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Abstract. For a metric continuum X, let C(X) (resp., 2X) be the hyperspace of sub-
continua (resp., nonempty closed subsets) of X. Let f : X → Y be an almost continuous
function. Let C(f) : C(X) → C(Y ) and 2f : 2X

→ 2Y be the induced functions given by
C(f)(A) = clY (f(A)) and 2f (A) = clY (f(A)). In this paper, we prove that:

• If 2f is almost continuous, then f is continuous.
• If C(f) is almost continuous and X is locally connected, then f is continuous.
• If X is not locally connected, then there exists an almost continuous function

f : X → [0, 1] such that C(f) is almost continuous and f is not continuous.

Introduction. A continuum is a nonempty, nondegenerate, compact
connected metric space. All the spaces considered in this paper are continua.
Given a continuum X we consider the following hyperspaces of X:

2X = {A ⊂ X : A is closed and nonempty},

C(X) = {A ∈ 2X : A is connected}.

Both are considered with the Hausdorff metric D.

Given a (not necessarily continuous) function between continua f : X
→ Y , we can consider its graph Λ(f) = {(p, f(p)) ∈ X × Y : p ∈ X} and
the induced function 2f : 2X → 2Y given by 2f (A) = clY (f(A)) (f(A) is the
image of A under f). We are interested in functions f : X → Y for which
the natural induced map C(f) : C(X) → C(Y ) is defined. Thus we need to
require that, for each A ∈ C(X), f(A) is connected; we call a function sat-
isfying this condition weakly Darboux (in Real Analysis a Darboux function

is a function such that the image of a connected set is a connected set).

Of course, every continuous function is weakly Darboux. It is known
that almost continuous functions are weakly Darboux (see Lemma 1). Recall
that f is almost continuous provided that, for each open subset U of X×Y
such that Λ(f) ⊂ U , there exists a continuous function g : X → Y such that
Λ(g) ⊂ U . We say that f is proper almost continuous if f is almost contin-
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uous but not continuous. A simple example of a proper almost continuous
function is the function h : [0, 1] → [−1, 1] given by h(t) = sin(1/t) if t > 0,
and h(0) = 0.

Almost continuous functions were introduced by J. Stallings in [3] where
he used them to generalize some fixed point theorems.

Given a continuous function between continua f : X → Y and a class of
mappings M, the problem of determining if one of the following properties
implies another has been widely studied:

(a) f belongs to M,

(b) C(f) belongs to M,

(c) 2f belongs to M.

A discussion on this topic can be found in [2, Section 77].

In this paper, we study this problem for the class M of (not necessarily
continuous) almost continuous functions. Observe that, to define 2f it is not
necessary to require that f is almost continuous. Since the restriction of an
almost continuous function to a closed subset of the domain is also almost
continuous (see [3, Proposition 2]), if 2f is almost continuous, then so is
2f |{{p} ∈ 2X : p ∈ X}. This implies that f is almost continuous. Thus (c)
implies (a) and, similarly, (b) implies (a).

The first result we obtain is that if a function f : X → Y and its induced
function 2f are weakly Darboux, then f is continuous. Thus, for the class
of weakly Darboux functions, (a) and (c) together imply (b). The second
result says that if X is locally connected and the functions f and C(f) are
weakly Darboux, then f is continuous, and the third result says that if X
is not locally connected, then it is possible to construct a proper almost
continuous function f : X → [0, 1] such that C(f) is almost continuous.
Thus (a) and (b) together do not imply (c).

Almost continuity of 2f . Throughout this paper X denotes a con-
tinuum with metric d. The symbol N denotes the set of positive integers.
Given ε > 0, p ∈ X and A ⊂ X, let B(ε, p) = {q ∈ X : d(p, q) < ε} and
N(ε, A) =

⋃

{B(ε, a) ⊂ X : a ∈ A}. An order arc in 2X is a continuous
function α : [0, 1] → 2X such that α(s) ⊂ α(t) if 0 ≤ s ≤ t ≤ 1. Conditions
for the existence of order arcs are given in Theorem 15.3 of [2]. A Whitney

map is a continuous function µ : 2X → [0, 1] such that µ(X) = 1, µ({p}) = 0
for each p ∈ X and, if A, B ∈ 2X and A ( B, then µ(A) < µ(B). It is known
that every continuum X admits Whitney maps (see [2, Thm. 13.4]).

The following lemma is well known (see [3, Corollary to Proposition 3]).
We include it here for completeness.

Lemma 1. If f : X → Y is almost continuous, then f is weakly Darboux.
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Proof. Let A ∈ C(X). We need to show that f(A) is connected. Suppose
to the contrary that f(A) is not connected. Let K, L be nonempty separated
subsets of f(A) such that f(A) = K∪L. Since Y is metric, there exist disjoint
open subsets V and W such that K ⊂ V and L ⊂ W . Fix points a, b ∈ A
such that f(a) ∈ K and f(b) ∈ L. Consider the set

U = [(X − A) × Y ] ∪ [(X − {a}) × W ] ∪ [(X − {b}) × V ]

∪ [(X − {a, b}) × (W ∪ V )].

Clearly, U is an open subset of X × Y which contains Λ(f). Since f is
almost continuous, there exists a continuous function g : X → Y such that
Λ(g) ⊂ U .

Given a point p ∈ A, by the definition of U , g(p) ∈ W ∪ V . Moreover,
(a, g(a)) ∈ U implies that g(a) ∈ V . Similarly, g(b) ∈ W . Therefore, g(A)
is a connected subset of W ∪ V and g(A) ∩ W 6= ∅ 6= g(A) ∩ V . This is a
contradiction. Hence f(A) is connected.

Lemma 2. Let α : [0, 1] → 2X be an order arc. Suppose that F : 2X → 2Y

is weakly Darboux and such that A ⊂ B implies F (A) ⊂ F (B). Then the

function F ◦ α : [0, 1] → 2Y is continuous.

Proof. Let {tn}
∞

n=1 be a sequence in [0, 1] converging t ∈ [0, 1]. We need
to check that limF (α(tn)) = F (α(t)). It is enough to consider the case in
which the sequence {tn}

∞

n=1 is strictly monotone.

Case 1: 0 < t1 < t2 < · · · . In this case, F (α(t1)) ⊂ F (α(t2)) ⊂ · · · .
This implies that limF (α(tn)) = clY (

⋃

{F (α(tn)) : n ∈ N}). Hence
limF (α(tn)) ⊂ F (α(t)) because each F (α(tn)) is contained in F (α(t)). If
limF (α(tn)) 6= F (α(t)), fix a point p ∈ F (α(t)) − limF (α(tn)). Con-
sider the following sets in 2Y : K = {A ∈ 2Y : A ⊂ limF (α(tn))} and
L = {A ∈ 2Y : p ∈ A}. It is easy to see that K and L are disjoint closed
subsets of 2Y such that F (α([0, t))) ⊂ K and F (α(t)) ∈ L. This contradicts
the connectedness of F (α([0, t])) and proves that limF (α(tn)) = F (α(t)).

Case 2: 1 > t1 > t2 > · · · . In this case, limF (α(tn)) =
⋂

{F (α(tn)) :
n ∈ N} and limF (α(tn)) ⊃ F (α(t)). If limF (α(tn)) 6= F (α(t)), a contra-
diction can be obtained by considering the sets K = {A ∈ 2Y : limF (α(tn))
⊂ A} and L = {F (α(t))}. Thus limF (α(tn)) = F (α(t)).

This completes the proof of the lemma.

Proceeding as in Lemma 2, one can prove the following lemma.

Lemma 3. Let α : [0, 1] → C(X) be an order arc. Suppose that F :
C(X) → C(Y ) is weakly Darboux and such that A ⊂ B implies F (A)
⊂ F (B). Then the function F ◦ α : [0, 1] → C(Y ) is continuous.
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Theorem 1. Suppose that f : X → Y and 2f : 2X → 2Y are weakly

Darboux. Then f is continuous.

Proof. Let F = 2f . Suppose that f is not continuous. Then there exist
points p ∈ X, q ∈ Y and a sequence {pn}

∞

n=1 in X such that lim pn = p,
lim f(pn) = q and q 6= f(p). Let ε = dY (f(p), q) > 0. Notice that f(X) is
nondegenerate.

Fix a Whitney map µ : 2Y → [0, 1]. Since the set {B ∈ 2Y : diam(B) ≥
ε/3} is closed in 2Y and it does not intersect µ−1(0), there exists r > 0 such
that r < µ(F (X)) and, if B ∈ µ−1(r), then diam(B) < ε/3. Fix η > 0 such
that η < ε and diam(B) > η for each B ∈ µ−1(r). Since lim f(pn) = q, we
may assume that f(pn) ∈ B(η/3, q) for each n ∈ N.

For each n ∈ N, fix an order arc αn : [0, 1] → C(X) with αn(0) = {pn}
and αn(1) = X. By Lemma 2, the function µ ◦ F ◦ αn : [0, 1] → [0, 1]
is continuous. Since µ(F (αn(0))) = µ(F ({pn})) = µ({f(pn)}) = 0 and
µ(F (αn(1))) = µ(F (X)) > r, there exists tn ∈ [0, 1] such that µ(F (αn(tn)))
= r. Since r > 0, F (αn(tn)) is a nondegenerate subcontinuum of Y . Notice
that, by the choice of r, diam(F (αn(tn))) < ε/3. Since f(pn) ∈ f(αn(tn)) ⊂
F (αn(tn)) and f(pn) ∈ B(ε/3, q), it follows that

F (αn(tn)) ⊂ B(2ε/3, q).

Since C(X) is compact, we may assume that the sequence {αn(tn)}∞n=1

converges to an element A ∈ C(X). Let

P = {p, p1, p2, . . .} and E = A ∪ α1(t1) ∪ α2(t2) ∪ · · · .

Then P, E ∈ 2X and P ⊂ E. Let β : [0, 1] → 2X be given by

β(t) =



















P ∪
(

n−1
⋃

i=1

αi(ti)
)

∪ αn

(

2n

(

t −

(

1 −
1

2n−1

))

tn

)

,

if t ∈ [1 − 1/2n−1, 1 − 1/2n], n ∈ N,

E if t = 1.

It is easy to check that β is well defined, continuous in [0, 1) and has the
property that if s ≤ t, then β(s) ⊂ β(t).

To see that β is continuous at 1, take a sequence s1 < s2 < · · · in [0, 1]
such that lim sm = 1. Since β(s1) ⊂ β(s2) ⊂ · · · , we have limβ(sm) =
cl(

⋃

{β(sm) : m ∈ N}). Hence limβ(sm) ⊂ E as each β(sm) is a sub-
set of E. Since limαn(tn) = A, we have A ⊂ cl(

⋃

{αn(tn) : n ∈ N}).
Given n ∈ N, there exists m0 ∈ N such that 1 − 1/2n < sm0

. Thus
αn(tn) ⊂ β(1 − 1/2n) ⊂ β(sm0

) ⊂ limβ(sm). Therefore, E ⊂ limβ(sm).
We have shown that β(1) = E = limβ(sm). This completes the proof that
β is continuous. Hence β is an order arc in 2X such that β(0) = P and
β(1) = E.
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By Lemma 2, the function F ◦ β : [0, 1] → 2Y is continuous. Hence
F (β(1)) = limF (β(1 − 1/2n)). Given n ∈ N,

F (β(1 − 1/2n)) = F (P ∪ α1(t1) ∪ · · · ∪ αn(tn))

⊂ cl(f({p, p1, p2, . . . )) ∪ F (α1(t1)) ∪ · · · ∪ F (αn(tn))

⊂ f({p}) ∪ cl(f({p1, p2, . . . )) ∪ F (α1(t1)) ∪ · · · ∪ F (αn(tn))

⊂ {f(p)} ∪ cl(B(2ε/3, q)).

Hence, F (β(1)) ⊂ {f(p)} ∪ cl(B(2ε/3, q)). That is,

F (E) ⊂ {f(p)} ∪ cl(B(2ε/3, q)).

Since A ⊂ E, we have F (A) ⊂ F (E) ⊂ {f(p)}∪cl(B(2ε/3, q)). By the choice
of ε, {f(p)} and cl(B(2ε/3, q)) are closed in Y and disjoint. By hypothesis,
F (A) is connected. Since p ∈ A, f(p) ∈ F (A). Thus, F (A) = {f(p)}.

Define γ : [0, 1] → 2X by

γ(t) =















A ∪ P if t = 0,

A ∪ P ∪ αn

(

2n

(

t −
1

2n

)

tn

)

∪
∞
⋃

i=n+1

αi(ti)

if t ∈ [1/2n, 1/2n−1], n ∈ N.

Since limαn(tn) = A, we have γ(t) ∈ 2X for each t ∈ [0, 1]. It is easy to
check that γ is well defined, continuous in (0, 1] and has the property that
if s ≤ t, then γ(s) ⊂ γ(t).

To prove that γ is continuous at 0, take a sequence s1 > s2 > · · · in [0, 1]
such that lim sm = 0. Given δ > 0, let N ∈ N be such that αn(tn) ⊂ N(δ, A)
for each n ≥ N . Fix M ∈ N such that sM < 1/2N . Given m ≥ M , we have
sm < 1/2N , thus γ(sm) ⊂ γ(1/2N ) ⊂ N(δ, A ∪ P ). Since A ∪ P ⊂ γ(sm) ⊂
N(δ, γ(sm)), we conclude that D(γ(sm), A ∪ P ) < δ. We have shown that
lim γ(sm) = A ∪ P = γ(0). Hence, γ is continuous at 0.

We have proved that γ is an order arc from γ(0) = A ∪ P to γ(1) = E.
By Lemma 2, F ◦ γ : [0, 1] → 2Y is a continuous function. Thus

limF (γ(1/2n)) = F (γ(0)) = F (A ∪ P ) = cl(f(A)) ∪ cl(f(P ))

⊂ {f(p)} ∪ cl(B(η/3, q)).

Therefore,

limF (γ(1/2n)) ⊂ {f(p)} ∪ B(η/2, q).

On the other hand, F (αn+1(tn+1)) ⊂ F (γ(1/2n)), F (αn+1(tn+1)) is con-
nected (see [2, Corollary 15.4]) and µ(F (αn+1(tn+1))) = r. Notice that, by
the choice of η, diam(F (αn+1(tn+1))) > η. This implies that F (αn+1(tn+1))
* B(η/2, q), and moreover, f(pn+1) ∈ F (αn+1(tn+1)) ∩ B(η/2, q). Hence,
bd(B(η/2, q)) ∩ F (αn+1(tn+1)) 6= ∅. This implies that

bd(B(η/2, q)) ∩ limF (αn+1(tn+1)) 6= ∅.
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Hence, bd(B(η/2, q)) ∩ limF (γ(1/2n)) 6= ∅. This contradicts the inclusion
limF (γ(1/2n)) ⊂ {f(p)} ∪ B(η/2, q) proved above and completes the proof
of the theorem.

Corollary 1. Suppose that f : X → Y and 2f : 2X → 2Y are almost

continuous functions. Then f is continuous.

Almost continuity of C(f)

Theorem 2. Suppose that X is locally connected and the functions

f : X → Y and C(f) : C(X) → C(Y ) are weakly Darboux. Then f is

continuous.

Proof. Let F = C(f). In order to prove that f is continuous take a
sequence {pn}

∞

n=1 in X converging to a point p ∈ X.

For each n ∈ N, let An = {A ∈ C(X) : p, pn ∈ A}. Since An is a
nonempty and compact subset of C(X), there exists An ∈ An such that
D({p}, An) = min{D({p}, A) : A ∈ An}. Then p, pn ∈ An.

We claim that limAn = {p}. Let ε > 0. Since X is locally connected,
there exists an open and connected subset U of X with diam(clX(U)) < ε
and p ∈ U . Thus D({p}, clX(U)) < ε. Let N ∈ N be such that pn ∈ U
for each n ≥ N . Then D({p}, An) ≤ D({p}, clX(U)) < ε for each n ≥ N .
Therefore, limAn = {p}.

For each n ∈ N, let Bn = An ∪ An+1 ∪ · · · . Clearly, Bn ∈ C(X), p, pn

∈ Bn, limBn = {p} and B1 ⊃ B2 ⊃ · · · . Let α : [0, 1] → C(X) be an order
arc such that α(1/n) = Bn for each n ∈ N and α(0) = {p} (such an order
arc can be constructed using Theorem 15.3 of [2]).

By Lemma 3, the map C(f) ◦ α : [0, 1] → C(Y ) is continuous. Thus
limC(f)(α(1/n)) = {f(p)}. Since f(pn) ∈ C(f)(α(1/n)) for each n ∈ N,
lim f(pn) = f(p). Therefore, f is continuous.

Corollary 2. Suppose that X is locally connected and the functions

f : X → Y and C(f) : C(X) → C(Y ) are almost continuous. Then f is

continuous.

Theorem 3. Let X be a non-locally connected continuum. Then there

exists a proper almost continuous function f : X → [0, 1] such that C(f) is

almost continuous.

Proof. Let H be the harmonic fan defined as a subset of the complex
plane by

H = {z ∈ C : |z| ≤ 2 and Arg(z) ∈ {0, 1/1, 1/2, 1/3, . . . }}

and set

Hn = {z ∈ H : Arg(z) ∈ {0, 1/1, 1/2, . . . , 1/n}}.
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By [1], there exists a continuous surjection g : X → H. For each n ∈ N,
define rn : H → Hn by

rn(z) =

{

z if z ∈ Hn,

|z| if z ∈ H − Hn.

Let h : H → [0, 1] be given by

h(z) =

{

0 if |z| ≥ 1 and Arg(z) = 0,

| |z| − 1| otherwise.

Finally, put f = h ◦ g.
The following observations are easy to prove:

(a) rn is a continuous retraction.
(b) h is not continuous.
(c) h ◦ rn is continuous.
(d) If M ⊂ H is connected, then h(M) is connected. Hence, f is weakly

Darboux.
(e) The function f is not continuous. Indeed, for each k ∈ N, fix a point

ak ∈ g−1(2(cos(1/k)+i sin(1/k))). By compactness of X there exists
a subsequence {akn

}∞n=1 tending to a point a ∈ X. Then, for each
n ∈ N, f(akn

) = 1, and

f(a) = h( lim
n→∞

(2(cos(1/kn) + i sin(1/kn)))) = h(2) = 0.

The following observations are also easy to check.
For a connected subset A of X we have:

(i) If A ∩ g−1(0) 6= ∅ 6= A ∩ g−1({z : |z| ≥ 1}), then f(A) = [0, 1] and
(h ◦ rn ◦ g)(A) = [0, 1] for all n ∈ N.

(ii) If A ⊂ g−1({z : |z| ≤ 1}), then (h ◦ rn ◦ g)(A) = f(A) for all n ∈ N.
(iii) If A ∩ g−1(0) = ∅, then g(A) is contained in some convex segment

contained in H. Hence, there exists k ∈ N such that (h◦rn◦g)(A) =
f(A) for all n ≥ k.

We are ready to show that C(f) is almost continuous. Let U be an open
subset of C(X) × C([0, 1]) containing the graph of C(f). Note that each
function h ◦ rn ◦ g is continuous. We claim that the graph of some map
C(h◦rn ◦g) is contained in U . Suppose to the contrary that, for each n ∈ N,
there exists An ∈ C(X) such that (An, (h ◦ rn ◦ g)(An)) /∈ U . In particular,
(h ◦ rn ◦ g)(An) 6= f(An). By (i)–(iii) we know that An ∩ g−1(0) = ∅ and
g(An) ⊂ H −Hn since otherwise f(An) = (h ◦ rn ◦ g)(An). By compactness
of C(X) we may assume that the sequence {An}

∞

n=1 converges to some
A ∈ C(X). By continuity of g, we see that g(A) is contained in the limit
convex segment of H. Therefore,

(A, (h ◦ r1 ◦ g)(A)) = (A, (h ◦ g)(A)) = (A, f(A)) ∈ U.
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By continuity of C(h ◦ r1 ◦ g), it follows that there exists k ∈ N such that
(An, (h ◦ r1 ◦ g)(An)) ∈ U for all n ≥ k. Since g(An) ⊂ H − Hn, we have
r1(g(An)) = rn(g(An)). Hence (An, (h ◦ rn ◦ g)(An)) ∈ U for all n ≥ k. This
contradicts the choice of the sets An and completes the proof that C(f) is
almost continuous.

Finally, since {{p} ∈ C(X) : p ∈ X} is closed in C(X), by [3, Proposi-
tion 2], it follows that f is almost continuous.
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