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INDUCED ALMOST CONTINUOUS FUNCTIONS ON HYPERSPACES
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ALEJANDRO ILLANES (Mséxico)

Abstract. For a metric continuum X, let C'(X) (resp., 2%) be the hyperspace of sub-
continua (resp., nonempty closed subsets) of X. Let f : X — Y be an almost continuous
function. Let C(f) : C(X) — C(Y) and 27 : 2¥ — 2¥ be the induced functions given by
C(f)(A) = cly (f(A)) and 2¢(A) = cly (f(A)). In this paper, we prove that:

e If 2/ is almost continuous, then f is continuous.

e If C(f) is almost continuous and X is locally connected, then f is continuous.

e If X is not locally connected, then there exists an almost continuous function
f: X —[0,1] such that C(f) is almost continuous and f is not continuous.

Introduction. A continuum is a nonempty, nondegenerate, compact
connected metric space. All the spaces considered in this paper are continua.
Given a continuum X we consider the following hyperspaces of X:

2X — {A C X : Ais closed and nonempty},
C(X)={Ae2¥: Ais connected}.

Both are considered with the Hausdorff metric D.

Given a (not necessarily continuous) function between continua f : X
— Y, we can consider its graph A(f) = {(p, f(p)) € X xY :p € X} and
the induced function 27 : 2X — 2Y given by 2/(A) = cly (f(A)) (f(A) is the
image of A under f). We are interested in functions f : X — Y for which
the natural induced map C(f) : C(X) — C(Y) is defined. Thus we need to
require that, for each A € C(X), f(A) is connected; we call a function sat-
isfying this condition weakly Darbouz (in Real Analysis a Darboux function
is a function such that the image of a connected set is a connected set).

Of course, every continuous function is weakly Darboux. It is known
that almost continuous functions are weakly Darboux (see Lemma 1). Recall
that f is almost continuous provided that, for each open subset U of X xY
such that A(f) C U, there exists a continuous function g : X — Y such that
A(g) C U. We say that f is proper almost continuous if f is almost contin-
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uous but not continuous. A simple example of a proper almost continuous
function is the function h : [0,1] — [—1,1] given by h(t) = sin(1/t) if t > 0,
and h(0) = 0.

Almost continuous functions were introduced by J. Stallings in [3] where
he used them to generalize some fixed point theorems.

Given a continuous function between continua f: X — Y and a class of
mappings M, the problem of determining if one of the following properties
implies another has been widely studied:

(a) f belongs to M,
(b) C(f) belongs to M,
(c) 2 belongs to M.

A discussion on this topic can be found in [2, Section 77].

In this paper, we study this problem for the class M of (not necessarily
continuous) almost continuous functions. Observe that, to define 2/ it is not
necessary to require that f is almost continuous. Since the restriction of an
almost continuous function to a closed subset of the domain is also almost
continuous (see [3, Proposition 2]), if 2/ is almost continuous, then so is
2/ 1{{p} € 2¥ : p € X}. This implies that f is almost continuous. Thus (c)
implies (a) and, similarly, (b) implies (a).

The first result we obtain is that if a function f : X — Y and its induced
function 27 are weakly Darboux, then f is continuous. Thus, for the class
of weakly Darboux functions, (a) and (c) together imply (b). The second
result says that if X is locally connected and the functions f and C(f) are
weakly Darboux, then f is continuous, and the third result says that if X
is not locally connected, then it is possible to construct a proper almost
continuous function f : X — [0, 1] such that C(f) is almost continuous.
Thus (a) and (b) together do not imply (c).

Almost continuity of 2/. Throughout this paper X denotes a con-
tinuum with metric d. The symbol N denotes the set of positive integers.
Givene > 0,p € X and A C X, let B(e,p) = {¢ € X : d(p,q) < €} and
N(e,A) = U{B(e,a) C X : a € A}. An order arc in 2% is a continuous
function « : [0,1] — 2% such that a(s) C a(t) if 0 < s < ¢ < 1. Conditions
for the existence of order arcs are given in Theorem 15.3 of [2]. A Whitney
map is a continuous function g : 2% — [0, 1] such that pu(X) = 1, u({p}) =0
for each p € X and, if A, B € 2% and A C B, then u(A) < u(B). It is known
that every continuum X admits Whitney maps (see [2, Thm. 13.4]).

The following lemma is well known (see [3, Corollary to Proposition 3]).
We include it here for completeness.

LEMMA 1. If f : X — Y is almost continuous, then f is weakly Darbouz.
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Proof. Let A € C(X). We need to show that f(A) is connected. Suppose
to the contrary that f(A) is not connected. Let K, L be nonempty separated
subsets of f(A) such that f(A) = KUL. Since Y is metric, there exist disjoint
open subsets V' and W such that K C V and L C W. Fix points a,b € A
such that f(a) € K and f(b) € L. Consider the set

U = [(X — 4) x Y]U[(X —{a}) x W] U[(X - {b}) x V]
U[(X = {a,b}) x (WUV)].

Clearly, U is an open subset of X x Y which contains A(f). Since f is
almost continuous, there exists a continuous function g : X — Y such that
A(g) C U.

Given a point p € A, by the definition of U, g(p) € W U V. Moreover,
(a,g(a)) € U implies that g(a) € V. Similarly, g(b ) € W. Therefore, g(A)
is a connected subset of WUV and g(A)NW # 0 # g(A) N V. This is a
contradiction. Hence f(A) is connected. m

LEMMA 2. Leta:[0,1] — 2X be an order arc. Suppose that F : 2% — 2Y
is weakly Darbouzr and such that A C B implies F(A) C F(B). Then the
function F o« :[0,1] — 2Y is continuous.

Proof. Let {t,}22, be a sequence in [0, 1] converging ¢ € [0, 1]. We need
to check that lim F(«(t,)) = F(«(t)). It is enough to consider the case in
which the sequence {t,,}°2  is strictly monotone.

CASE 1: 0 < t; < tg < ---. In this case, F(a(t1)) C F(a(te)) C -
This implies that limF(a(tn)) = cly(U{F(a(tn)) : n € N}). Hence
lim F(«(t,)) C F(a(t)) because each F(a(ty)) is contained in F(«(t)). I
lim F(a(ty)) # F(a(t)), fix a point p € F(a(t)) — lim F(a(ty)). Con
sider the following sets in 2¥: K = {4 € 2¥ : A C lim F(a(t,))} and
L={Ac?2Y:pec A}. It is easy to see that K and L are disjoint closed
subsets of 2V such that F(a([0,t))) C K and F(a(t)) € £. This contradicts
the connectedness of F'(a([0,%])) and proves that lim F'(a(t,)) = F(a(t)).

CASE 2: 1 > t; > to > --- . In this case, lim F(a(t,)) = ({F(a(ty)) :
n € N} and lim F'(a(ty)) D F(a(t)). If lim F(a(t,)) # F(a(t)), a contra-
diction can be obtained by considering the sets K = {A € 2¥ : lim F(a(t,))
C A} and £ = {F(«(t))}. Thus lim F(a(t,)) = F(a(t)).

This completes the proof of the lemma. =

Proceeding as in Lemma 2, one can prove the following lemma.

LEMMA 3. Let a : [0,1] — C(X) be an order arc. Suppose that F :
C(X) — C(Y) is weakly Darbouzr and such that A C B implies F(A)
C F(B). Then the function F o« :[0,1] — C(Y) is continuous.
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THEOREM 1. Suppose that f : X — Y and 27 : 2X — 2V are weakly
Darbouz. Then f is continuous.

Proof. Let F = 2f. Suppose that f is not continuous. Then there exist
points p € X, ¢ € Y and a sequence {p,}>°; in X such that limp, = p,
lim f(pn) = q and g # f(p). Let ¢ = dy(f(p),q) > 0. Notice that f(X) is
nondegenerate.

Fix a Whitney map p : 2" — [0, 1]. Since the set {B € 2¥ : diam(B) >
g/3} is closed in 2¥ and it does not intersect p~1(0), there exists r > 0 such
that r < u(F(X)) and, if B € p~1(r), then diam(B) < &/3. Fix n > 0 such
that < ¢ and diam(B) > 7 for each B € p~!(r). Since lim f(p,) = ¢, we
may assume that f(p,) € B(n/3,q) for each n € N.

For each n € N, fix an order arc a, : [0,1] — C(X) with a,,(0) = {p,}
and a,(1) = X. By Lemma 2, the function po F o oy : [0,1] — [0,1]
is continuous. Since p(F(a,(0))) = pw(F({pn})) = w({f(pn)}) = 0 and
w(F(an(1))) = p(F(X)) > r, there exists t,, € [0,1] such that pu(F(a,(t,)))
= r. Since r > 0, F(ay(t,)) is a nondegenerate subcontinuum of Y. Notice
that, by the choice of r, diam(F (ay,(t,))) < /3. Since f(pn) € f(an(tn)) C
F(an(ty)) and f(pn) € B(g/3,q), it follows that

Flan(tn)) C B(2¢/3,9).

Since C(X) is compact, we may assume that the sequence {a,(t,)}5>,
converges to an element A € C'(X). Let

P={p,p1,p2,...} and E=AUai(t;)Uaa(te)U---.
Then P,E € 2X and P C E. Let 3:[0,1] — 2% be given by

n—1

PU ( U ai(ti)) Uan<2"<t— (1 ~ 2n—1_1)>tn)

B(t) = i=1
ifte[l—1/2""11-1/2"],n €N,
FE ift=1.
It is easy to check that (3 is well defined, continuous in [0,1) and has the
property that if s <, then 8(s) C [(t).

To see that [ is continuous at 1, take a sequence s; < sg < --- in [0, 1]
such that lims,, = 1. Since B(s1) C B(s2) C ---, we have lim 3(s,,) =
c(U{B(sm) : m € N}). Hence lim3(s;,) C E as each ((sy,) is a sub-
set of E. Since limay(t,) = A, we have A C cl(U{an(tn) : n € N}).
Given n € N, there exists mg € N such that 1 — 1/2" < s,,,. Thus
an(tn) C B(1 —1/2") C B(Smy) C lim B(sy,). Therefore, E C lim ((sy,).
We have shown that 5(1) = E = lim 3(s,,). This completes the proof that
(3 is continuous. Hence (8 is an order arc in 2% such that B(0) = P and

B(1) = E.
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By Lemma 2, the function F o 8 : [0,1] — 2Y is continuous. Hence
F(B(1)) =lim F(B(1 —1/2")). Given n € N,
F(B(1—-1/2")=F(PUaq(t1) U---Uay(tn))
C c(f({p,p1,p2,...)) UF(a1(t1)) U--- U Fan(tn))
C f{ph Uc(f({p1,p2,---)) U Flai(t1)) U--- U F(an(tn))
Cc{f(p)} Ucl(B(2/3,q)).

Hence, F(5(1)) C {f(p )} Ucl(B(2¢/3,q)). That is,

(E) € {f(p)}Ucl(B(2¢/3,9)).
Since A C E, we have F(A) C F(E) Cc{f(p)}ucl(B(2¢/3,q)). By the choice
of e, {f(p)} and cl(B(2¢/3,q)) are closed in Y and disjoint. By hypothesis,
F(A) is connected. Since p € A, f(p) € F(A). Thus, F(A) ={f(p)}.
Define 7 : [0,1] — 2% by
AUP ift=0,

o0
A(t)={ AUPUay, (2” (t — 2%)15”> U U )
i=n-+1
if t € [1/2",1/2"71], n € N.
Since lim ay, (t,) = A, we have y(t) € 2% for each t € [0,1]. It is easy to
check that v is well defined, continuous in (0, 1] and has the property that
if s <'t, then ~v(s) C 7(¢).

To prove that + is continuous at 0, take a sequence s1 > s9 > -+« in [0, 1]
such that lim s, = 0. Given 6 > 0, let N € N be such that a,(t,) C N (9, A)
for each n > N. Fix M € N such that sy < 1/2N. Given m > M, we have
sm < 1/2N, thus v(s,,) C v(1/2Y) € N(6, AU P). Since AU P C y(s,) C
N(0,7(sm)), we conclude that D(v(sp), AU P) < 6. We have shown that
limy(sym) = AU P = ~(0). Hence, v is continuous at 0.

We have proved that 7 is an order arc from v(0) = AU P to (1) = E.
By Lemma 2, F o :[0,1] — 2 is a continuous function. Thus

lim F(y(1/2")) = F(~(0)) = F(AU P) = cl(f(A)) Ucl(f(P))
C {f(p)} Ucl(B(n/3,9)).
Therefore,
lim F(y(1/2")) € {f(p)} U B(n/2,9).

On the other hand, F(apn41(tnt1)) C F(v(1/2")), F(ant1(tn+1)) is con-
nected (see [2, Corollary 15.4]) and pu(F (apn+1(tnt+1))) = r. Notice that, by
the choice of n, diam(F (ap+1(tn+1))) > 1. This implies that F(cy4+1(tn+1))
¢ B(n/2,q), and moreover, f(pnt1) € F(ant1(tnt1)) N B(n/2,q). Hence,
bd(B(n/2,q)) N F(on+1(tns1)) # 0. This implies that

( (n/qu)) N hmF(an-i-l( n+1)) 7é 0.
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Hence, bd(B(n/2,q)) Nlim F(v(1/2")) # (. This contradicts the inclusion
lim F(v(1/2™) Cc {f(p)} U B(n/2,q) proved above and completes the proof
of the theorem. m

COROLLARY 1. Suppose that f: X — Y and 27 : 25X — 2Y are almost
continuous functions. Then f is continuous.

Almost continuity of C(f)

THEOREM 2. Suppose that X is locally connected and the functions
f:X =Y and C(f) : C(X) — C(Y) are weakly Darbouz. Then f is
continuous.

Proof. Let F' = C(f). In order to prove that f is continuous take a
sequence {p,}>2, in X converging to a point p € X.

For each n € N, let A, = {A € C(X) : p,p, € A}. Since A, is a
nonempty and compact subset of C'(X), there exists A, € A, such that
D({p}, A,) = min{D({p}, A) : A € A,}. Then p,p, € A,.

We claim that lim A,, = {p}. Let ¢ > 0. Since X is locally connected,
there exists an open and connected subset U of X with diam(clx(U)) < ¢
and p € U. Thus D({p},clx(U)) < €. Let N € N be such that p, € U
for each n > N. Then D({p}, A,) < D({p},clx(U)) < € for each n > N.
Therefore, lim A,, = {p}.

For each n € N, let B,, = A, UA,;+1U---. Clearly, B, € C(X), p,pn
€ By, limB,, = {p} and By D By D --- . Let o : [0,1] — C(X) be an order
arc such that «(1/n) = B, for each n € N and «(0) = {p} (such an order
arc can be constructed using Theorem 15.3 of [2]).

By Lemma 3, the map C(f) o« : [0,1] — C(Y) is continuous. Thus

Im C(f)(a(1/n)) = {f(p)}. Since f(pn) € C(f)(a(1/n)) for each n € N,
lim f(pn) = f(p). Therefore, f is continuous. =

COROLLARY 2. Suppose that X is locally connected and the functions
f: X =Y and C(f) : C(X) — C(Y) are almost continuous. Then f is
continuous.

THEOREM 3. Let X be a non-locally connected continuum. Then there
exists a proper almost continuous function f : X — [0,1] such that C(f) is
almost continuous.

Proof. Let H be the harmonic fan defined as a subset of the complex
plane by

H={2eC:|z|] <2and Arg(z) € {0,1/1,1/2,1/3,...}}

and set
H,={z¢€ H:Arg(z) € {0,1/1,1/2,...,1/n}}.
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By [1], there exists a continuous surjection g : X — H. For each n € N,
define r,, : H — H,, by

K if z € Hy,
"= e H - H,

Let h: H — [0,1] be given by

0 if |z| > 1 and Arg(z) =0,
) ={

||z| — 1| otherwise.

Finally, put f =hog.

The following observations are easy to prove:

(a) 7, is a continuous retraction.

(b) h is not continuous.

(¢) hory is continuous.

(d) If M C H is connected, then h(M) is connected. Hence, f is weakly
Darboux.

(e) The function f is not continuous. Indeed, for each k € N, fix a point
ay € g~ 1(2(cos(1/k)+isin(1/k))). By compactness of X there exists
a subsequence {ay, }°°; tending to a point a € X. Then, for each
n €N, f(ag,) =1, and

fla) = h(nli_{JgO(Q(cos(l/kn) +isin(1/ky)))) = h(2) = 0.

The following observations are also easy to check.
For a connected subset A of X we have:

() TANg™10) #0# ANng ({2 :]z] > 1}), then f(A) = [0,1] and
(horpog)(A)=10,1] for all n € N.
(i) f Ac g t({z:|z] £1}), then (hor, 0g)(A) = f(A) for all n € N.
(iii) If AN g=1(0) = 0, then g(A) is contained in some convex segment
contained in H. Hence, there exists k € N such that (hor,og)(A) =
f(A) for all n > k.

We are ready to show that C(f) is almost continuous. Let U be an open

subset of C(X) x C([0,1]) containing the graph of C(f). Note that each
function h o 7, o g is continuous. We claim that the graph of some map
C(horyog) is contained in U. Suppose to the contrary that, for each n € N,
there exists A, € C(X) such that (A,, (hor,og)(Ay)) ¢ U. In particular,
(horyog)(Ay) # f(An). By (i)-(iii) we know that A, N g~1(0) = @ and
g9(A,) C H — H,, since otherwise f(A,) = (hor,og)(A,). By compactness
of C(X) we may assume that the sequence {A4,}°; converges to some
A € C(X). By continuity of g, we see that g(A) is contained in the limit
convex segment of H. Therefore,

(A, (horiog)(A)) = (4, (heog)(A)) = (4, f(A)) € U.
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By continuity of C'(h o1 o g), it follows that there exists & € N such that
(An,(hori0g)(Ay)) € U for all n > k. Since g(A,,) C H — H,,, we have
r1(9(A4n)) = rn(g9(Ay)). Hence (A, (hor,og)(A,)) € U for all n > k. This
contradicts the choice of the sets A,, and completes the proof that C(f) is
almost continuous.

Finally, since {{p} € C(X) : p € X} is closed in C(X), by [3, Proposi-
tion 2], it follows that f is almost continuous. m
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