) Xg(Y,Z)=g(VxY,Z) +g(Y,VxZ).
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Let us set VeU = Wy and ViU = Wa. If we use (3.1)), (3.2) and (3.14)), it is
easy to verify that g(V U, U) = 0 =n(VU) and g(VyU,U) = 0 = n(VyU),
which means W7 L{¢,U} and Wy L{¢,U}.

On the other hand, using (3.14)) and (3.2) we find n(V4yU) = €/a—c/4a
and g(VeyU,U) = 0 which means that Vg U is decomposed as VU =

W5 + (¢/a — ¢/4a)€, W3 LU. We also observe that
c
g(W3,8) = Q(V¢UU + < - )5 §> =9(VeuU,$) + — =
€ c
= (@Ug(U.€)) = 9(U, Voul) + — =
which by virtue of (3.2)) yields g(W3,£) = 0. So (3.3)) has been proved too.

In order to prove (3.4), we use (2.3))(ii) with (i) X =&, Y =U, (ii) X =
Y = U, (iii) X = ¢U, Y = U, combined with (3.1), (3.3). =

Let X € spant{U, ¢U,£}. Then (1.1)) implies that Vxl¢X — IVx¢X =
kg(AX, X)E. Taking the inner product of the last relation with £ and using

(3.5) and ([2.3))(i) we obtain
(3.15) <Z + K)g(AX, X) = —ag(ApX, pAX).
Similarly, (1.1) yields VgxIX — IVyexX = —krg(A¢X, X )E, whose inner
product with £ has the form
(5 +r)a(46X.0) = ~agl40X, 64X).
The above equation and (3.15)) lead to
(3.16) 9(AX,X) = g(A¢X,¢X), VX € span'{U,¢U,¢}.

LEMMA 3.2. Let M be a real hypersurface of a complex space form My/(c)
satisfying (1.1). Then A = =0 on Nj.

Proof. Condition (1.1)) yields (V4ul)§ = k¢pApU, which is further ex-
panded with the aid of Lemma giving

(C + H) AU + aAGASU + B (6 _ C)Ag —0.
4 o da

The inner products of the above equation with U, ¢Z and W (with the aid
of Lemma and (| m yield, respectively,

(i) (5 +7) < - 4> +adug(Z, W) =0,
(3.17) < + m) <e - ) Ag(W, ¢Z) + aug(AZ, Z) = 0,

(iii) ( + /1>,ug (W,0Z) — <e — Z)x\—i- apg(AeZ, W) = 0.
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Similarly, condition (1.1)) yields (Vyl)§ = kpAU which is further expanded
with the aid of Lemma [3.1] giving

<C + m> SAU + aAGAU = 0.

4
The inner products of the above equation with ¢U and Z yield, respectively,
: v e P
- — 4+ — Aug(Z,oW) =0
0 o 2- 5+ D) gz om) =0,

B (5 ) otz 0w+ (5 G4 22 )+ adgtaow, 2) =0

Again from (1.1)) we have (Vyz0)¢ = kpApZ which is further expanded
with the aid of Lemma (2.2) (i1), (2.3)(i) and ({3.5)), giving

(i + n) GAGZ + aAPASZ = 0,

The inner product of the last equation with ¢U, because of (2.2)), (3.16]) and
the symmetry of A, yields

(5 +e)AgW,0Z) — apg(AZ, Z) = 0.
Combining the above relation with (3.17))(ii) we obtain
(3.19) AW, 9Z) = p.
From (1.1)), (2.2))(ii) and the symmetry of A we further get VzIU —IV U =

—kg(ApU, Z)¢. Taking the inner product of the last relation with &, and

using (ii), (12.3) (1), and the symmetry of A, we find that u = 0.
Therefore (3.17))(iii) yields (e —¢/4)A = 0.

Let us assume there exists a point p; € N1 at which A # 0. Then there
exists a neighborhood Vj of p; such that A # 0 in Vj. This means € = ¢/4,
and so Lemma implies A¢U = 0. Because of the last relation, and
(2.3))(i), we have

(V)€ = kpAW = I6AW = —k¢pAW = <Z +/£> PAW +aAGAW = 0.

The inner product of the above equation with ¢U, combined with A¢pU = 0,
(2.2) (i) and the symmetry of A, gives A = 0, which is a contradiction.
Therefore there do no not exist points in N7 at which A £ 0 and so A =0
on Nl. | ]

We define the functions k1 = g(oU, Wh), ke = g(oU, Wa), kg = g(¢U, Ws)
which will be needed very often in what follows. Since A = u =0 i

and (3.18]) are rewritten as

€ C

(3.20) (i)(n—i—’y)(—):, (ii)(m+e)<7—+>=0.

a 4o
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Condition (1.1)) yields (Vyl)U = kg(¢AU,U), which is expanded from
Lemmas giving (U~)U+~VyU —IW;, = 0. This relation is multiplied
by U and ¢U (using also the symmetry of [ and (3.5)) giving, respectively,
(3.21) (Uy) =0, (y—€¢r2=0.

In a similar way, from (1.1) we have (Vyyl)U = kg(¢A¢U,U), which is
expanded to give (¢U~)U + yW3 — IW3 = 0. The inner products of this
equation with U and ¢U (using also the symmetry of [ and (3.5))) yield

(3.22) (@U7) =0, (v —€)rg=0.

Finally, condition (1.1)) for X =Y = ¢U gives (¢Ue€)pU + epWs3 —1¢W3 = 0.
The inner product of this equation by ¢U (using also the symmetry of [ and
(3-5)) yields

(3.23) (pUe) = 0.

LEMMA 3.3. Let M be a real hypersurface of a complex space form My/(c)
satisfying (1.1). Then Kk = —v on Nj.

Proof. Let us assume there exists a point po € N7 at which k # —v.
Then there exists a neighborhood V5 of py such that k #% —~v in V5. This
means € = ¢/4 (due to ([3.20)(i)). Since € = ¢/4, (3.20))(ii) yields y—e+3% = 0
(also because k + ¢/4 # 0). So we have proved that

(3.24) y—e=—p%#0.

By making use of (3.21)—(3.24)) we obtain (¢US) = 0 and ka = 0. We are
going to combine the last two equations with € = ¢/4, Lemmas

and (2.5):
C C
(VUA)¢U— (V¢UA) = —5.5 = —A(VU¢U) — V¢UAU+A<V¢UU) = —§§

= —ApWs + AW; = —gg.

The inner product of the above equation with £, because of the symmetry

of A, (2.2)(ii), (2.6), Lemmas and kg = 0, ApU = 0 yields ¢ = 0,
which is a contradiction. Therefore, there do not exist points in Ny at which
k# —yand so Kk = —y on Ni. u

LEMMA 3.4. Let M be a real hypersurface of a complex space form M,(c)
satisfying (1.1). Then v =€ on Nj.

Proof. Let us assume there exists a point ps € Ny at which v # e.
Then there exists a neighborhood V3 of p3 such that v # € in V3. So,
from Lemma and equations f we obtain ko = k3 = 0 and
v —c¢/4+ 3% = 0. In addition the differentiation of the last relation along U

and ¢U, by virtue of (3.21), (3.22)), yields (US) = (¢US) = 0. Summarizing
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the relations that hold on V3, we have
. .. c
(3.25) (i) ko =g =0, (ii)y—7+ B2 =0, (iii) (UB) = (pUB) = 0.

From (2.5) we deduce (VyA)E — (VeA)U = —(c¢/4)¢U, which is expanded

with the aid of Lemmas and relation (3.25)), to give [(Ua) — (£8)]€ +
BWo — B2¢U + AW; = —(c/4)¢U. The inner product of this equation with

oU (because of (3.25]), the symmetry of A and Lemmas leads to

2, ¢ __¢

Again from (2.5) we have (VyyA)§ — (VeA)oU = (¢/4)U, which is ex-
panded in a similar way to give

(@Ua) +38( = — ) —aBle—[e+ U —¢( S~ = |oU
[ ( 4a> } <a 4a)

€

+ W3 — (a - 460[>¢W1 + ApW; = 0.

The inner product of the last equation by U yields

—B%+ <a — 40()[)&1 =€

Comparing the above relation with (3.26) we are led to e = —c¢/4, which by
virtue of Lemmas implies

ApU = — UL
2c
We make use of the last two equations and (3.25)), to write (VyA)pU —
(Vo A)U = —(¢/2)€ and obtain

C C C
SC30U — W — AW — 1
a 2 «

whose inner product with U gives ¢8=0, which is a contradiction. Therefore,
there do not exist points in N7 at which v # € and we have y =€ on Ny. =

Next we make use of (2.5) with the following substitutions: (i) X = U,
Y =¢ (i) X = U, Y =€, (i) X = U, Y = ¢U, with the aid of Lemmas
B.IH3.4

Cask (i).
[W@-@@E+h%)iaf-+fﬂU

2 2
—i—[’y—(V— B > <—Z>]¢U+ﬂw2—<z—a+i >W1+AW1 =0.

a4aa
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The inner products of the above equation with £, U and ¢U yield, respectively,

2
0 =), @) wn=¢(1- 5+ 0.

- (2o £+ 2) (1o 2) - o

4o o 4o o
CASE (ii).

(3.27)

Cc

[<¢Ua> + 35(1 - 4a> - aﬁ]é

2
e+ (- 5) (G -a) - #Je
5(7 _ C>¢U+BW3 — <7 - C)¢W1+A¢W1 = 0.
a do a 4o

The inner products of the above equation with &, U and U yield, respectively,

C

(1) (¢Ua)+3ﬁ<—4a> —af— k1B =0, (i) ﬁ,@,:g@_),

(3.29) p N g 4a
(i) - s - (1= 2+ D) (2= L) rmE v =0
CASE (111
(2 L4 D) (2- L) v s - wua)e
(6] « (6]
c 33 32 7o c
SR e i)
+<’Y - c>¢W2 — AW, — (” -y /32>W3 + AW3 = 0.
a Ao a 4o

The inner products of the above equation with ¢U and U yield, respectively,
s 8° gl 52 _
()mg—+3,8 - — — —i———(b f—f—i- =0,

4a a 4o
- B
Ul——— | =krs—.
(i) <a 4a> "
We analyze (3.29))(i) by replacing the terms (¢Ua), (¢pUpB) from (3.28)(i)
and ((3.28)(iii), to obtain

w(i-w)-RlG-5) -1

The last relation, because of (3.22)) and (3.28)(i), yields
(3.30) - (7 - C> —c— .

(3.29)

a 4o
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Finally, putting X =Y = Wj in (1.1) we get Vy,IW, — [Vy, W) =
(c¢/4)g(p AW, W1)E. The inner product of the last equality with £, com-

bined with (2.2))(ii), (3.5), (3.14) and the restriction ¢/4 + k # 0, gives
g(AW1,¢W7) = 0. So, taking the inner product of the equation in Case (i)

with ¢Wi, due to g(AW1,¢W1) = 0 and (2.2))(ii), we get g(¢pW1, Wa) = 0.
Furthermore, the inner product of the equation in Case (ii) with W7, be-

cause of g(AW1,¢W1) = 0, [22)(ii) and @25), yields g(W1, Ws) = rass.

Summarizing the relations we have proved in this last paragraph, we have

(3.31) g(@W1,Wa) =0,  g(W1,W3) = Kik3.

4. The hypersurface M is Hopf

LEMMA 4.1. Let M be a real hypersurface of a complex: space form My(c)
satisfying (L.1)). Then ~y is constant on Nj.

Proof. From (3.21]) and (3.22)) we have [¢pU, U]y = 0. However the same
Lie bracket is calculated from Lemma [B:1] as

2
(U, Uly = (Wiy) — (6War) + [2(2 - Aﬂ) + i} ().
Therefore the two expressions for [¢pU, U]y yield
2
(4.1) (W3v) — (6Way) + [2<g - 42) + i] (&) =0.

Moreover, condition (1.1) yields (Vy,))U = kg(¢AW3,U)E, which is ex-
panded by Lemma and (3.11) to give (W3y)U + 7yVy,U — IVy,U =
kg(@AWs, U)E. The inner product of this equation with U, due to Lemma
the symmetry of [, (3.11]) and ([3.14]), yields
(4.2) (Wsy) = 0.
In a similar way from (I.1)) we have (¢Woy)U + 4Ven,U — IVgw, U =
kg(pApWo, U)E, whose inner product with U yields

(¢W2y) = 0.

The above equation combined with (4.1, leads to [2(y/a — c¢/4a) +
32/a](&y) = 0.

Let us assume there exists a point py € N at which (§y) # 0. Then
there exists a neighborhood Vj of py such that (£y) # 0 in Vj. Therefore,
from the last inequality and [2(y/a — ¢/(4a)) + B2 /a](&y) = 0 we get

2
2<7_C>+5:0,
o da «

which is rewritten as y/a—c/(4a)+5%/a = —(v/a—c/(4a)). Differentiating
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the last equation along ¢ and using (3.27)), (3.28) we obtain

(4.3) (UB) = K3p.

But since 2(v/a—c/(4a))+5%/a = 0 in Vi, we get 2(y—c/4)+ 32 = 0, which
is differentiated along U (also with the help of (3.21))), giving (US) = 0. The
last equality is combined with (4.3]) leading to k3 = 0. From k3 = 0, (3.21]),

(3.29) and (3.27))(i) we have ({8) = 0. Since ({8) = 0, the differentiation
of 2(y — ¢/4) + B? = 0 along ¢ gives (¢£y) = 0, which is a contradiction
on Vj.

Therefore there do not exist points on Nj at which (£vy) # 0 and so
(&y) =0 on Nj.

Now, for every vector field X € spant{U, ¢U, &}, condition yields
VxlU — IVxU = kg(pAX,U)¢ and hence (Xv)U +yVxU — IVxU =
kg(pAX,U)E, the inner product of which with U, in view of ,
and Lemma yields (Xv) = 0.

From the last equation, (£y) = 0 and (3.21)), (3.22) the lemma follows. =

LEMMA 4.2. Let M be a real hypersurface of a complex space form My (c)
satisfying (L.1)). Then k3 =0 on Nj.

Proof. From Lemma [4.1] (3.27)), (3.28)(ii) and (3.29)(ii) we obtain

_ _ 05,82 0526
(Ua) = (£8) = L (§a) = L

(4.4) g2
UB)=p1-— )
(UB) ﬂ[ 7_0/4]*63
By using (4.4]), we differentiate (3.30) along U and &, respectively, to get
2
(4.5) (Uny) = -7 b

7_6/4/%3, (§r1) = —7_6/4/%-

From we have VW3A§—AVW3‘£ - VgAWg +AV§W3 = —(C/4)(Z)W3,
which is expanded using (2.3))(i) and to give (W3a)é + apAWs +
(W3B)U + BVw,U — ApAW3 — Ve AWs + Ve AWs = —(c/4)¢Ws3. Taking
the inner product of the last relation with £ and applying (ii), 12.3)(1),
, , the symmetry of A and Lemmas we see that

_|_g(2_ <
(4.6) (Wga) = [ 3<a 40[) —|-Oé+1],8,‘€3.
In a similar way, from (2.5) we have (Vgw,A){ — (VeA)pWa = (c/4)Wa,
which is rewritten as (pWaa){+ap ApWa+(pWaB) ULV gw, U —Ap ApWo—
VeApWo + AV pWy = (¢/4)Ws. Taking the inner product of the last equa-
tion with £ and making similar calculations to those in the proof of (4.6|) we
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are led to the equality
2

ap
v —c/4
Finally, for X = ¢W1, Y = € gives (pW1a)€ + apAeWi + (oW1 8)U +

BV o, U — ApApW1 — Ve ApW1 + AV oWy = (¢/4)W7, the inner product
of which with U yields (in a similar way to (4.6) and (4.7))

2
(4.8) (ngl,B) = —/4315(1 - ;60/4)/433
By virtue of ([3.28) (i) - and ([4.5)), the Lie bracket [¢U, Ula

= (oU(Uw)) — (U (gbUa)) is Calculated as follows:

(4.7) (¢W20£) = R9K3.

B c 2/45152 20452
(U, U)o = (¢U(Ua))+ﬁ[ < - 4a> Tmmet T T y_c/4l“3

However the same Lie bracket is calculated from [¢pU,Ula = (V4yU —

Vy¢U)a, Lemmas [3.1] and (4.6)), (4.7), giving
v oc koo af?
UUla=8|-3(1-° —a- -
9U. Ula Bl (a 4a>+m Ry 7—0/4lﬁ

Comparing the two expressions for [pU, U]a we end up with

(4.9) (oU(Ua))=p [—ﬁ(l - ) + 26y — 2?54 - 7’?0;64 - yg—aijzll“?’

a Ao
The Lie bracket [¢U, &5 = ( Up)) — (ﬁ(gbUB)) is obtained from
.27 (1), (3.28) (i), (3.28)(iii), and Lemma
2%1ﬁ2 QCXBQ
[6U, €18 = (4U(¢F) [(—) T _0/4%3
In addition we have [¢U, &]8 = (V€ — VeoU) B, which is further expanded
with the aid of Lemmas|3.1] . . H 3.4 and ( . . as
c 8 k12 ap?
9U:l6 = Bl <_> a _7—0/4_7—0/4l,€3

The two expressions for [¢U, £]S yield

_ 4l c 5 3f€152 33
(4.10) (oU(EB)) =B _—3(a - 4&) tRt T T c/d v - 6/4]“3

We equate (4.9)) with (4.10]) (since (3.27) holds) and replace the terms k1, K2
using (3.30) and (3.27)(iii), which leads to

[46(3{—4(;) —m+2§3]n3—0.

Let us assume there exists a point p; € Ny at which k3 # 0. So there
exists a neighborhood V5 of ps such that k3 # 0 in V5. Then from the above




PSEUDO-D-PARALLEL STRUCTURE JACOBI OPERATOR 105

equation we have

¥ c c 233
4.11 p(—-—-— | —-——+—+—~+—=0
(4-11) ﬁ(a 4a> v/ — ¢/ (4a) T ’

which is rewritten as

4 2 233
(-5) (- )

The differentiation of the last equation along &, due to Lemma and (4.4]),
yields [48(y/a — ¢/4a) — B3 /a — 2(y — ¢/4)]k3, which implies

v e\ B c
4B<a_1104>_a_2<7_4>’

since k3 # 0 on V5. Combining the above relation with (4.11]) we get
333 c ac

4.12 — +2{y—-=- )=

(412) o * (7 4) v—c/4

Equation (4.12)) is differentiated along ¢ and, because of (4.4), k3 # 0, so

that we obtain

8 o
a  y—c/4
The last equation and (4.12)) give
33 c
4.13 —=2{y—--.
(413) = 253

From (4.12)) and (4.13) we get

al~_ €Y __cc
TTy) T v—c/d

Differentiating this equation along ¢ and using (4.4)), we have k3 = 0, which
is a contradiction on V5. Hence we conclude that V5 = ) and k3 = 0 on N1. =

LEMMA 4.3. Let M be a real hypersurface of a complex space form My(c)
satisfying (1.1)). Then Ny = ().

Proof. From Lemmal[d.2and (4.4) we have [U, {]a = 0. In addition, from
Lemmas we have
v e P

U8l = (Vo = Vet = (2 = £+ ) gra) - (Wia),
So we conclude that

(4.14) (7 -4 ﬂ:) (PUa) — (Wia) =
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In order to obtain the term (W) we make use of (2.5)) for X = W1, Y =¢,
which results in

(Wloa)ﬁ + apAW7 + (Wl,@>U + ,BVWIU — ApAW7 — V§AW1 + AV&Wl
— _E¢W
=-1 1.

We take the inner product of the above equation with ¢ and make use of

@-2)Gi), 23)@1), [@.6), and Lemmas to get

(Wloz) =-30 <Z - 42[)/61 + afk1 + B|W1|2.

The combination of the above relation with (4.14]), (3.28))(i) and (3.30) leads
eventually to

o N 2 2
el (og) - (05)
:Oé2’W1|2.

Putting v —¢/4 = C; = const # 0 (due to Lemmas [4.1)), we may rewrite
the above relation as

(4.15) —30/2_01 4 [3 —3C1+g2<—01>+52]a2
1

- [301 + 30152] = a2|W1|2.
Because of (4.15)), the quadratic function

2
fla) = 3Oy [3c 30+ 2 < —01> +B2] a® —[3C42 4301 %)
Cl Cl

is non-negative for every a. We are going to prove that f(«) is strictly
positive.

If instead we had f(a) = 0, then W; = 0 and so k1 = g(¢U, W7) = 0.
In addition, from we would have v = ¢. Using W1 = k1 =0, v = ¢,
(3:28) (i) and (4.14)), we would obtain

(4.16) (i’; ; 52) <a - ja) 0

If we had 3c/4 + 3% = 0, then (3.28)) combined with x; = 0, v = ¢ would
give ¢ = 0, which is a contradiction. Therefore 3¢/4 + 82 # 0, and (4.16))
would yield
9

(4.17) o? = Zc > 0.

Moreover, from and Lemma we would get [U,&]S = 0, which by
virtue of [U, 5]5 (VU§ VeU)B, Lemmas BIB2 v=¢ Wi =0and
3c/4 + B2 # 0 would give (¢pUB) = 0. The last equation, together with
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(3.28) (iii), , v = ¢, k1 = 0, would eventually lead to 32 = —9¢/8,
contradicting .

Since in the last paragraph we showed that f(a) # 0, by virtue of
we have f(a) > 0. This can happen only if the discriminant Dy of f(«) is
negative. But Dy is calculated to be

9% 9c  9c? 3c 9 9
T {—+ - 12<4 —Clﬂﬂ 9C,

2 Tag,
3
+9¢2 — 20, — 12<40 - 01>.

Dy

Thus, Dy cannot always be negative, since it is a quadratic function of B4
and the coefficient of 3% is positive. Therefore we have a contradiction and
Ni=0.m

LEMMA 4.4. Let M be a real hypersurface of a complex space form M,(c)
satisfying (L1.1)). Then the real hypersurface M is Hopf.

Proof. From Lemma we have a« = 0 on N. So, by virtue of (2.4 and
(2.6)) we get
¢
4
c c
w=|(--p> 1pU = —¢U.
U (4 B >U, oU 4¢U

Condition (1.1)) yields (Vyl)§ = kpAU, which is expanded with the help
of (L18), 22)(ii) and (E3) (i), giving

(4.19) - (Z + n) PAU = g(AU, oU)B?U.

From we have (Vyul)oU = kg(pAdU, ¢U)E. Rewriting this relation

with the aid of (4.18)), (3.14), (2.3) (i) and (2.2))(i) we obtain 8%g(V4u ¢U, U)U
= (¢/4+ K)g(AU, U)E. The last equation, with ¢/4 + k # 0 and the linear
independence of U, ¢, yields g(AU, ¢U) = 0. Combining g(AU, ¢U) = 0 and
we obtain AU = 0, hence ¢> AU = 0, so —AU + g(AU, £)¢ = 0 and
therefore

(4.20) AU = Be.
Putting X = ¢U, Y = U in (l.1)) and making use of (2.2))(ii), (2.3) (i), (3.14),
(4.18), we have

BOUBIU + Vo = - (§ + ) lA460, 60

IX = 2 [X —n(X)§] - B2g(X,U)U,

(4.18)

Taking the inner product of the above relation with U and ¢U we obtain,
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respectively,
(4.21) (eUB) =0,  g(ApU, ¢U) = 0.

Next we make use of (4.20) and (4.21)) in order to expand (VyA)oU —
(VouA)U = —(c¢/2)€ (which holds due to (2.5))); this leads to

VyApU — AVyoU — BV gué + AVeyU = —gg.

The inner product of the above relation with £, combined with , ,
and (2.3))(i), gives

(4.22) c=2Bg(VyU,¢U).

But from and we have VylU — [VyU = 0, which is expanded,
using (3.14)), (4.18]), (4.20)), to give 2(UB)U + BVyU = 0. The inner prod-
uct of the last equation with ¢U gives g(VyU, ¢U) = 0, which shows, due
to , that ¢ = 0. We have arrived at a contradiction, which means that
Ny = (. From Lemmam and since N1 UNj is open and dense in the closure
of N, we have N = (). So, the real hypersurface M consists only of points
where 8 =0, i.e. M is a Hopf hypersurface. »

5. The classification. Let {e;, pe;, &}, i@ = 1,...,n — 1, be a local
¢-basis. If we had a = 0 then from ([2.4)) it would follow that

(5.1) IX = E[X —(X)E], e = ep  lbe; = %bei.

4
Therefore, putting X =¢;, Y =€ in , and using , , c/i+Kk #0
we get Ae; = 0. In a similar way putting X = ¢e;, Y =€ in we obtain
Age; = 0. So we have shown that A = 0. Applying to X =¢;, Y = ¢e;
we have ¢ = 0, which is a contradiction. Thus, the function a must be
non-zero. According to [NR] the function o must be constant.

Due to symmetry of A, the vector fields Ae;, Age; are decomposed as
follows:

(5.2)  Aei= Z Aijej + Z pijoe;,  Agpe; = Z Hji€j + Z Vijge;,
j j j j

where \;j = g(Ae;,e;) = g(Aej, e;) = Nj; (i # j). In addition, from ([2.4) we

have

¢

4
c c

le; = Zei + ade;, lge; = Z(bei + aAdge;.

Condition (1.1) for X =e;, Y = &, combined with (5.2)), (5.3) and (2.3)(i),
yields

(5.4) <Z + H) pAe; = —aApAe;.

IX = —[X — n(X)€] + aAX — o®’n(X)E,

(5.3)
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The inner product of (5.4) with e; yields
(5.5) iz = 0.
From (1.1) we have V¢ ,le; — IV, ej = —kpui€ (i # j). The inner product of
this relation with &, due to (5.1)) and (2.3))(i), leads to

(5.6) <Z + "6> Mij = a(z pikAje — Y Aik#jk)-
k k
In a similar way, from for X =e;, Y =e; (i # j) we eventually get
(Z + /@) Mji = OZ(Z Mk Ajk — Z /\ik/ﬁjk>-
k k
So from the above equation and we have
(5.7) i = Hji-

Furthermore, the inner product of (5.4) with e; (i # j), with the aid
of (5.2)), leads to

c
(5.8) <4 + ﬂ) pij = a(Z EDS Ajkﬂz‘k)-
k k
Equation (j5.4)) is rewritten as

(Z + H) pAej = —aApAej,

whose the inner product with e; (i # j), due to (5.7) and by similar calcu-

lations, gives
c
- <4 + Fi) Wi = Oé(z Aikhjk — Z )\jkﬂik)-
k k
The last equation and ([5.8) imply that

(5.9) fij = 0.
From (1.1) we get V,lpe; — [V, pe; = k€. The inner product of this
relation with &, due to (5.1)), (5.2), (5.7)), (5.9) and (2.3))(i), leads to

(5.10) <Z + fi) /\ij = -« Z )\ikl/jk:-
k

In a similar way we have V., le; — Ve e; = —kv;;&, the inner product of

which with £ yields
<Z + H) Vz'j = — Z )‘ikyjk-
k

The above relation and (5.10)) lead to
(511) )‘ij == V’L’j
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foralli,j =1,...,n—1. Next we expand V., lpe; — IV, de; = ki€ (i # j),

which holds due to ([L.1]), with the aid of (5.1)), (5.2)), (5.5)), , (5.10)),
getting

(5.12) a(Ve, A)ge; = (2 +r+ a2> €.

Similarly, by expanding of Ve le; — Ve e; = —kAi;€ (i # j) we obtain

(5.13) (Ve Ae; = <Z +I€+O&2> Aij§-

Also from We have (V JA)pe; = (Vge; A)e; (i # j). Therefore, the last

equation, and give
(5.14) <4+m+a2>Aij =0, i#].

Similarly, from Veil(ﬁei - lvei¢€i = Iﬁ/\n’f and V(;beilei - lV¢ei€i = H)\nf we
obtain, respectively, a(V,,A)pe; = (c/4 + k + a?)Ni;€ and a(Vge, A)e; =
—(c/4+ K +a?)\i;€. The last two equations are combined with (V. A)pe; —
(Vge, A)e; = —(¢/2)€ (which holds because of (2.5))) to show

c ac

Evidently, ¢/4 + x4+ a2 # 0, otherwise from we would have ¢ = 0,

which is a contradiction. So from (5.2)), (5.7), . (]5 11)), (5.14), (5.15) we
deduce Ae; = \ye;, Ade; = \j;de;, Where

—ac
c+ 4k + 4a?’

However, the term )\;; is also calculated from , for X = ¢;, Y = oe,
giving Ve,lpe; — IVe,ge, = kA€ The inner product of this equation with

¢ yields A\ = —(¢/4a + k/a). Therefore, from , - Ae; = M\e;,
Age; = A\i;¢e;, we have finally proved

Aci=— =+ e, Agei=—( =+ 2 )ge,
da  « da  «
2
c K
=—|—+—] <0.
" <4a+a)

Differentiating the last equality of along £ we obtain (£k)[2(c/4 + k)
+a?) = 0. If we had (£k) # 0 we would also have 2(¢/4+ k) +a? = 0, which
would mean x = const and ({x) = 0, thus a contradiction.

Therefore (k) = 0 and by a similar reasoning (e;x) = (¢e;x) = 0. This
means that the real hypersurface M has two constant principal curvatures,
a and —(c¢/da+ Kk/a).

(5.16) Aip =

(5.17)
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In case M, (c) = CP", according to [T1], M can only be a geodesic hy-
persphere, with a = 2 cot 2r, —(¢/4a+ k/a) = cot r. The last two equations
lead to cot?r = —k.

In case M, (c) = CH™, based on [M|, M can be a horosphere (type Ap),
a geodesic sphere of radius r, 0 < r < oo (type Ai) or a tube of radius r
around a totally geodesic CH* (1 < k < n—2), where 0 < r < oo (type Aj1).

In type Ay we have
da  « 2

The last two equations lead to x = ¢/4. In type A; o we have

a = vecoth(v/]e| ), —<C+'€>= Mcoth( ’c”).

4o « 2 2

The last two equations lead to

r—lln
Vel

where 4k > c. In type A1 we have

o = vecoth(y/]d] ), _(C+“>:

4o  «

<2\/?/c+1

2/ k/c—1

\/Htanh(mT).

2 2

The last two equations lead to

r =

1 1<1+2\/I£/C>
n
|c] 1—-2y/k/c
where 4k < c.
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