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PRODUCT RULE AND CHAIN RULE ESTIMATES FOR
THE HAJELASZ GRADIENT ON DOUBLING METRIC
MFEASURE SPACES

BY

A. EDUARDO GATTO (Chicago, IL) and CARLOS SEGOVIA (Buenos Aires)

Abstract. We use the Calder6n Maximal Function to prove the Kato—Ponce Product
Rule Estimate and the Christ—Weinstein Chain Rule Estimate for the Hajlasz gradient
on doubling measure metric spaces.

1. Introduction and definitions. In [4] it was shown that the Kato—
Ponce Product Rule Estimate [9] and the Christ—Weinstein Chain Rule Esti-
mate [3] are valid for fractional derivatives on spaces of homogeneous type [5].

Since the Hajlasz gradient [6] is equivalent in L to the Calderon Maxi-
mal Function of order one [1], [2] (see Theorem 1 below), and the Calderén
Maximal Function can be thought of as a “maximal fractional derivative of
integral order”, it is reasonable to expect that both estimates mentioned be-
fore are also valid for the Calder6n Maximal Function and consequently for
the Hajlasz gradient on doubling measure metric spaces. The purpose of this
paper is to prove this claim.

The equivalence between the Hajtasz gradient and the Calderén Maximal
Function is also implicit in [7], where Hajlasz and Kinnunen consider the
sharp maximal function. We give here a direct proof.

We shall say that (X, d, p) is a metric measure space if (X, d) is a metric
space and p is a Borel measure on X. Let B,(z) denote the ball of center
and radius r > 0. If p satisfies the condition

((Bar(x)) < Cpp(By(x))

with a constant Cp independent of x and r, then (X, d, ) will be called a
doubling metric measure space.

Following Hajtasz [6] we shall say that a measurable function f has a
gradient g in LP(X,d, ) if

(1.1) |f(x) = f)] < d(z,y)(9(z) + g(y))
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for all z, y € X. It was shown in [6] that for p > 1 there exists a unique
g = fY in LP satisfying (1.1) and such that

(12) 1771l = inf gl

where the infimum is taken over all g satisfying (1.1). We will call fV the
Hajtasz gradient of f in LP.

Let f be a measurable function and u > 1. We define the Calderon
Mazimal Function N, (f) of order one [1] by

1/u
Nutf) =supt (pts | 1£6) - Fl dutw))

>0 T r(x))

By (x)
We denote by M, u > 1, the Hardy-Littlewood maximal function
1 1/u
Mugx=sup[7 gy“duy} :
D= |y | Lol

We show in Theorem 1 the relationship between £V and N, (f). In The-
orem 2 we prove the main estimate for N, (f) that is needed to obtain the
rules. We prove in Theorem 3 the Product Rule Estimate and in Theorem 4
the Chain Rule Estimate. The letter C' will denote a constant, not necessarily
the same at each occurrence.

2. Theorems and proofs
THEOREM 1. Let (X,d, 1) be a doubling metric measure space, f a mea-
surable function on X, 1 <p < oo, and 1 <u < p.

(a) If f has the Haglasz gradient in LP, then there is a constant Ci(u,p)
such that

INu(H)lp < Crlu, p)IFY [lp-

(b) If Ny(f) is in LP, then fhas the Hajlasz gradient in LP and there is
a constant Ca(u,p) such that

171y < Colu, p) [ Nu(F) -
Proof. We first prove (a). Let g satisfy (1.1). Then

1 vy 1/u
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Dividing both sides by r and taking the supremum over r we get
Nu(f,z) < g(x) + Mu(g)(z).
Since p > u, we have ||M,(9)|, < C(u,p)|lg|lp, thus
INu(f 2)lp < Cr(w, DY [lp-
We now prove (b). Let z,y € X and r = d(z,y). We have

20 1@ - 101 (5o

1/u
(2)) S |f(z) — f(2)[" d,u(z))

By (z)
1 . 1/u
+ (m Brﬂx |f(z) = f() du(Z)>

d(z,y) 1 R . 1/u

<fe (s ACRERT )
d(z,y) [ u(Bar ()] 1 o 1

e el W e L) e =i )

< d(z,y)[2C} " Nu(f,z) + 203 “Nu(f,y)].

Therefore, from (1.1) and (1.2) it follows that
2/u
171l < 2G5 INu( )l =

THEOREM 2. Letl<u<s<ooandl/s=1/p+1/q, 1 <p<oo, 1<
g <oo. If Ny(f) € LP and h € L%, then

1 1 , . 1/u
sup—(m [ 1F@) @) hw) du(y))

r
r>0 B, ()

< ClINu(H)llpllAllq,

S
where C' is a constant independent of f and h.

Proof. We use inequality (2.1) to get

1 1 u g 1/u
;(m | 1£@) — F@)["h)|d <y>)

By (x)
1/u

1 1
S_(m | QUdU(x»y)C%)[Nu(f,x)+Nu(f,y)]U|h(y)|udM(y))

r
By ()

24C2 N - e
< (o | )+ M aut))

B, (z)
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1

1/u
oy ) o)

By ()

< 2N, (f,2)C ”“(

1/u
120 (e | NEC )R] dia(y)
D (M<Br<x>> ) )

< 20" Nu(f, @) Mu(h)(x) + 203 My(Nu(f) - h) ().

Now, taking the supremum on the left hand side, then the L®-norm of both
sides, and using the fact that 1 < u < s < g we obtain

1/ 1 B Y
sup (s ACREIY oy

< ClINu(H)IplMu(R)llg + [Nu(f) - 2lls] < CUNu(F)lIplR]lg- =

THEOREM 3 (Product Rule Estimate). Let 1 < p1,p2 < 00,1 < q1,¢2
<oo,l<s<oo,l<u<sandl/s=1/p, +1/q = 1/p, +1/q,. If
Nu(f) € LPr, Ny(g) € LP2, f € L% and g € LT, then Ny(fg) € L*, and
there is a constant C' independent of f and g such that

INu(f9)lls < CUN(pillgllar + 1Nu(G)lpa [ £l
Proof. We write

S

N(fa)a) = s (ol

1/u
L 1 e - F@e) du))

By (x)
1/u

1 1 w u
< swp (gt § 1) = S auto)

r T
By (x)

1/u
[ 10() - g@) £ ()" d <>)

By (z)

1 1 . . 1/u
< sw (gt § 1) = S aut)

T T
By (x)
+ Nulg, z) f ().
We now compute the L*-norm of both sides, and using Theorem 2 and
Holder’s inequality to estimate the terms on the right hand side, we obtain
INu(f9)ls < CUNu(lpi 19llqr + 1Nu(g)lIp2ll g2 =

THEOREM 4 (Chain Rule Estimate). Let ' € CYC) and H(z) =
SUD|yp|<|2| [F" (w)|, where |F'(w)| denotes |V Re(F)(w)| + |V Im(F)(w)|. Let
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1/s=1/p+1/qg, 1 <s< o0, 1<p<oo, 1<qg<o0, 1<u<s If
Nyu(g) € LY and H o g € LP, then N,(F og) € L*® and

[Nu(F 0 g)lls < ClIH o gl[p[|Nulg)llq
with C' independent of F' and g.
Proof. Observe that

sup |F'(Az1 + (1 — N)22)| < H(z1) + H(22)
0<A<1

for any z1, z2. Then applying the Mean Value Theorem we have
[F(9(y)) — Fg(z))] < Sup. [F'(Ag(y) + (1 = Ng(2))] lg(y) — ()]

< [H(g(y)) + H(g(2))]|g(y) — g(z)|.

Therefore

1 1 y 1/u
Nu(F 0 g.) =sup (- ok I (0(0) = Flata)l* duty))
<sup1(; S |g<y>—g<x>|“H“<g<y>)du<y>)1/u+H<g<z>>N (9.2).
=y M(Br(:c)) B.(2) ul9,

We now compute the L*-norm of both sides, and using Theorem 2 and
Holder’s inequality to estimate the terms on the right hand side, we obtain

[INu(F 0 g)lls < C[lH o gllpl| Nu(g)llq- =

COROLLARY (of Theorem 3). Let LY be the space of functions f such that
f €LP and Nu(f) € LP, 1 <u < p. Then LY NL> is closed under pointwise
multiplication.

Proof. Let f,g € LYNL>. Clearly f-gisin LP N L. On the other hand,
from Theorem 3 with ¢; = g2 = 0o and p; = pa = p we get Ny, (fg) € LP. =

COROLLARY (of Theorem 4, Power Rule Estimate). Let F(z) = 2", n
integer > 1,1/s =1/p+1/¢q, 1 <s<o00,1<p<o0, 1 <qg<o0,1<u<s.
If g" ' € L and N,(g) € L9, then N,(g") € L* and

[Nu(g™)ls < Cn”.gnialHNU(g)HQ’
Proof. This follows from Theorem 4 by observing that H(2) < c,[2"7!|. =

NOTE 1. The explicit formula for H in Theorem 4 was suggested by
Michael Christ (personal communication).

NoOTE 2. The Power Rule Estimate can also be proven directly using
Theorem 2 and Hélder’s inequality, by observing that

n—1
() — g"(4) = (9() — g(y) - (Zgn-l—’%x)gk(y))
k=0
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and that
1 1 n n—k—1 n k
s p (n=1)¢ (n—1)¢
NoOTE 3. Observe that the definition of the Calderén Maximal Function
and inequality (2.1) imply that “f is a Lipschitz function of order 1 if and

only if Ny(f) is in L, and || f[|ip(1) is equivalent to || Ny (f)[loo”™
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