INDUCED ALMOST CONTINUOUS FUNCTIONS ON HYPERSPACES

BY

ALEJANDRO ILLANES (México)

Abstract. For a metric continuum X, let $C(X)$ (resp., 2^X) be the hyperspace of sub-continua (resp., nonempty closed subsets) of X. Let $f : X \to Y$ be an almost continuous function. Let $C(f) : C(X) \to C(Y)$ and $2^f : 2^X \to 2^Y$ be the induced functions given by $C(f)(A) = \text{cl}_Y(f(A))$ and $2^f(A) = \text{cl}_Y(f(A))$. In this paper, we prove that:

- If 2^f is almost continuous, then f is continuous.
- If $C(f)$ is almost continuous and X is locally connected, then f is continuous.
- If X is not locally connected, then there exists an almost continuous function $f : X \to [0,1]$ such that $C(f)$ is almost continuous and f is not continuous.

Introduction. A continuum is a nonempty, nondegenerate, compact connected metric space. All the spaces considered in this paper are continua. Given a continuum X we consider the following hyperspaces of X:

$$2^X = \{ A \subset X : A \text{ is closed and nonempty} \},$$

$$C(X) = \{ A \in 2^X : A \text{ is connected} \}.$$

Both are considered with the Hausdorff metric D.

Given a (not necessarily continuous) function between continua $f : X \to Y$, we can consider its graph $\Lambda(f) = \{(p, f(p)) \in X \times Y : p \in X \}$ and the induced function $2^f : 2^X \to 2^Y$ given by $2^f(A) = \text{cl}_Y(f(A)) (f(A) \text{ is the image of } A \text{ under } f)$. We are interested in functions $f : X \to Y$ for which the natural induced map $C(f) : C(X) \to C(Y)$ is defined. Thus we need to require that, for each $A \in C(X)$, $f(A)$ is connected; we call a function satisfying this condition weakly Darboux (in Real Analysis a Darboux function is a function such that the image of a connected set is a connected set).

Of course, every continuous function is weakly Darboux. It is known that almost continuous functions are weakly Darboux (see Lemma 1). Recall that f is almost continuous provided that, for each open subset U of $X \times Y$ such that $\Lambda(f) \subset U$, there exists a continuous function $g : X \to Y$ such that $\Lambda(g) \subset U$. We say that f is proper almost continuous if f is almost continu-

2000 Mathematics Subject Classification: Primary 54B20.

Key words and phrases: almost continuous functions, continuum, hyperspaces, induced functions.
uous but not continuous. A simple example of a proper almost continuous function is the function \(h : [0, 1] \to [-1, 1] \) given by \(h(t) = \sin(1/t) \) if \(t > 0 \), and \(h(0) = 0 \).

Almost continuous functions were introduced by J. Stallings in [3] where he used them to generalize some fixed point theorems.

Given a continuous function between continua \(f : X \to Y \) and a class of mappings \(\mathcal{M} \), the problem of determining if one of the following properties implies another has been widely studied:

(a) \(f \) belongs to \(\mathcal{M} \),
(b) \(C(f) \) belongs to \(\mathcal{M} \),
(c) \(2^f \) belongs to \(\mathcal{M} \).

A discussion on this topic can be found in [2, Section 77].

In this paper, we study this problem for the class \(\mathcal{M} \) of (not necessarily continuous) almost continuous functions. Observe that, to define \(2^f \) it is not necessary to require that \(f \) is almost continuous. Since the restriction of an almost continuous function to a closed subset of the domain is also almost continuous (see [3, Proposition 2]), if \(2^f \) is almost continuous, then so is \(2^f|\{\{p\} \in 2^X : p \in X\} \). This implies that \(f \) is almost continuous. Thus (c) implies (a) and, similarly, (b) implies (a).

The first result we obtain is that if a function \(f : X \to Y \) and its induced function \(2^f \) are weakly Darboux, then \(f \) is continuous. Thus, for the class of weakly Darboux functions, (a) and (c) together imply (b). The second result says that if \(X \) is locally connected and the functions \(f \) and \(C(f) \) are weakly Darboux, then \(f \) is continuous, and the third result says that if \(X \) is not locally connected, then it is possible to construct a proper almost continuous function \(f : X \to [0, 1] \) such that \(C(f) \) is almost continuous. Thus (a) and (b) together do not imply (c).

Almost continuity of \(2^f \). Throughout this paper \(X \) denotes a continuum with metric \(d \). The symbol \(\mathbb{N} \) denotes the set of positive integers. Given \(\varepsilon > 0 \), \(p \in X \) and \(A \subset X \), let \(B(\varepsilon, p) = \{q \in X : d(p, q) < \varepsilon\} \) and \(N(\varepsilon, A) = \bigcup \{B(\varepsilon, a) \subset X : a \in A\} \). An order arc in \(2^X \) is a continuous function \(\alpha : [0, 1] \to 2^X \) such that \(\alpha(s) \subset \alpha(t) \) if \(0 \leq s \leq t \leq 1 \). Conditions for the existence of order arcs are given in Theorem 15.3 of [2]. A Whitney map is a continuous function \(\mu : 2^X \to [0, 1] \) such that \(\mu(X) = 1, \mu(\{p\}) = 0 \) for each \(p \in X \) and, if \(A, B \in 2^X \) and \(A \subsetneq B \), then \(\mu(A) < \mu(B) \). It is known that every continuum \(X \) admits Whitney maps (see [2, Thm. 13.4]).

The following lemma is well known (see [3, Corollary to Proposition 3]). We include it here for completeness.

Lemma 1. If \(f : X \to Y \) is almost continuous, then \(f \) is weakly Darboux.
Proof. Let $A \subset C(X)$. We need to show that $f(A)$ is connected. Suppose to the contrary that $f(A)$ is not connected. Let K, L be nonempty separated subsets of $f(A)$ such that $f(A) = K \cup L$. Since Y is metric, there exist disjoint open subsets V and W such that $K \subset V$ and $L \subset W$. Fix points $a, b \in A$ such that $f(a) \in K$ and $f(b) \in L$. Consider the set

$$
\mathcal{U} = [(X - A) \times Y] \cup [(X - \{a\}) \times W] \cup [(X - \{b\}) \times V] \\
\cup [(X - \{a, b\}) \times (W \cup V)].
$$

Clearly, \mathcal{U} is an open subset of $X \times Y$ which contains $A(f)$. Since f is almost continuous, there exists a continuous function $g : X \to Y$ such that $A(g) \subset \mathcal{U}$.

Given a point $p \in A$, by the definition of \mathcal{U}, $g(p) \in W \cup V$. Moreover, $(a, g(a)) \in \mathcal{U}$ implies that $g(a) \in V$. Similarly, $(b, g(b)) \in \mathcal{U}$ implies that $g(b) \in W$. Therefore, $g(A)$ is a connected subset of $W \cup V$ and $g(A) \cap W \neq \emptyset \neq g(A) \cap V$. This is a contradiction. Hence $f(A)$ is connected.

Lemma 2. Let $\alpha : [0, 1] \to 2^X$ be an order arc. Suppose that $F : 2^X \to 2^Y$ is weakly Darboux and such that $A \subset B$ implies $F(A) \subset F(B)$. Then the function $F \circ \alpha : [0, 1] \to 2^Y$ is continuous.

Proof. Let $\{t_n\}_{n=1}^\infty$ be a sequence in $[0, 1]$ converging $t \in [0, 1]$. We need to check that $\lim F(\alpha(t_n)) = F(\alpha(t))$. It is enough to consider the case in which the sequence $\{t_n\}_{n=1}^\infty$ is strictly monotone.

Case 1: $0 < t_1 < t_2 < \cdots$. In this case, $F(\alpha(t_1)) \subset F(\alpha(t_2)) \subset \cdots$. This implies that $\lim F(\alpha(t_n)) = \cl_Y(\bigcup\{F(\alpha(t_n)) : n \in \mathbb{N}\})$. Hence $\lim F(\alpha(t_n)) \subset F(\alpha(t))$ because each $F(\alpha(t_n))$ is contained in $F(\alpha(t))$. If $\lim F(\alpha(t_n)) \neq F(\alpha(t))$, fix a point $p \in F(\alpha(t)) - \lim F(\alpha(t_n))$. Consider the following sets in 2^Y: $K = \{A \in 2^Y : A \subset \lim F(\alpha(t_n))\}$ and $L = \{A \in 2^Y : p \in A\}$. It is easy to see that K and L are disjoint closed subsets of 2^Y such that $F(\alpha([0, t])) \subset K$ and $F(\alpha(t)) \subset L$. This contradicts the connectedness of $F(\alpha([0, t]))$ and proves that $\lim F(\alpha(t_n)) = F(\alpha(t))$.

Case 2: $1 > t_1 > t_2 > \cdots$. In this case, $\lim F(\alpha(t_n)) = \bigcap\{F(\alpha(t_n)) : n \in \mathbb{N}\}$ and $\lim F(\alpha(t_n)) \supset F(\alpha(t))$. If $\lim F(\alpha(t_n)) \neq F(\alpha(t))$, a contradiction can be obtained by considering the sets $K = \{A \in 2^Y : \lim F(\alpha(t_n)) \subset A\}$ and $L = \{F(\alpha(t))\}$. Thus $\lim F(\alpha(t_n)) = F(\alpha(t))$.

This completes the proof of the lemma.

Proceeding as in Lemma 2, one can prove the following lemma.

Lemma 3. Let $\alpha : [0, 1] \to C(X)$ be an order arc. Suppose that $F : C(X) \to C(Y)$ is weakly Darboux and such that $A \subset B$ implies $F(A) \subset F(B)$. Then the function $F \circ \alpha : [0, 1] \to C(Y)$ is continuous.
Theorem 1. Suppose that \(f : X \rightarrow Y \) and \(2^f : 2^X \rightarrow 2^Y \) are weakly Darboux. Then \(f \) is continuous.

Proof. Let \(F = 2^f \). Suppose that \(f \) is not continuous. Then there exist points \(p \in X \), \(q \in Y \) and a sequence \(\{p_n\}_{n=1}^{\infty} \) in \(X \) such that \(\lim p_n = p \), \(\lim f(p_n) = q \) and \(q \neq f(p) \). Let \(\varepsilon = d_Y(f(p), q) > 0 \). Notice that \(f(X) \) is nondegenerate.

Fix a Whitney map \(\mu : 2^Y \rightarrow [0, 1] \). Since the set \(\{B \in 2^Y : \text{diam}(B) \geq \varepsilon/3\} \) is closed in \(2^Y \) and it does not intersect \(\mu^{-1}(0) \), there exists \(r > 0 \) such that \(r < \mu(F(X)) \) and, if \(B \in \mu^{-1}(r) \), then \(\text{diam}(B) < \varepsilon/3 \). Fix \(\eta > 0 \) such that \(\eta < \varepsilon \) and \(\text{diam}(B) > \eta \) for each \(B \in \mu^{-1}(r) \). Since \(\lim f(p_n) = q \), we may assume that \(f(p_n) \in B(\eta/3, q) \) for each \(n \in \mathbb{N} \).

For each \(n \in \mathbb{N} \), fix an order arc \(\alpha_n : [0, 1] \rightarrow C(X) \) with \(\alpha_n(0) = \{p_n\} \) and \(\alpha_n(1) = X \). By Lemma 2, the function \(\mu \circ F \circ \alpha_n : [0, 1] \rightarrow [0, 1] \) is continuous. Since \(\mu(F(\alpha_n(0))) = \mu(F(\{p_n\})) = 0 \) and \(\mu(F(\alpha_n(1))) = \mu(F(X)) > r \), there exists \(t_n \in [0, 1] \) such that \(\mu(F(\alpha_n(t_n))) = r \). Since \(r > 0 \), \(F(\alpha_n(t_n)) \) is a nondegenerate subcontinuum of \(Y \). Notice that, by the choice of \(r \), \(\text{diam}(F(\alpha_n(t_n))) < \varepsilon/3 \). Since \(f(p_n) = f(\alpha_n(t_n)) \subset F(\alpha_n(t_n)) \) and \(f(p_n) \in B(\varepsilon/3, q) \), it follows that

\[
F(\alpha_n(t_n)) \subset B(2\varepsilon/3, q).
\]

Since \(C(X) \) is compact, we may assume that the sequence \(\{\alpha_n(t_n)\}_{n=1}^{\infty} \) converges to an element \(A \in C(X) \). Let

\[
P = \{p, p_1, p_2, \ldots\} \quad \text{and} \quad E = A \cup \alpha_1(t_1) \cup \alpha_2(t_2) \cup \cdots.
\]

Then \(P, E \in 2^X \) and \(P \subset E \). Let \(\beta : [0, 1] \rightarrow 2^X \) be given by

\[
\beta(t) = \begin{cases}
P \cup \left(\bigcup_{i=1}^{n-1} \alpha_i(t_i) \right) \cup \alpha_n \left(2^n \left(t - \left(1 - \frac{1}{2^{n-1}} \right) \right) t_n \right), & \text{if } t \in [1 - 1/2^{n-1}, 1 - 1/2^n], n \in \mathbb{N}, \\
E & \text{if } t = 1.
\end{cases}
\]

It is easy to check that \(\beta \) is well defined, continuous in \([0, 1]\) and has the property that if \(s \leq t \), then \(\beta(s) \subset \beta(t) \).

To see that \(\beta \) is continuous at 1, take a sequence \(s_1 < s_2 < \cdots \) in \([0, 1]\) such that \(\lim s_m = 1 \). Since \(\beta(s_1) \subset \beta(s_2) \subset \cdots \), we have \(\lim \beta(s_m) = \text{cl}(\bigcup \{ \beta(s_m) : m \in \mathbb{N} \}) \). Hence \(\lim \beta(s_m) \subset E \) as each \(\beta(s_m) \) is a subset of \(E \). Since \(\lim \alpha_n(t_n) = A \), we have \(A \subset \text{cl}(\bigcup \{ \alpha_n(t_n) : n \in \mathbb{N} \}) \).

Given \(n \in \mathbb{N} \), there exists \(m_0 \in \mathbb{N} \) such that \(1 - 1/2^n < s_{m_0} \). Thus \(\alpha_n(t_n) \subset \beta(1 - 1/2^n) \subset \beta(s_{m_0}) \subset \lim \beta(s_m) \). Therefore, \(E \subset \lim \beta(s_m) \).

We have shown that \(\beta(1) = E = \lim \beta(s_m) \). This completes the proof that \(\beta \) is continuous. Hence \(\beta \) is an order arc in \(2^X \) such that \(\beta(0) = P \) and \(\beta(1) = E \).
By Lemma 2, the function $F \circ \beta : [0, 1] \to 2^Y$ is continuous. Hence $F(\beta(1)) = \lim_{n \to \infty} F(\beta(1 - 1/2^n))$. Given $n \in \mathbb{N}$,
\[
F(\beta(1 - 1/2^n)) = F(P \cup \alpha_1(t_1) \cup \cdots \cup \alpha_n(t_n))
\subseteq \cl(f(\{p, p_1, p_2, \ldots\}) \cup F(\alpha_1(t_1)) \cup \cdots \cup F(\alpha_n(t_n))
\subseteq f(\{p\}) \cup \cl(f(\{p_1, p_2, \ldots\}) \cup F(\alpha_1(t_1)) \cup \cdots \cup F(\alpha_n(t_n))
\subseteq \{f(p)\} \cup \cl(B(2\varepsilon/3, q)).
\]
Hence, $F(\beta(1)) \subseteq \{f(p)\} \cup \cl(B(2\varepsilon/3, q))$. That is,

$$F(E) \subseteq \{f(p)\} \cup \cl(B(2\varepsilon/3, q)).$$

Since $A \subseteq E$, we have $F(A) \subseteq F(E) \subseteq \{f(p)\} \cup \cl(B(2\varepsilon/3, q))$. By the choice of ε, $\{f(p)\}$ and $\cl(B(2\varepsilon/3, q))$ are closed in Y and disjoint. By hypothesis, $F(A)$ is connected. Since $p \in A$, $f(p) \in F(A)$. Thus, $F(A) = \{f(p)\}$.

Define $\gamma : [0, 1] \to 2^X$ by

$$\gamma(t) = \begin{cases}
A \cup P & \text{if } t = 0, \\
A \cup P \cup \alpha_n(2^n(t - 1/2^n)t_n) \cup \bigcup_{i=n+1}^{\infty} \alpha_i(t_i) & \text{if } t \in [1/2^n, 1/2^{n+1}), n \in \mathbb{N}.
\end{cases}$$

Since $\lim \alpha_n(t_n) = A$, we have $\gamma(t) \in 2^X$ for each $t \in [0, 1]$. It is easy to check that γ is well defined, continuous in $(0, 1]$ and has the property that if $s \leq t$, then $\gamma(s) \subset \gamma(t)$.

To prove that γ is continuous at 0, take a sequence $s_1 > s_2 > \cdots$ in $[0, 1]$ such that $\lim s_m = 0$. Given $\delta > 0$, let $N \in \mathbb{N}$ be such that $\alpha_n(t_n) \subseteq N(\delta, A)$ for each $n \geq N$. Fix $M \in \mathbb{N}$ such that $s_M < 1/2^N$. Given $m \geq M$, we have $s_m < 1/2^N$, thus $\gamma(s_m) \subseteq \gamma(1/2^N) \subseteq N(\delta, A \cup P)$. Since $A \cup P \subseteq \gamma(s_m) \subseteq N(\delta, \gamma(s_m))$, we conclude that $D(\gamma(s_m), A \cup P) = \delta$. We have shown that $\lim \gamma(s_m) = A \cup P = \gamma(0)$. Hence, γ is continuous at 0.

We have proved that γ is an order arc from $\gamma(0) = A \cup P$ to $\gamma(1) = E$. By Lemma 2, $F \circ \gamma : [0, 1] \to 2^Y$ is a continuous function. Thus

$$\lim F(\gamma(1/2^n)) = F(\gamma(0)) = F(A \cup P) = \cl(f(A)) \cup \cl(f(P))
\subseteq \{f(p)\} \cup \cl(B(\eta/3, q)).$$

Therefore,

$$\lim F(\gamma(1/2^n)) \subseteq \{f(p)\} \cup B(\eta/2, q).$$

On the other hand, $F(\alpha_{n+1}(t_{n+1})) \subset F(\gamma(1/2^n))$, $F(\alpha_{n+1}(t_{n+1}))$ is connected (see [2, Corollary 15.4]) and $\mu(F(\alpha_{n+1}(t_{n+1}))) = r$. Notice that, by the choice of η, $\diam(F(\alpha_{n+1}(t_{n+1}))) > \eta$. This implies that $F(\alpha_{n+1}(t_{n+1})) \not\subseteq B(\eta/2, q)$, and moreover, $f(p_{n+1}) \in F(\alpha_{n+1}(t_{n+1})) \cap B(\eta/2, q)$. Hence, $\bd(B(\eta/2, q)) \cap F(\alpha_{n+1}(t_{n+1})) \neq \emptyset$. This implies that

$$\bd(B(\eta/2, q)) \cap \lim F(\alpha_{n+1}(t_{n+1})) \neq \emptyset.$$
Hence, \(\text{bd}(B(\eta/2, q)) \cap \lim F(\gamma(1/2^n)) \neq \emptyset \). This contradicts the inclusion \(\lim F(\gamma(1/2^n)) \subset \{ f(p) \} \cup B(\eta/2, q) \) proved above and completes the proof of the theorem. ■

Corollary 1. Suppose that \(f : X \to Y \) and \(2f : 2^X \to 2^Y \) are almost continuous functions. Then \(f \) is continuous.

Almost continuity of \(C(f) \)

Theorem 2. Suppose that \(X \) is locally connected and the functions \(f : X \to Y \) and \(C(f) : C(X) \to C(Y) \) are weakly Darboux. Then \(f \) is continuous.

Proof. Let \(F = C(f) \). In order to prove that \(f \) is continuous take a sequence \(\{ p_n \}_{n=1}^{\infty} \) in \(X \) converging to a point \(p \in X \).

For each \(n \in \mathbb{N} \), let \(A_n = \{ A \in C(X) : p, p_n \in A \} \). Since \(A_n \) is a nonempty and compact subset of \(C(X) \), there exists \(A_n \in A_n \) such that \(D(\{ p \}, A_n) = \min \{ D(\{ p \}, A) : A \in A_n \} \). Then \(p, p_n \in A_n \).

We claim that \(\lim A_n = \{ p \} \). Let \(\varepsilon > 0 \). Since \(X \) is locally connected, there exists an open and connected subset \(U \) of \(X \) with \(\text{diam}(\text{cl}_X(U)) < \varepsilon \) and \(p \in U \). Thus \(D(\{ p \}, \text{cl}_X(U)) < \varepsilon \). Let \(N \in \mathbb{N} \) be such that \(p_n \in U \) for each \(n \geq N \). Then \(D(\{ p \}, A_n) \leq D(\{ p \}, \text{cl}_X(U)) < \varepsilon \) for each \(n \geq N \). Therefore, \(\lim A_n = \{ p \} \).

For each \(n \in \mathbb{N} \), let \(B_n = A_n \cup A_{n+1} \cup \ldots \). Clearly, \(B_n \in C(X) \), \(p, p_n \in B_n \), \(\lim B_n = \{ p \} \) and \(B_1 \supset B_2 \supset \ldots \). Let \(\alpha : [0, 1] \to C(X) \) be an order arc such that \(\alpha(1/n) = B_n \) for each \(n \in \mathbb{N} \) and \(\alpha(0) = \{ p \} \) (such an order arc can be constructed using Theorem 15.3 of [2]).

By Lemma 3, the map \(C(f) \circ \alpha : [0, 1] \to C(Y) \) is continuous. Thus \(\lim C(f)(\alpha(1/n)) = \{ f(p) \} \). Since \(f(p_n) \in C(f)(\alpha(1/n)) \) for each \(n \in \mathbb{N} \), \(\lim f(p_n) = f(p) \). Therefore, \(f \) is continuous. ■

Corollary 2. Suppose that \(X \) is locally connected and the functions \(f : X \to Y \) and \(C(f) : C(X) \to C(Y) \) are almost continuous. Then \(f \) is continuous.

Theorem 3. Let \(X \) be a non-locally connected continuum. Then there exists a proper almost continuous function \(f : X \to [0, 1] \) such that \(C(f) \) is almost continuous.

Proof. Let \(H \) be the harmonic fan defined as a subset of the complex plane by

\[
H = \{ z \in \mathbb{C} : |z| \leq 2 \text{ and } \text{Arg}(z) \in \{ 0, 1/1, 1/2, 1/3, \ldots \} \}
\]

and set

\[
H_n = \{ z \in H : \text{Arg}(z) \in \{ 0, 1/1, 1/2, \ldots, 1/n \} \}.
\]
By [1], there exists a continuous surjection \(g : X \to H \). For each \(n \in \mathbb{N} \), define \(r_n : H \to H_n \) by

\[
r_n(z) = \begin{cases}
 z & \text{if } z \in H_n, \\
 |z| & \text{if } z \in H - H_n.
\end{cases}
\]

Let \(h : H \to [0, 1] \) be given by

\[
h(z) = \begin{cases}
 0 & \text{if } |z| \geq 1 \text{ and } \text{Arg}(z) = 0, \\
 |z| - 1 & \text{otherwise}.
\end{cases}
\]

Finally, put \(f = h \circ g \).

The following observations are easy to prove:

(a) \(r_n \) is a continuous retraction.
(b) \(h \) is not continuous.
(c) \(h \circ r_n \) is continuous.
(d) If \(M \subset H \) is connected, then \(h(M) \) is connected. Hence, \(f \) is weakly Darboux.
(e) The function \(f \) is not continuous. Indeed, for each \(k \in \mathbb{N} \), fix a point \(a_k \in g^{-1}(2(\cos(1/k) + i \sin(1/k))) \). By compactness of \(X \) there exists a subsequence \(\{a_{k_n}\}_{n=1}^{\infty} \) tending to a point \(a \in X \). Then, for each \(n \in \mathbb{N} \), \(f(a_{k_n}) = 1 \), and

\[
f(a) = h(\lim_{n \to \infty} (2(\cos(1/k_n) + i \sin(1/k_n)))) = h(2) = 0.
\]

The following observations are also easy to check.

For a connected subset \(A \) of \(X \) we have:

(i) If \(A \cap g^{-1}(0) \neq \emptyset \neq A \cap g^{-1}(\{z : |z| \geq 1\}) \), then \(f(A) = [0, 1] \) and \((h \circ r_n \circ g)(A) = [0, 1] \) for all \(n \in \mathbb{N} \).
(ii) If \(A \subset g^{-1}(\{z : |z| \leq 1\}) \), then \((h \circ r_n \circ g)(A) = f(A) \) for all \(n \in \mathbb{N} \).
(iii) If \(A \cap g^{-1}(0) = \emptyset \), then \(g(A) \) is contained in some convex segment contained in \(H \). Hence, there exists \(k \in \mathbb{N} \) such that \((h \circ r_n \circ g)(A) = f(A) \) for all \(n \geq k \).

We are ready to show that \(C(f) \) is almost continuous. Let \(U \) be an open subset of \(C(X) \times C([0, 1]) \) containing the graph of \(C(f) \). Note that each function \(h \circ r_n \circ g \) is continuous. We claim that the graph of some map \(C(h \circ r_n \circ g) \) is contained in \(U \). Suppose to the contrary that, for each \(n \in \mathbb{N} \), there exists \(A_n \in C(X) \) such that \((A_n, (h \circ r_n \circ g)(A_n)) \notin U \). In particular, \((h \circ r_n \circ g)(A_n) \neq f(A_n) \). By (i)–(iii) we know that \(A_n \cap g^{-1}(0) = \emptyset \) and \(g(A_n) \subset H - H_n \) since otherwise \(f(A_n) = (h \circ r_n \circ g)(A_n) \). By compactness of \(C(X) \) we may assume that the sequence \(\{A_n\}_{n=1}^{\infty} \) converges to some \(A \in C(X) \). By continuity of \(g \), we see that \(g(A) \) is contained in the limit convex segment of \(H \). Therefore,

\[
(A, (h \circ r_1 \circ g)(A)) = (A, (h \circ g)(A)) = (A, f(A)) \in U.
\]
By continuity of $C(h \circ r_1 \circ g)$, it follows that there exists $k \in \mathbb{N}$ such that $(A_n, (h \circ r_1 \circ g)(A_n)) \in U$ for all $n \geq k$. Since $g(A_n) \subset H - H_n$, we have $r_1(g(A_n)) = r_n(g(A_n))$. Hence $(A_n, (h \circ r_n \circ g)(A_n)) \in U$ for all $n \geq k$. This contradicts the choice of the sets A_n and completes the proof that $C(f)$ is almost continuous.

Finally, since $\{\{p\} \in C(X) : p \in X\}$ is closed in $C(X)$, by [3, Proposition 2], it follows that f is almost continuous.

Acknowledgments. The author wishes to thank K. Omiljanowski for suggesting a shorter proof for Theorem 3. He also wishes to thank the referee for his comments.

REFERENCES

