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Abstract. Let a ⊆ b be ideals of a Noetherian ring R, and let N be a non-zero finitely
generated R-module. The set Q

∗
(a, N) of quintasymptotic primes of a with respect to N

was originally introduced by McAdam. Also, it has been shown by Naghipour and Schenzel

that the set A∗
a(b, N) :=

⋃
n≥1 AssR R/(bn)

(N)
a of associated primes is finite. The purpose

of this paper is to show that the topology on N defined by {(an)
(N)
a :R 〈b〉}n≥1 is finer

than the topology defined by {(bn)
(N)
a }n≥1 if and only if A∗

a(b, N) is disjoint from the
quintasymptotic primes of a with respect to N . Moreover, we show that if a is generated
by an asymptotic sequence on N , then A∗

a(a, N) = Q
∗
(a, N).

1. Introduction. Throughout this paper, all rings considered will be
commutative and Noetherian and will have non-zero identity elements. Such
a ring will be denoted by R and a typical ideal of R will be denoted by a.
The important concepts of quintessential and quintasymptotic primes of a

were introduced by McAdam [6], and in [1], Ahn extended them to a finitely
generated R-module N . We provide a brief review.

A prime ideal p of R is called a quintessential (resp. quintasymptotic)
prime ideal of a with respect to N if there exists q ∈ AssR∗

p
N∗

p (resp. q ∈
mAssR∗

p
N∗

p) such that Rad(aR∗
p + q) = pR∗

p. The set of quintessential (resp.

quintasymptotic) primes of a with respect to N is denoted by Q(I, N) (resp.

Q
∗
(a, N)), and it is a finite set.
In [17], R. Y. Sharp et al. introduced the concept of integral closure of

a relative to N , and they showed that this concept has properties which
reflect some of those of the usual concept of integral closure introduced by
Northcott and Rees in [10]. In this paper, we shall denote the integral closure

of a with respect to N by a
(N)
a . On the other hand, in [9], it is shown that

the sequence {AssR R/(an)
(N)
a }n≥1 of associated prime ideals is increasing
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and ultimately constant; we denote its ultimate constant value by A∗
a(a, N).

(The set A∗
a(a, N) is called the set of asymptotic primes of a with respect

to N .) In the case N = R, A∗
a(a, N) is the set Â∗(a) of asymptotic primes

of a introduced by L. J. Ratliff, Jr. [12].
We now briefly summarize the results in this paper. Let a ⊆ b be

ideals of R, and let N be a non-zero finitely generated R-module. Our
purpose is to characterize the equivalence between the topologies on N

defined by {(an)
(N)
a :R 〈b〉}n≥1 and {(bn)

(N)
a }n≥1 in terms of the quint-

asymptotic primes of a with respect to N and A∗
a(b, N). Then we show

that, for any prime ideal p of R containing a, the topologies induced by

{(anRp)
(Np)
a :Rp

〈p〉}n≥1 and {(anRp)
(Np)
a }n≥1 are equivalent if and only if

p 6∈ Q
∗
(a, N). We also show that if a is generated by an asymptotic sequence

on N , then

A∗
a(a, N) = Q

∗
(a, N).

We denote by R the graded Rees ring R[u, at] :=
⊕

n∈Z
antn of R with

respect to a, where t is an indeterminate and u = t−1. Also, the graded

Rees module N [u, at] :=
⊕

n∈Z
anN over R is denoted by N ; it is a finitely

generated graded R-module. If (R, m) is local, then R∗ (resp. N∗) denotes
the completion of R (resp. N) with respect to the m-adic topology. In par-
ticular, for every prime ideal p of R, we denote by R∗

p and N∗
p the pRp-adic

completion of Rp and Np, respectively. For any ideal b of R, the radical

of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b for some
n ∈ N}. Finally, for each R-module L, we denote by mAssR L the set of
minimal primes of AssR L. For any unexplained notation and terminology
we refer the reader to [3] or [8].

In the second section, we focus on the quintasymptotic and asymptotic
primes of ideals with respect to N . In that section, among other things,
we show that if a ⊆ b are ideals of R, then the topology on N defined by

{(an)
(N)
a :R 〈b〉}n≥1 is finer than the topology defined by {(bn)

(N)
a }n≥1 if and

only if the set of quintasymptotic primes of a with respect to N is disjoint
from that of asymptotic primes of b with respect to N .

The main result of the third section is that if N is a non-zero finitely
generated R-module and a is an arbitrary ideal of R generated by an as-
ymptotic sequence on N , then the sets of quintasymptotic and asymptotic
primes of a with respect to N are equal.

2. Asymptotic and quintasymptotic primes. Following [2], we shall
use A∗(b, N) to denote the ultimately constant values of AssR N/bnN for
all large n. The following lemma was proved by McAdam and Ratliff in [7]
when R = N . It is easy to carry it over to modules (see [1]).



INTEGRAL CLOSURES AND IDEAL TOPOLOGIES 37

Lemma 2.1. Let a be an ideal of R, and N a non-zero finitely generated

R-module.

(i) Let p be a prime ideal of R containing a, and S a multiplicatively

closed subset of R such that p∩ S = ∅. Then p ∈ Q(a, N) (resp. p ∈
A∗(b, N)) if and only if pS ∈ Q(aS , NS) (resp. pS ∈ A∗(aS , NS)).

(ii) If T is a faithfully flat Noetherian extension of R, then p ∈ Q(a, N)
(resp. p ∈ A∗(b, N)) if and only if there exists q ∈ Q(aT, N ⊗R T )
(resp. q ∈ A∗(aT, N ⊗R T )) with q ∩ R = p.

The following lemma is known in the case N = R. The proof in [4, Ex.
8.2] can be easily carried over to modules, so we omit the proof.

Lemma 2.2. Let (R, m) be local and a a proper ideal of R. Let N be a

non-zero finitely generated R-module such that N is complete with respect to

the m-adic topology. Then N is complete with respect to the a-adic topology.

Proposition 2.3. Let a ⊆ b be ideals of R, and N a non-zero finitely

generated R-module. Then the following conditions are equivalent :

(i) A∗(b, N) ∩ Q(a, N) = ∅.
(ii) The topology on N induced by {anN :N 〈b〉}n≥1 is finer than the

b-adic topology.

Proof. In order to prove (i)⇒(ii), let k ≥ 1. We need to show that there
exists an integer n ≥ 1 such that anN :N 〈b〉 ⊆ bkN . Since

AssR(anN :N 〈b〉 + bkN/bkN) ⊆ A∗(b, N),

in view of Lemma 2.1(i) it is enough to prove the claim in any localization
p ∈ A∗(b, N). Therefore we may assume that R is local at p ∈ A∗(b, N).
Recall that by hypothesis p 6∈ Q(a, N). Also, by Lemma 2.1(ii), it is easy to
see that pR∗ ∈ A∗(bR∗, N∗) \ Q(aR∗, N∗). Now, because M∗ ∩ N = M for
any submodule M of N , we may assume in addition that R is complete.

We use induction on d := dimN/bN . Suppose d = 0, suppose there is an
integer k ≥ 0 such that anN :N 〈b〉 * bkN for all integers n ≥ 0, and look
for a contradiction. We have Rad(b + AnnR N) = p and so anN :N 〈b〉 =
anN :N 〈p〉. Now, let

E := (bkN :N 〈p〉)/bkN and Em = (amN :N 〈p〉 + bkN)/bkN

for all m ≥ k. Then, as E is Artinian, it follows that
⋂

m≥k+1 Em 6= 0

(recall that a ⊆ b). Therefore there is an element xk 6∈ bkN such that
xk ∈ (amN :N 〈p〉) + bkN for every integer m ≥ 0. The argument used
to prove Chevalley’s theorem [8, 30.1] can be applied to show that there
exists a Cauchy sequence of elements xr ∈ N such that xr − xk ∈ bkN and
xr ∈ (amN :N 〈p〉) + brN for all integers r ≥ k and m ≥ 0. Now, since N
is complete with respect to the p-adic topology, by Lemma 2.2 there exists
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x ∈ N such that limr→∞ xr = x. Hence x − xr ∈ bkN , and so x 6∈ bkN .
Moreover, we have x− xr ∈ brN , and therefore x ∈ (amN :N 〈p〉) + brN for
all integers m ≥ 1 and r ≥ k. Thus

x ∈
⋂

r≥k

⋂

m≥1

(amN :N 〈p〉 + brN).

According to the Krull intersection theorem, x ∈
⋂

m≥1(a
mN :N 〈p〉). Now,

using the Artin–Rees Lemma it is easy to see that there exists an integer
t ≥ 1 such that, for all integers l ≥ t,

alN :R Rx ⊆ al−t + (0 :R rx) ⊆ al−t + z,

where z is an associated prime of N with z ⊇ (0 :R Rx). Then it readily
follows that p = Rad(a + z), and so p ∈ Q(a, N), which is a contradiction.

Now suppose dim N/bN > 0. As above consider Em. Then AssR Em ⊆
A∗(b, N) and dim Nq/bNq < d for all q ∈ A∗(b, N). Hence by the inductive
hypothesis the localizations of Em at any q ∈ A∗(b, N) with q 6= m tend to
zero. Therefore Em has finite length for large m, and so AssR Em ⊆ V (p).
Then the proof goes as before. We omit it.

In order to show the implication (ii)⇒(i), suppose p ∈ A∗(b, N)∩Q(a, N).
Then, by Lemma 2.1, we can assume that (R, p) is local. Again from Lem-
ma 2.1, it follows that pR∗ ∈ A∗(bR∗, N∗) ∩ Q(aR∗, N∗). Hence we may
also assume that R is complete. Note that statement (ii) is stable under
localization and completion. Thus there exists a z ∈ AssR N such that p =
Rad(a + z), and so we write z = 0 :R Rx for some x ∈ N . On the other
hand, in view of the assumption and the Krull intersection theorem we have⋂

n≥1(a
nN :N 〈b〉) = 0. So

⋂
n≥1(a

nN :N 〈p〉) = 0, and this is a contradiction
since

x ∈
⋂

n≥1

(anN :N 〈z〉) =
⋂

n≥1

(anN :N 〈p〉).

Hence A∗(b, N) ∩ Q(a, N) = ∅, as desired.

We are now ready to state and prove the main theorem of this section.
The following remark will be needed in the proof.

Remark 2.4. Let c be an ideal of R, and N a non-zero finitely generated
R-module. Let π : R → R/AnnR N be the canonical ring homomorphism.
Then it is readily checked that for any prime ideal p of R (see [1, 3.6] and
[6, 3.4(b)]),

(i) p ∈ A∗
a(c, N) if and only if π(p) ∈ Â∗(π(c)).

(ii) p ∈ Q
∗
(c, N) if and only if π(p) ∈ Q

∗
(π(c)).

Theorem 2.5. Let a ⊆ b be ideals of R, and N a non-zero finitely

generated R-module. Then the following conditions are equivalent :
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(i) A∗
a(b, N) ∩ Q

∗
(a, N) = ∅.

(ii) The topology induced by {(an)
(N)
a :R 〈b〉}n≥1 is finer than the topol-

ogy defined by {(bn)
(N)
a }n≥1.

Proof. (i)⇒(ii). Assume A∗
a(b, N) ∩ Q

∗
(a, N) = ∅ and let l ≥ 1. We

need to show that there exists an integer m ≥ 1 such that (am)
(N)
a :R 〈b〉 ⊆

(bl)
(N)
a . To do this, in view of Remark 2.4 and [17, 1.6], it is enough to show

that

(am + AnnR N/AnnR N)a :R/AnnR N 〈b〉 ⊆ (bl + AnnR N/AnnR N)a.

To ease notation, we will assume R = R/AnnR N . Then Â∗(b) ∩ Q
∗
(a) = ∅

and we will show that
(am)a :R 〈b〉 ⊆ (bl)a.

To this end, analogously to the proof of Proposition 2.3 and in view of [16,
2.3], [5, 3.15 and 3.16] and [6, 1.1], we may assume that (R, m) is a complete

local ring such that m ∈ Â∗(b) but m 6∈ Q
∗
(a). Next, it is easy to see that

m/0a ∈ Â∗(b + 0a/0a) but m/0a 6∈ Q
∗
(b + 0a/0a). Hence, without loss of

generality we can assume that (R, m) is a reduced complete local ring. Then
by [6, 2.1] we have m ∈ A∗(b) but m 6∈ Q∗(a). Thus by Proposition 2.3, there
exists an integer t ≥ 1 such that at :R 〈b〉 ⊆ bl. Furthermore, as R is reduced
complete local, a well known result of Rees [14, 1.4] shows that there exists
an integer m ≥ 1 such that (am)a ⊆ at. Hence (am)a :A 〈b〉 ⊆ bl ⊆ (bl)a, as
desired.

In order to show (ii)⇒(i), suppose the contrary and let p ∈ A∗
a(b, N) ∩

Q
∗
(a, N). Then we may assume that (R, p) is local. Then there exists a

z∗ ∈ mAssR∗ N∗ such that pR∗ = Rad(aR∗ + z∗). Furthermore, in view of
[17, 1.6] and [6, 3.2(c)] we have

⋂

n≥1

(anR∗ + AnnR∗ N∗/AnnR∗ N∗)a :R∗/AnnR∗ N∗ 〈bR∗〉

= Rad(AnnR∗ N∗),

so that
⋂

n≥1

(anR∗ + AnnR∗ N∗/AnnR∗ N∗)a :R∗/AnnR∗ N∗ 〈pR∗〉

= Rad(AnnR∗ N∗)
and we obtain a contradiction to [6, 3.3].

Corollary 2.6. Let (R, m) be local , and let N be a non-zero finitely

generated R-module.

(i) It follows from Remark 2.8(i) that m 6∈ Q(a, N) if and only if the

topology on N defined by {anN :N 〈m〉}n≥1 is equivalent to the a-adic

topology.
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(ii) It follows from Remark 2.8(ii) that m 6∈ Q(a, N) if and only if the

topology defined by {(an)
(N)
a :R 〈m〉}n≥1 is equivalent to the topology

induced by {(an)
(N)
a }n≥1.

Corollary 2.7. Let a and p be ideals of R such that a ⊆ p ∈ SpecR.

Suppose that N is a non-zero finitely generated R-module. Then:

(i) p 6∈Q(a, N) if and only if the topology defined by {anNp :Np
〈pRp〉}n≥1

on Np is equivalent to the aRp-adic topology.

(ii) p 6∈ Q(a, N) if and only if the topology defined by {(anRp)
(Np)
a :Rp

〈pRp〉}n≥1 is equivalent to the topology induced by {(anRp)
(Np)
a }n≥1.

We can derive the following results. They generalize the corresponding
results of McAdam [6, 1.2 and 1.5] that extend Schenzel’s original arguments
in [13, (3.2) and (3.5)].

Remark 2.8. Let a ⊆ b be ideals of R, and N a non-zero finitely gen-
erated R-module.

(i) An argument similar to that used in the proof of Proposition 2.3
shows that the a-adic topology on N is equivalent to the topology de-

fined by {(an)
(N)
a :R 〈b〉}n≥1 if and only if Q(a, N) ∩ V (b+AnnR N)

= ∅.
(ii) An argument similar to that used in the proof of Theorem 2.5 shows

that the topologies defined by {(an)
(N)
a :R 〈b〉}n≥1 and {(an)

(N)
a }n≥1

are equivalent if and only if V (b + AnnR N) ∩ Q
∗
(a, N) = ∅.

3. Equality of asymptotic and quintasymptotic primes. The pur-
pose of this section is to prove that for any ideal a of R that can be gener-
ated by an asymptotic sequence on a non-zero finitely generated module N
over R, the asymptotic and quintasymptotic primes of a with respect to N
coincide. We begin with

Definition 3.1. Let N be a non-zero finitely generated R-module. A se-
quence x = x1, . . . , xn of elements of R is called an asymptotic sequence on

N if

(i) For all 1 ≤ i ≤ n, xi 6∈
⋃
{p ∈ A∗

a((x1, . . . , xi−1), N)}.
(ii) N/xN 6= 0.

An asymptotic sequence x = x1, . . . , xn of elements of R (resp. contained
in an ideal a) on N is maximal (resp. maximal in a) if x1, . . . , xn, xn+1 is not
an asymptotic sequence on N for any xn+1 ∈ R (resp. xn+1 ∈ a). It is shown
in Proposition 3.5 that all maximal asymptotic sequences on N in an ideal
a have the same length. This allows us to introduce the fundamental notion
of asymptotic grade agrade(a, N). The concepts of asymptotic sequence and
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asymptotic grade were independently introduced by Rees [15] and Ratliff
[11] in the case N = R. We refer the reader to the book [5] for some nice
facts about asymptotic sequences.

The following result extends McAdam’s results from commutative Noe-
therian rings to finitely generated modules (see [6, 0.1]).

Proposition 3.2. Let a be an ideal of R, and N a non-zero finitely

generated R-module. Then

A∗
a(a, N) = {q ∩ R | q ∈ Q

∗
(uR,N )}.

Proof. Let p ∈ A∗
a(a, N). Then by Remark 2.8 and [5, 3.18] there exists

z ∈ mAssR N such that z ⊆ p and p/z ∈ Â∗(a + z/z). Hence, in view of [1,

3.6], p = q ∩ R for some q ∈ Q
∗
(uR,N ), and so A∗

a(a, N) ⊆ {q ∩ R | q ∈
Q

∗
(uR,N )}.
A similar argument also works for the opposite inclusion.

Corollary 3.3. Under the assumptions of Proposition 3.2,

Q
∗
(a, N) ⊆ A∗

a(a, N).

Lemma 3.4. Let N be a non-zero finitely generated R-module and let

x = x1, . . . , xn be an asymptotic sequence on N . Then htN (x1, . . . , xi) = i
for each 1 ≤ i ≤ n.

Proof. It is enough to show that if p ∈ mAssR N/(x1, . . . , xi)N , then
htN p = i. To do this, recall that

mAssR N/(x1, . . . , xi)N ⊆ A∗
a((x1, . . . , xi), N)

and x1, . . . , xi is an asymptotic sequence on N . Now, the assertion follows
by induction.

Proposition 3.5. Let (R, m) be local , and let N be a non-zero finitely

generated R-module. Then for any ideal a of R,

agrade(a, N) = min{ht(aR∗ + q/q) | q ∈ mAssR∗ N∗}.

Proof. Let agrade(a, N) = n, and x = x1, . . . , xn be a maximal asymp-
totic sequence on N in a. Since the set A∗

a(x, N) is finite, it follows that
a ⊆ p for some p ∈ A∗

a(x, N). There exists q ∈ SpecR∗ such that q ∩ R = p

and q ∈ A∗
a(xR∗, N∗). Furthermore, by Remark 2.8 and [5, 3.18], there ex-

ists z ∈ mAssR∗ N∗ such that z ⊆ q and q/z ∈ A∗
a(x + z/z). Then by [1,

4.9], x1 + z, . . . , xn + z is an asymptotic sequence in the complete domain
R∗/z. Thus by Lemma 3.4, ht q/z = n. As aR∗ + z ⊆ q, this shows that
ht(aR∗ + z/z) ≤ n. Now, the assertion follows easily from [1, 4.15].

Now we are ready to prove the main result of this section.
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Theorem 3.6. Let N be a non-zero finitely generated R-module and let

a be an ideal of R generated by an asymptotic sequence x1, . . . , xn on N .

Then

A∗
a(a, N) = Q

∗
(a, N).

Proof. In view of Corollary 3.3, it is sufficient to show that A∗
a(a, N) ⊆

Q
∗
(a, N). To do this, let p ∈ A∗

a(a, N). Then pRp ∈ A∗
a(aRp, Np), and so

agrade(pRp, Np) = n. Hence by Proposition 3.5, there exists q ∈ mAssR∗
p
N∗

p

such that dimR∗
p/q = n. Since x1 + q, . . . , xn + q is an asymptotic sequence

in the complete domain R∗/q, it follows from Lemma 3.4 that ht(aR∗
p+q/q)

= n. Hence Rad(aR∗
p + q) = pR∗

p, and so p ∈ Q
∗
(a, N), as required.
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