COLLOQUIUM MATHEMATICUM

DOUBLE SINE SERIES WITH NONNEGATIVE COEFFICIENTS AND LIPSCHITZ CLASSES

By
VANDA FÜLÖP (Szeged)

Abstract

Denote by $f_{\mathrm{ss}}(x, y)$ the sum of a double sine series with nonnegative coefficients. We present necessary and sufficient coefficient conditions in order that f_{ss} belongs to the two-dimensional multiplicative Lipschitz class $\operatorname{Lip}(\alpha, \beta)$ for some $0<\alpha \leq 1$ and $0<\beta \leq 1$. Our theorems are extensions of the corresponding theorems by Boas for single sine series.

1. Known results: single sine series. We give a brief summary of the known results for single sine series. Given a sequence $\left\{a_{i}: i=1,2, \ldots\right\}$ of nonnegative numbers such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i}<\infty \tag{1.1}
\end{equation*}
$$

the sum of the sine series

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i} \sin i x=: f_{\mathrm{s}}(x) \tag{1.2}
\end{equation*}
$$

is a continuous function, by uniform convergence.
We recall (see [4, pp. 43-44]) that a periodic function φ belongs to the Lipschitz class $\operatorname{Lip} \alpha$ for some $\alpha>0$ if there exists a constant $C=C(\varphi)$ such that for all x and h we have

$$
|\varphi(x+h)-\varphi(x)| \leq C|h|^{\alpha} .
$$

The following theorems by Boas [1] give necessary and sufficient conditions for a sine series to belong to $\operatorname{Lip} \alpha$, where $0<\alpha \leq 1$.

Theorem A. Let $\left\{a_{i}: i=1,2, \ldots\right\}$ be a sequence of nonnegative numbers such that condition (1.1) is satisfied and let f_{s} be defined by (1.2). If

[^0]$0<\alpha<1$, then $f_{\mathrm{s}} \in \operatorname{Lip} \alpha$ if and only if
\[

$$
\begin{equation*}
\sum_{i=m}^{\infty} a_{i}=O\left(m^{-\alpha}\right), \quad m=1,2, \ldots \tag{1.3}
\end{equation*}
$$

\]

or equivalently

$$
\begin{equation*}
\sum_{i=1}^{m} i a_{i}=O\left(m^{1-\alpha}\right), \quad m=1,2, \ldots \tag{1.4}
\end{equation*}
$$

Theorem B. Let $\left\{a_{i}: i=1,2, \ldots\right\}$ and f_{s} be as in Theorem A. If $\alpha=1$, then $f_{\mathrm{s}} \in \operatorname{Lip} 1$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{m} i a_{i}=O(1), \quad m=1,2, \ldots \tag{1.5}
\end{equation*}
$$

Condition (1.5) formally coincides with (1.4) when applied for $\alpha=1$. However, (1.5) is no longer equivalent to (1.3) for $\alpha=1$.

We note that Theorem A remains valid if we replace f_{s} by f_{c}, where f_{c} is the sum of the cosine series

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i} \cos i x=: f_{\mathrm{c}}(x) \tag{1.6}
\end{equation*}
$$

where $\left\{a_{i}: i=1,2, \ldots\right\}$ is a sequence of nonnegative numbers such that condition (1.1) is satisfied. On the other hand, Theorem B is no longer true for (1.6).
2. New results. From now on, we consider a double sequence $\left\{a_{i j}\right.$: $i, j=1,2, \ldots\}$ of nonnegative numbers such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}<\infty \tag{2.1}
\end{equation*}
$$

The double sine series

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \sin i x \sin j y=: f_{\mathrm{ss}}(x, y) \tag{2.2}
\end{equation*}
$$

converges uniformly, and its sum f_{ss} is a continuous function.
Next, we give the definition of the two-dimensional multiplicative Lipschitz classes $\operatorname{Lip}(\alpha, \beta)$, where $\alpha, \beta>0$. The definition is due to Móricz [3].

A function $\varphi(x, y)$ periodic in each variable is said to belong to the two-dimensional Lipschitz class $\operatorname{Lip}(\alpha, \beta)$ for some $\alpha, \beta>0$ if there exists a constant $C=C(\varphi)$ such that for all x, y, h and k, we have

$$
\begin{equation*}
|\varphi(x+h, y+k)-\varphi(x+h, y)-\varphi(x, y+k)+\varphi(x, y)| \leq C|h|^{\alpha}|k|^{\beta} \tag{2.3}
\end{equation*}
$$

Motivated by the one-variable case, Theorems $1-3$ below are the extensions of Theorems A and B to double sine series, in which $\left\{a_{i j}: i, j=\right.$ $1,2, \ldots\}$ is a double sequence of nonnegative numbers such that condition (2.1) is satisfied and f_{ss} is defined by (2.2).

Theorem 1. If $0<\alpha, \beta<1$, then $f_{\mathrm{ss}} \in \operatorname{Lip}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{i=m}^{\infty} \sum_{j=n}^{\infty} a_{i j}=O\left(m^{-\alpha} n^{-\beta}\right), \quad m, n=1,2, \ldots \tag{2.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j}=O\left(m^{1-\alpha} n^{1-\beta}\right), \quad m, n=1,2, \ldots \tag{2.5}
\end{equation*}
$$

The equivalence of (2.4) and (2.5) follows from the Lemma below when applied for $\gamma=\delta=1, \mu=1-\alpha, \nu=1-\beta$.

THEOREM 2. If $\alpha=\beta=1$, then $f_{\mathrm{ss}} \in \operatorname{Lip}(1,1)$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j}=O(1), \quad m, n=1,2, \ldots \tag{2.6}
\end{equation*}
$$

We observe that (2.6) formally coincides with (2.5) when $\alpha=\beta=1$, but it is not equivalent to (2.4) when $\alpha=\beta=1$.

Theorem 3. If $0<\alpha<1$ and $\beta=1$, then $f_{\mathrm{ss}} \in \operatorname{Lip}(\alpha, 1)$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j}=O\left(m^{1-\alpha}\right), \quad m, n=1,2, \ldots \tag{2.7}
\end{equation*}
$$

The proof of Theorem 3 combines the methods of proof of Theorems 1 and 2.

We note that the symmetric counterpart of Theorem 3 gives a criterion for f_{ss} to belong to $\operatorname{Lip}(1, \beta)$ for $0<\beta<1$.

Analysis of the proof of Theorem 1 shows that the sums

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \sin i x \cos j y=: f_{\mathrm{sc}}(x, y) \\
& \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \cos i x \sin j y=: f_{\mathrm{cs}}(x, y)
\end{aligned}
$$

and

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \cos i x \cos j y=: f_{\mathrm{cc}}(x, y)
$$

of sine-cosine, cosine-sine and double cosine series belong to $\operatorname{Lip}(\alpha, \beta)$ when $0<\alpha, \beta<1$ if and only if (2.4) or equivalently (2.5) is satisfied. On the other hand, an analogous reformulation of Theorems 2 and 3 is no longer true for them when $\alpha=\beta=1$ or $0<\alpha<1, \beta=1$ or $\alpha=1,0<\beta<1$.

It is not difficult to check that in Theorem $1-3$ it is enough to require the fulfilment of conditions (2.4)-(2.7) for large enough m and n, say $m>n_{0}$ and $n>n_{0}$, where n_{0} is some positive integer.

The following auxiliary result plays a key role in the proofs of Theorem $1-3$. This lemma is an extension of the corresponding one by Boas [1, Lemma 1] to double series of nonnegative numbers.

Lemma. Let $a_{i j} \geq 0, i, j=1,2, \ldots$. If $\gamma>\mu \geq 0, \delta>\nu \geq 0$ and

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} i^{\gamma} j^{\delta} a_{i j}=O\left(m^{\mu} n^{\nu}\right), \quad m, n=1,2, \ldots
$$

then

$$
\sum_{i=m}^{\infty} \sum_{j=n}^{\infty} a_{i j}=O\left(m^{\mu-\gamma} n^{\nu-\delta}\right), \quad m, n=1,2, \ldots
$$

If $\gamma>\mu>0$ and $\delta>\nu>0$, then the converse implication is also valid.
This lemma was proved in [2, Lemma 1] in the particular case when $\mu-\gamma=\nu-\delta=-1$. In the more general case of the Lemma above, the proof is analogous.

3. Proof of Theorem 1

(i) Sufficiency. Assume that conditions (2.4) or equivalently (2.5) hold, that is, there exist constants K and K_{1} such that

$$
\begin{equation*}
\sum_{i=m}^{\infty} \sum_{j=n}^{\infty} a_{i j} \leq \frac{K}{m^{\alpha} n^{\beta}}, \quad m, n=1,2, \ldots \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j} \leq K_{1} m^{1-\alpha} n^{1-\beta}, \quad m, n=1,2, \ldots \tag{3.2}
\end{equation*}
$$

We claim that then $f_{\text {ss }} \in \operatorname{Lip}(\alpha, \beta)$. Clearly, we have

$$
\begin{aligned}
f_{\mathrm{ss}}(x+2 h, y+2 k) & -f_{\mathrm{ss}}(x+2 h, y)-f_{\mathrm{ss}}(x, y+2 k)+f_{\mathrm{Ss}}(x, y) \\
& =4 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \cos i(x+h) \sin i h \cos j(y+k) \sin j k
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \left|f_{\mathrm{ss}}(x+2 h, y+2 k)-f_{\mathrm{ss}}(x+2 h, y)-f_{\mathrm{ss}}(x, y+2 k)+f_{\mathrm{ss}}(x, y)\right| \tag{3.3}\\
\leq & 4 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}|\sin i h||\sin j k| \\
= & 4\left\{\sum_{i=1}^{m} \sum_{j=1}^{n}+\sum_{i=m+1}^{\infty} \sum_{j=1}^{n}+\sum_{i=1}^{m} \sum_{j=n+1}^{\infty}+\sum_{i=m+1}^{\infty} \sum_{j=n+1}^{\infty}\right\} a_{i j}|\sin i h||\sin j k| \\
= & : S_{1}+S_{2}+S_{3}+S_{4}, \quad \text { where } m:=[1 /|h|], n:=[1 /|k|],
\end{align*}
$$

where [.] denotes the integer part.
First, we estimate S_{1} as follows:

$$
S_{1} \leq 4 \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}|i h||j k|=4|h||k| \sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j} .
$$

By (3.2), we immediately get

$$
\begin{equation*}
S_{1} \leq 4|h||k| K_{1} m^{1-\alpha} n^{1-\beta} \leq 4 K_{1}|h|^{\alpha}|k|^{\beta} . \tag{3.4}
\end{equation*}
$$

Second, we consider S_{2}. It is clear that

$$
\begin{equation*}
S_{2} \leq 4|k| \sum_{i=m+1}^{\infty} \sum_{j=1}^{n} j a_{i j} . \tag{3.5}
\end{equation*}
$$

Let N be an arbitrary integer such that $1 \leq n<N$. A summation by parts with respect to j gives that

$$
\sum_{i=m+1}^{\infty} \sum_{j=1}^{n} j a_{i j}=\sum_{i=m+1}^{\infty}\left\{\sum_{j_{1}=1}^{n} \sum_{j=j_{1}}^{N} a_{i j}-n \sum_{j=n+1}^{N} a_{i j}\right\} \leq \sum_{i=m+1}^{\infty} \sum_{j_{1}=1}^{n} \sum_{j=j_{1}}^{N} a_{i j},
$$

whence by (3.1), if we let N tend to ∞, (3.5) can be estimated as follows:

$$
\begin{align*}
S_{2} & \leq 4|k| \sum_{j_{1}=1}^{n} \sum_{i=m+1}^{\infty} \sum_{j=j_{1}}^{\infty} a_{i j} \leq 4|k| \sum_{j_{1}=1}^{n} \frac{K}{(m+1)^{\alpha} j_{1}^{\beta}} \tag{3.6}\\
& \leq 4 K|h|^{\alpha}|k| \sum_{j_{1}=1}^{n} \frac{1}{j_{1}^{\beta}} .
\end{align*}
$$

If $0<\beta<1$, then

$$
\sum_{j_{1}=1}^{n} \frac{1}{j_{1}^{\beta}} \leq \int_{0}^{n} \frac{1}{x^{\beta}} d x=\frac{n^{1-\beta}}{1-\beta} .
$$

Hence by (3.6) we find that

$$
\begin{equation*}
S_{2} \leq 4 K|h|^{\alpha}|k| \frac{n^{1-\beta}}{1-\beta} \leq \frac{4 K}{1-\beta}|h|^{\alpha}|k|^{\beta} . \tag{3.7}
\end{equation*}
$$

Third, S_{3} is the symmetric counterpart of S_{2}, and can be estimated analogously:

$$
\begin{equation*}
S_{3} \leq \frac{4 K}{1-\alpha}|h|^{\alpha}|k|^{\beta} \tag{3.8}
\end{equation*}
$$

Fourth, the estimate of S_{4} is quite simple. By (3.1), we have

$$
\begin{equation*}
S_{4} \leq 4 \sum_{i=m+1}^{\infty} \sum_{j=n+1}^{\infty} a_{i j} \leq 4 \frac{K}{(m+1)^{\alpha}(n+1)^{\beta}} \leq 4 K|h|^{\alpha}|k|^{\beta} \tag{3.9}
\end{equation*}
$$

Combining (3.3), (3.4), (3.7)-(3.9) shows that $f_{\mathrm{ss}} \in \operatorname{Lip}(\alpha, \beta)$.
(ii) Necessity. Now we assume that $f_{\mathrm{ss}} \in \operatorname{Lip}(\alpha, \beta)$, that is, (2.3) holds for $\varphi=f_{\mathrm{ss}}$. Let $0<h, k \leq 1$ and put $x=y=0$ in (2.3). We obtain

$$
\left|f_{\mathrm{ss}}(h, k)-f_{\mathrm{ss}}(h, 0)-f_{\mathrm{ss}}(0, k)+f_{\mathrm{ss}}(0,0)\right|=\left|f_{\mathrm{ss}}(h, k)\right| \leq C h^{\alpha} k^{\beta}
$$

whence

$$
\begin{equation*}
\left|f_{\mathrm{ss}}(x, y)\right|=\left|\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \sin i x \sin j y\right| \leq C x^{\alpha} y^{\beta}, \quad x>0, y>0 \tag{3.10}
\end{equation*}
$$

By uniform convergence (due to (2.1)), the double series in the middle can be integrated term by term with respect to x over the interval $(0, h)$:

$$
\left|\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \sin j y \int_{0}^{h} \sin i x d x\right| \leq C y^{\beta} \int_{0}^{h} x^{\alpha} d x
$$

which gives

$$
\left|\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \sin j y \frac{1-\cos i h}{i}\right| \leq \frac{C}{\alpha+1} y^{\beta} h^{\alpha+1}
$$

Integrating again term by term, this time with respect to y over $(0, k)$, we find that

$$
\begin{align*}
& \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j} \frac{1-\cos i h}{i} \frac{1-\cos j k}{j} \tag{3.11}\\
& \quad=4 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{i j} a_{i j} \sin ^{2} \frac{i h}{2} \sin ^{2} \frac{j k}{2} \leq \frac{C}{(\alpha+1)(\beta+1)} h^{\alpha+1} k^{\beta+1}
\end{align*}
$$

By the known inequality

$$
\sin t \geq \frac{2}{\pi} t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

we obtain

$$
\sin ^{2} \frac{i h}{2} \geq\left(\frac{2}{\pi} \frac{i h}{2}\right)^{2}=\frac{i^{2} h^{2}}{\pi^{2}}, \quad i=1,2, \ldots,[1 / h]=: m
$$

and

$$
\sin ^{2} \frac{j k}{2} \geq \frac{j^{2} k^{2}}{\pi^{2}}, \quad j=1,2, \ldots,[1 / k]=: n
$$

From (3.11) and the last two inequalities we get

$$
\begin{align*}
& \frac{4 h^{2} k^{2}}{\pi^{4}} \sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j}=4 \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{i j} a_{i j} \frac{i^{2} h^{2}}{\pi^{2}} \frac{j^{2} k^{2}}{\pi^{2}} \tag{3.12}\\
& \quad \leq 4 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{i j} a_{i j} \sin ^{2} \frac{i h}{2} \sin ^{2} \frac{j k}{2} \leq \frac{C}{(\alpha+1)(\beta+1)} h^{\alpha+1} k^{\beta+1}
\end{align*}
$$

Hence we conclude that

$$
\begin{aligned}
& \sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j} \leq \frac{C \pi^{4}}{4(\alpha+1)(\beta+1)} h^{\alpha-1} k^{\beta-1} \\
& \quad \leq \frac{C \pi^{4}}{4(\alpha+1)(\beta+1)}(m+1)^{1-\alpha}(n+1)^{1-\beta} \leq \frac{2^{2-\alpha-\beta} C \pi^{4}}{4(\alpha+1)(\beta+1)} m^{1-\alpha} n^{1-\beta} .
\end{aligned}
$$

This is (2.5), which was to be proved.
The proof of Theorem 1 is complete.

4. Proof of Theorem 2

(iii) Sufficiency. Suppose that (2.6) holds: there exists a constant K such that

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j} \leq K, \quad m=1,2, \ldots \tag{4.1}
\end{equation*}
$$

By the Lemma of Section 2 with $\gamma=\delta=1, \mu=\nu=0$, there exists a constant K_{1} such that

$$
\begin{equation*}
\sum_{i=m}^{\infty} \sum_{j=n}^{\infty} a_{i j} \leq \frac{K_{1}}{m n}, \quad m, n=1,2, \ldots \tag{4.2}
\end{equation*}
$$

We claim that $f_{\text {ss }} \in \operatorname{Lip}(1,1)$.
We start with the same estimate (3.3) as in part (i) of the proof of Theorem 1:

$$
\begin{align*}
& \mid f_{\mathrm{ss}}(x+2 h, y+2 k)-f_{\mathrm{ss}}(x+2 h, y)-f_{\mathrm{ss}}(x, y+2 k)+f_{\mathrm{ss}}(x, y) \mid \tag{4.3}\\
& \leq S_{1}+S_{2}+S_{3}+S_{4}
\end{align*}
$$

where the S_{i} are defined in (3.3).
We can estimate S_{1} and S_{4} as in part (i), except that this time we use (4.1) and (4.2) instead of (3.1) and (3.2). As a result, we obtain

$$
\begin{equation*}
S_{1} \leq 4 K|h||k| \quad \text { and } \quad S_{4} \leq 4 K_{1}|h||k| . \tag{4.4}
\end{equation*}
$$

On the other hand, S_{2} and S_{3} will be estimated in a different way. First, we deal with S_{2}. It is clear that

$$
\begin{equation*}
S_{2} \leq 4|k| \sum_{i=m+1}^{\infty} \sum_{j=1}^{n} j a_{i j}=4|k| \sum_{j=1}^{n} j \sum_{i=m+1}^{\infty} a_{i j} \tag{4.5}
\end{equation*}
$$

In order to estimate the right-hand side, we consider the following partial sum:

$$
\sum_{j=1}^{n} j \sum_{i=m}^{M} a_{i j}=\sum_{j=1}^{n} j \sum_{i=m}^{M} i^{-1}\left(i a_{i j}\right)
$$

where M is an arbitrary integer for which $2 \leq m<M$. A summation by parts, this time with respect to i, gives

$$
\begin{aligned}
& \sum_{j=1}^{n} j \sum_{i=m}^{M} i^{-1}\left(i a_{i j}\right) \\
& \quad=\sum_{j=1}^{n} j\left\{-\frac{1}{m} \sum_{i=1}^{m-1} i a_{i j}+\sum_{i_{1}=m}^{M-1}\left(\frac{1}{i_{1}}-\frac{1}{i_{1}+1}\right) \sum_{i=1}^{i_{1}} i a_{i j}+\frac{1}{M} \sum_{i=1}^{M} i a_{i j}\right\} \\
& \quad \leq \sum_{i_{1}=m}^{M-1} \frac{1}{i_{1}^{2}} \sum_{i=1}^{i_{1}} \sum_{j=1}^{n} i j a_{i j}+\frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{n} i j a_{i j}
\end{aligned}
$$

By (4.1) it follows that the last expression is not greater than

$$
K \sum_{i_{1}=m}^{M-1} \frac{1}{i_{1}^{2}}+K \frac{1}{M} \leq K \frac{1}{m-1}+K \frac{1}{M} \leq K \frac{3}{m+1}+K \frac{1}{M}
$$

whence, letting M tend to ∞, we obtain

$$
\begin{equation*}
\sum_{j=1}^{n} j \sum_{i=m}^{\infty} a_{i j} \leq 3 K \frac{1}{m+1} \tag{4.6}
\end{equation*}
$$

Putting together (4.5) and (4.6) yields

$$
\begin{equation*}
S_{2} \leq 4|k| 3 K \frac{1}{m+1} \leq 12 K|h||k| \tag{4.7}
\end{equation*}
$$

Since S_{3} is a symmetric counterpart of S_{2}, an analogous reasoning yields

$$
\begin{equation*}
S_{3} \leq 12 K|h||k| \tag{4.8}
\end{equation*}
$$

Combining (4.3), (4.4), (4.7) and (4.8) gives that $f_{\mathrm{ss}} \in \operatorname{Lip}(1,1)$.
(iv) Necessity. Now we assume that $f_{\text {ss }} \in \operatorname{Lip}(1,1)$. Clearly, inequality (3.10) in part (ii) of the proof of Theorem 1 holds in the case when $\alpha=\beta$ $=1$. Furthermore, we can also repeat the reasoning of part (ii) in this case
(see (3.11) and (3.12)). As a result, we find that

$$
\frac{4 h^{2} k^{2}}{\pi^{4}} \sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j} \leq \frac{C}{4} h^{2} k^{2}
$$

whence it follows that

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} i j a_{i j} \leq \frac{C \pi^{4}}{16}, \quad m, n=1,2, \ldots
$$

This is (2.6), which was to be proved.
The proof of Theorem 2 is complete.
5. Proof of Theorem 3. The proof is a combination of certain steps from the proofs of Theorems 1 and 2.
(v) Sufficiency. Assume that (2.7) holds. An application of the Lemma of Section 2 with $\gamma=\delta=1, \mu=1-\alpha$ and $\nu=0$ gives

$$
\begin{equation*}
\sum_{i=m}^{\infty} \sum_{j=n}^{\infty} a_{i j}=O\left(\frac{1}{m^{\alpha} n}\right), \quad m, n=1,2, \ldots \tag{5.1}
\end{equation*}
$$

To see that $f_{\mathrm{ss}} \in \operatorname{Lip}(\alpha, 1)$, again we make use of estimate (3.3). Clearly, inequalities (3.4) for S_{1} and (3.9) for S_{4} hold in case $0<\alpha<1$ and $\beta=1$. To estimate S_{2}, we essentially repeat the reasoning from part (iii) of the proof of Theorem 2, while using (2.7). As a result, we obtain

$$
\begin{equation*}
S_{2} \leq 4|k| \frac{2^{\alpha}}{\alpha} 2 K \frac{1}{(m+1)^{\alpha}} \leq 8 \frac{2^{\alpha}}{\alpha} K|h|^{\alpha}|k| \tag{5.2}
\end{equation*}
$$

(cf. (4.7)). To estimate S_{3}, we essentially repeat the reasoning of part (i) of the proof of Theorem 1, using (5.1). As a result, we have

$$
\begin{equation*}
S_{3} \leq \frac{4 K_{1}}{1-\alpha}|h|^{\alpha}|k| \tag{5.3}
\end{equation*}
$$

(cf. (3.8)). To sum up, by (3.3), (3.4) and (3.9) (the last two inequalities in the case when $0<\alpha<1$ and $\beta=1$), (5.2) and (5.3), we find that $f_{\mathrm{ss}} \in \operatorname{Lip}(\alpha, 1)$.
(vi) Necessity. It is essentially a repetition of part (ii) of the proof of Theorem 1 in the case when $0<\alpha<1$ and $\beta=1$ (see also part (iv) of the proof of Theorem 2). We omit the details.

The proof of Theorem 3 is complete.
6. Concluding remark. The sufficiency part of Theorem B was proved by Boas [1] in a different way. Namely, Boas made use of the familiar theorem on termwise differentiation of an infinite series of differentiable functions
when the differentiated series is uniformly convergent on a finite interval. Our method provides a new proof of the sufficiency part of Theorem B.

Acknowledgements. The author wishes to express her gratitude to Professor Ferenc Móricz for many insightful conversations and constant support.

REFERENCES

[1] R. P. Boas, Jr., Fourier series with positive coefficients, J. Math. Anal. Appl. 17 (1967), 463-483.
[2] V. Fülöp, Double sine and cosine-sine series with nonnegative coefficients, Acta Sci. Math. (Szeged) 70 (2004), 101-116.
[3] F. Móricz, private communication.
[4] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

Bolyai Institute
University of Szeged
Aradi vértanúk tere 1
6720 Szeged, Hungary
E-mail: fulopv@math.u-szeged.hu
revised 24 March 2005

[^0]: 2000 Mathematics Subject Classification: 42B05, 42A16.
 Key words and phrases: double sine series with nonnegative coefficients, multiplicative Lipschitz classes, coefficient conditions.

 This research was supported by the Hungarian National Foundation for Scientific Research under Grants TS 044782 and T 046192.

