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DOUBLE SINE SERIES WITH NONNEGATIVE COEFFICIENTS

AND LIPSCHITZ CLASSES

BY

VANDA FÜLÖP (Szeged)

Abstract. Denote by fss(x, y) the sum of a double sine series with nonnegative coef-
ficients. We present necessary and sufficient coefficient conditions in order that fss belongs
to the two-dimensional multiplicative Lipschitz class Lip(α, β) for some 0 < α ≤ 1 and
0 < β ≤ 1. Our theorems are extensions of the corresponding theorems by Boas for single
sine series.

1. Known results: single sine series. We give a brief summary of
the known results for single sine series. Given a sequence {ai : i = 1, 2, . . .}
of nonnegative numbers such that

(1.1)
∞
∑

i=1

ai <∞,

the sum of the sine series

(1.2)

∞
∑

i=1

ai sin ix =: fs(x)

is a continuous function, by uniform convergence.
We recall (see [4, pp. 43–44]) that a periodic function ϕ belongs to the

Lipschitz class Lipα for some α > 0 if there exists a constant C = C(ϕ)
such that for all x and h we have

|ϕ(x+ h)− ϕ(x)| ≤ C|h|α.

The following theorems by Boas [1] give necessary and sufficient conditions
for a sine series to belong to Lipα, where 0 < α ≤ 1.

Theorem A. Let {ai : i = 1, 2, . . .} be a sequence of nonnegative num-
bers such that condition (1.1) is satisfied and let fs be defined by (1.2). If
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0 < α < 1, then fs ∈ Lipα if and only if

(1.3)
∞
∑

i=m

ai = O(m
−α), m = 1, 2, . . . ;

or equivalently

(1.4)
m
∑

i=1

iai = O(m
1−α), m = 1, 2, . . . .

Theorem B. Let {ai : i = 1, 2, . . .} and fs be as in Theorem A. If α = 1,
then fs ∈ Lip 1 if and only if

(1.5)
m
∑

i=1

iai = O(1), m = 1, 2, . . . .

Condition (1.5) formally coincides with (1.4) when applied for α = 1.
However, (1.5) is no longer equivalent to (1.3) for α = 1.

We note that Theorem A remains valid if we replace fs by fc, where fc
is the sum of the cosine series

(1.6)

∞
∑

i=1

ai cos ix =: fc(x),

where {ai : i = 1, 2, . . .} is a sequence of nonnegative numbers such that
condition (1.1) is satisfied. On the other hand, Theorem B is no longer true
for (1.6).

2. New results. From now on, we consider a double sequence {aij :
i, j = 1, 2, . . .} of nonnegative numbers such that

(2.1)
∞
∑

i=1

∞
∑

j=1

aij <∞.

The double sine series

(2.2)
∞
∑

i=1

∞
∑

j=1

aij sin ix sin jy =: fss(x, y)

converges uniformly, and its sum fss is a continuous function.

Next, we give the definition of the two-dimensional multiplicative Lips-
chitz classes Lip(α, β), where α, β > 0. The definition is due to Móricz [3].

A function ϕ(x, y) periodic in each variable is said to belong to the
two-dimensional Lipschitz class Lip(α, β) for some α, β > 0 if there exists a
constant C = C(ϕ) such that for all x, y, h and k, we have

(2.3) |ϕ(x+ h, y + k)− ϕ(x+ h, y)− ϕ(x, y + k) + ϕ(x, y)| ≤ C|h|α|k|β.
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Motivated by the one-variable case, Theorems 1–3 below are the exten-
sions of Theorems A and B to double sine series, in which {aij : i, j =
1, 2, . . .} is a double sequence of nonnegative numbers such that condition
(2.1) is satisfied and fss is defined by (2.2).

Theorem 1. If 0 < α, β < 1, then fss ∈ Lip(α, β) if and only if

(2.4)
∞
∑

i=m

∞
∑

j=n

aij = O(m
−αn−β), m, n = 1, 2, . . . ;

or equivalently

(2.5)
m
∑

i=1

n
∑

j=1

ijaij = O(m
1−αn1−β), m, n = 1, 2, . . . .

The equivalence of (2.4) and (2.5) follows from the Lemma below when
applied for γ = δ = 1, µ = 1− α, ν = 1− β.

Theorem 2. If α = β = 1, then fss ∈ Lip(1, 1) if and only if

(2.6)
m
∑

i=1

n
∑

j=1

ijaij = O(1), m, n = 1, 2, . . . .

We observe that (2.6) formally coincides with (2.5) when α = β = 1, but
it is not equivalent to (2.4) when α = β = 1.

Theorem 3. If 0 < α < 1 and β = 1, then fss ∈ Lip(α, 1) if and only if

(2.7)
m
∑

i=1

n
∑

j=1

ijaij = O(m
1−α), m, n = 1, 2, . . . .

The proof of Theorem 3 combines the methods of proof of Theorems 1
and 2.

We note that the symmetric counterpart of Theorem 3 gives a criterion
for fss to belong to Lip(1, β) for 0 < β < 1.

Analysis of the proof of Theorem 1 shows that the sums
∞
∑

i=1

∞
∑

j=1

aij sin ix cos jy =: fsc(x, y),

∞
∑

i=1

∞
∑

j=1

aij cos ix sin jy =: fcs(x, y)

and
∞
∑

i=1

∞
∑

j=1

aij cos ix cos jy =: fcc(x, y),
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of sine-cosine, cosine-sine and double cosine series belong to Lip(α, β) when
0 < α, β < 1 if and only if (2.4) or equivalently (2.5) is satisfied. On the
other hand, an analogous reformulation of Theorems 2 and 3 is no longer
true for them when α = β = 1 or 0 < α < 1, β = 1 or α = 1, 0 < β < 1.
It is not difficult to check that in Theorem 1–3 it is enough to require the

fulfilment of conditions (2.4)–(2.7) for large enough m and n, say m > n0
and n > n0, where n0 is some positive integer.
The following auxiliary result plays a key role in the proofs of Theorem

1–3. This lemma is an extension of the corresponding one by Boas [1,
Lemma 1] to double series of nonnegative numbers.

Lemma. Let aij ≥ 0, i, j = 1, 2, . . . . If γ > µ ≥ 0, δ > ν ≥ 0 and

m
∑

i=1

n
∑

j=1

iγjδaij = O(m
µnν), m, n = 1, 2, . . . ,

then
∞
∑

i=m

∞
∑

j=n

aij = O(m
µ−γnν−δ), m, n = 1, 2, . . . .

If γ > µ > 0 and δ > ν > 0, then the converse implication is also valid.

This lemma was proved in [2, Lemma 1] in the particular case when
µ−γ = ν−δ = −1. In the more general case of the Lemma above, the proof
is analogous.

3. Proof of Theorem 1

(i) Sufficiency. Assume that conditions (2.4) or equivalently (2.5) hold,
that is, there exist constants K and K1 such that

(3.1)

∞
∑

i=m

∞
∑

j=n

aij ≤
K

mαnβ
, m, n = 1, 2, . . . ,

and

(3.2)
m
∑

i=1

n
∑

j=1

ijaij ≤ K1m
1−αn1−β , m, n = 1, 2, . . . .

We claim that then fss ∈ Lip(α, β). Clearly, we have

fss(x+ 2h, y + 2k)− fss(x+ 2h, y)− fss(x, y + 2k) + fss(x, y)

= 4

∞
∑

i=1

∞
∑

j=1

aij cos i(x+ h) sin ih cos j(y + k) sin jk.

It follows that
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(3.3) |fss(x+ 2h, y + 2k)− fss(x+ 2h, y)− fss(x, y + 2k) + fss(x, y)|

≤ 4
∞
∑

i=1

∞
∑

j=1

aij |sin ih| |sin jk|

= 4
{

m
∑

i=1

n
∑

j=1

+
∞
∑

i=m+1

n
∑

j=1

+
m
∑

i=1

∞
∑

j=n+1

+
∞
∑

i=m+1

∞
∑

j=n+1

}

aij |sin ih| |sin jk|

=: S1 + S2 + S3 + S4, where m := [1/|h|], n := [1/|k|],

where [·] denotes the integer part.

First, we estimate S1 as follows:

S1 ≤ 4
m
∑

i=1

n
∑

j=1

aij |ih| |jk| = 4|h| |k|
m
∑

i=1

n
∑

j=1

ijaij .

By (3.2), we immediately get

(3.4) S1 ≤ 4|h| |k|K1m
1−αn1−β ≤ 4K1|h|

α|k|β.

Second, we consider S2. It is clear that

(3.5) S2 ≤ 4|k|
∞
∑

i=m+1

n
∑

j=1

jaij .

Let N be an arbitrary integer such that 1 ≤ n < N. A summation by parts
with respect to j gives that

∞
∑

i=m+1

n
∑

j=1

jaij =
∞
∑

i=m+1

{

n
∑

j1=1

N
∑

j=j1

aij − n
N
∑

j=n+1

aij

}

≤
∞
∑

i=m+1

n
∑

j1=1

N
∑

j=j1

aij ,

whence by (3.1), if we let N tend to ∞, (3.5) can be estimated as follows:

S2 ≤ 4|k|

n
∑

j1=1

∞
∑

i=m+1

∞
∑

j=j1

aij ≤ 4|k|

n
∑

j1=1

K

(m+ 1)αjβ1
(3.6)

≤ 4K|h|α|k|
n
∑

j1=1

1

jβ1
.

If 0 < β < 1, then
n
∑

j1=1

1

jβ1
≤

n\
0

1

xβ
dx =

n1−β

1− β
.

Hence by (3.6) we find that

(3.7) S2 ≤ 4K|h|
α|k|
n1−β

1− β
≤
4K

1− β
|h|α|k|β.
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Third, S3 is the symmetric counterpart of S2, and can be estimated
analogously:

(3.8) S3 ≤
4K

1− α
|h|α|k|β.

Fourth, the estimate of S4 is quite simple. By (3.1), we have

(3.9) S4 ≤ 4
∞
∑

i=m+1

∞
∑

j=n+1

aij ≤ 4
K

(m+ 1)α(n+ 1)β
≤ 4K|h|α|k|β.

Combining (3.3), (3.4), (3.7)–(3.9) shows that fss ∈ Lip(α, β).

(ii) Necessity. Now we assume that fss ∈ Lip(α, β), that is, (2.3) holds
for ϕ = fss. Let 0 < h, k ≤ 1 and put x = y = 0 in (2.3). We obtain

|fss(h, k)− fss(h, 0)− fss(0, k) + fss(0, 0)| = |fss(h, k)| ≤ Ch
αkβ ,

whence

(3.10) |fss(x, y)| =
∣

∣

∣

∞
∑

i=1

∞
∑

j=1

aij sin ix sin jy
∣

∣

∣
≤ Cxαyβ, x > 0, y > 0.

By uniform convergence (due to (2.1)), the double series in the middle can
be integrated term by term with respect to x over the interval (0, h):

∣

∣

∣

∞
∑

i=1

∞
∑

j=1

aij sin jy

h\
0

sin ix dx
∣

∣

∣
≤ Cyβ

h\
0

xα dx,

which gives
∣

∣

∣

∞
∑

i=1

∞
∑

j=1

aij sin jy
1− cos ih

i

∣

∣

∣
≤
C

α+ 1
yβ hα+1.

Integrating again term by term, this time with respect to y over (0, k), we
find that

(3.11)

∞
∑

i=1

∞
∑

j=1

aij
1− cos ih

i

1− cos jk

j

= 4
∞
∑

i=1

∞
∑

j=1

1

ij
aij sin

2 ih

2
sin2
jk

2
≤

C

(α+ 1)(β + 1)
hα+1kβ+1.

By the known inequality

sin t ≥
2

π
t, 0 ≤ t ≤

π

2
,

we obtain

sin2
ih

2
≥

(

2

π

ih

2

)2

=
i2h2

π2
, i = 1, 2, . . . , [1/h] =: m,
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and

sin2
jk

2
≥
j2k2

π2
, j = 1, 2, . . . , [1/k] =: n.

From (3.11) and the last two inequalities we get

(3.12)
4h2k2

π4

m
∑

i=1

n
∑

j=1

ijaij = 4

m
∑

i=1

n
∑

j=1

1

ij
aij
i2h2

π2
j2k2

π2

≤ 4
∞
∑

i=1

∞
∑

j=1

1

ij
aij sin

2 ih

2
sin2
jk

2
≤

C

(α+ 1)(β + 1)
hα+1kβ+1.

Hence we conclude that
m
∑

i=1

n
∑

j=1

ijaij ≤
Cπ4

4(α+ 1)(β + 1)
hα−1kβ−1

≤
Cπ4

4(α+ 1)(β + 1)
(m+ 1)1−α(n+ 1)1−β ≤

22−α−βCπ4

4(α+ 1)(β + 1)
m1−αn1−β .

This is (2.5), which was to be proved.
The proof of Theorem 1 is complete.

4. Proof of Theorem 2

(iii) Sufficiency. Suppose that (2.6) holds: there exists a constantK such
that

(4.1)
m
∑

i=1

n
∑

j=1

ijaij ≤ K, m = 1, 2, . . . .

By the Lemma of Section 2 with γ = δ = 1, µ = ν = 0, there exists a
constant K1 such that

(4.2)

∞
∑

i=m

∞
∑

j=n

aij ≤
K1
mn
, m, n = 1, 2, . . . .

We claim that fss ∈ Lip(1, 1).
We start with the same estimate (3.3) as in part (i) of the proof of

Theorem 1:

(4.3) |fss(x+ 2h, y + 2k)− fss(x+ 2h, y)− fss(x, y + 2k) + fss(x, y)|

≤ S1 + S2 + S3 + S4,

where the Si are defined in (3.3).
We can estimate S1 and S4 as in part (i), except that this time we use

(4.1) and (4.2) instead of (3.1) and (3.2). As a result, we obtain

(4.4) S1 ≤ 4K|h| |k| and S4 ≤ 4K1|h| |k|.
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On the other hand, S2 and S3 will be estimated in a different way. First,
we deal with S2. It is clear that

(4.5) S2 ≤ 4|k|
∞
∑

i=m+1

n
∑

j=1

jaij = 4|k|
n
∑

j=1

j
∞
∑

i=m+1

aij .

In order to estimate the right-hand side, we consider the following partial
sum:

n
∑

j=1

j
M
∑

i=m

aij =
n
∑

j=1

j
M
∑

i=m

i−1(iaij),

where M is an arbitrary integer for which 2 ≤ m < M. A summation by
parts, this time with respect to i, gives

n
∑

j=1

j
M
∑

i=m

i−1(iaij)

=
n
∑

j=1

j

{

−
1

m

m−1
∑

i=1

iaij +
M−1
∑

i1=m

(

1

i1
−
1

i1 + 1

) i1
∑

i=1

iaij +
1

M

M
∑

i=1

iaij

}

≤
M−1
∑

i1=m

1

i21

i1
∑

i=1

n
∑

j=1

ijaij +
1

M

M
∑

i=1

n
∑

j=1

ijaij .

By (4.1) it follows that the last expression is not greater than

K

M−1
∑

i1=m

1

i21
+K

1

M
≤ K

1

m− 1
+K

1

M
≤ K

3

m+ 1
+K

1

M
,

whence, letting M tend to ∞, we obtain

(4.6)
n
∑

j=1

j
∞
∑

i=m

aij ≤ 3K
1

m+ 1
.

Putting together (4.5) and (4.6) yields

(4.7) S2 ≤ 4|k|3K
1

m+ 1
≤ 12K|h| |k|.

Since S3 is a symmetric counterpart of S2, an analogous reasoning yields

(4.8) S3 ≤ 12K|h| |k|.

Combining (4.3), (4.4), (4.7) and (4.8) gives that fss ∈ Lip(1, 1).

(iv) Necessity. Now we assume that fss ∈ Lip(1, 1). Clearly, inequality
(3.10) in part (ii) of the proof of Theorem 1 holds in the case when α = β
= 1. Furthermore, we can also repeat the reasoning of part (ii) in this case
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(see (3.11) and (3.12)). As a result, we find that

4h2k2

π4

m
∑

i=1

n
∑

j=1

ijaij ≤
C

4
h2k2,

whence it follows that
m
∑

i=1

n
∑

j=1

ijaij ≤
Cπ4

16
, m, n = 1, 2, . . . .

This is (2.6), which was to be proved.
The proof of Theorem 2 is complete.

5. Proof of Theorem 3. The proof is a combination of certain steps
from the proofs of Theorems 1 and 2.

(v) Sufficiency. Assume that (2.7) holds. An application of the Lemma
of Section 2 with γ = δ = 1, µ = 1− α and ν = 0 gives

(5.1)
∞
∑

i=m

∞
∑

j=n

aij = O

(

1

mαn

)

, m, n = 1, 2, . . . .

To see that fss ∈ Lip(α, 1), again we make use of estimate (3.3). Clearly,
inequalities (3.4) for S1 and (3.9) for S4 hold in case 0 < α < 1 and β = 1.
To estimate S2, we essentially repeat the reasoning from part (iii) of the
proof of Theorem 2, while using (2.7). As a result, we obtain

(5.2) S2 ≤ 4|k|
2α

α
2K

1

(m+ 1)α
≤ 8
2α

α
K|h|α|k|

(cf. (4.7)). To estimate S3, we essentially repeat the reasoning of part (i) of
the proof of Theorem 1, using (5.1). As a result, we have

(5.3) S3 ≤
4K1
1− α

|h|α|k|

(cf. (3.8)). To sum up, by (3.3), (3.4) and (3.9) (the last two inequalities
in the case when 0 < α < 1 and β = 1), (5.2) and (5.3), we find that
fss ∈ Lip(α, 1).

(vi) Necessity. It is essentially a repetition of part (ii) of the proof of
Theorem 1 in the case when 0 < α < 1 and β = 1 (see also part (iv) of the
proof of Theorem 2). We omit the details.
The proof of Theorem 3 is complete.

6. Concluding remark. The sufficiency part of Theorem B was proved
by Boas [1] in a different way. Namely, Boas made use of the familiar theorem
on termwise differentiation of an infinite series of differentiable functions
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when the differentiated series is uniformly convergent on a finite interval.
Our method provides a new proof of the sufficiency part of Theorem B.
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