COLLOQUIUM MATHEMATICUM

INDUCED ALMOST CONTINUOUS FUNCTIONS ON HYPERSPACES

BY
ALEJANDRO ILLANES (México)

Abstract

For a metric continuum X, let $C(X)$ (resp., 2^{X}) be the hyperspace of subcontinua (resp., nonempty closed subsets) of X. Let $f: X \rightarrow Y$ be an almost continuous function. Let $C(f): C(X) \rightarrow C(Y)$ and $2^{f}: 2^{X} \rightarrow 2^{Y}$ be the induced functions given by $C(f)(A)=\operatorname{cl}_{Y}(f(A))$ and $2^{f}(A)=\operatorname{cl}_{Y}(f(A))$. In this paper, we prove that:

- If 2^{f} is almost continuous, then f is continuous.
- If $C(f)$ is almost continuous and X is locally connected, then f is continuous.
- If X is not locally connected, then there exists an almost continuous function $f: X \rightarrow[0,1]$ such that $C(f)$ is almost continuous and f is not continuous.

Introduction. A continuum is a nonempty, nondegenerate, compact connected metric space. All the spaces considered in this paper are continua. Given a continuum X we consider the following hyperspaces of X :

$$
\begin{aligned}
2^{X} & =\{A \subset X: A \text { is closed and nonempty }\} \\
C(X) & =\left\{A \in 2^{X}: A \text { is connected }\right\}
\end{aligned}
$$

Both are considered with the Hausdorff metric D.
Given a (not necessarily continuous) function between continua $f: X$ $\rightarrow Y$, we can consider its graph $\Lambda(f)=\{(p, f(p)) \in X \times Y: p \in X\}$ and the induced function $2^{f}: 2^{X} \rightarrow 2^{Y}$ given by $2^{f}(A)=\operatorname{cl}_{Y}(f(A))(f(A)$ is the image of A under f). We are interested in functions $f: X \rightarrow Y$ for which the natural induced map $C(f): C(X) \rightarrow C(Y)$ is defined. Thus we need to require that, for each $A \in C(X), f(A)$ is connected; we call a function satisfying this condition weakly Darboux (in Real Analysis a Darboux function is a function such that the image of a connected set is a connected set).

Of course, every continuous function is weakly Darboux. It is known that almost continuous functions are weakly Darboux (see Lemma 1). Recall that f is almost continuous provided that, for each open subset U of $X \times Y$ such that $\Lambda(f) \subset U$, there exists a continuous function $g: X \rightarrow Y$ such that $\Lambda(g) \subset U$. We say that f is proper almost continuous if f is almost contin-

[^0]uous but not continuous. A simple example of a proper almost continuous function is the function $h:[0,1] \rightarrow[-1,1]$ given by $h(t)=\sin (1 / t)$ if $t>0$, and $h(0)=0$.

Almost continuous functions were introduced by J. Stallings in [3] where he used them to generalize some fixed point theorems.

Given a continuous function between continua $f: X \rightarrow Y$ and a class of mappings \mathcal{M}, the problem of determining if one of the following properties implies another has been widely studied:
(a) f belongs to \mathcal{M},
(b) $C(f)$ belongs to \mathcal{M},
(c) 2^{f} belongs to \mathcal{M}.

A discussion on this topic can be found in [2, Section 77].
In this paper, we study this problem for the class \mathcal{M} of (not necessarily continuous) almost continuous functions. Observe that, to define 2^{f} it is not necessary to require that f is almost continuous. Since the restriction of an almost continuous function to a closed subset of the domain is also almost continuous (see [3, Proposition 2]), if 2^{f} is almost continuous, then so is $2^{f} \mid\left\{\{p\} \in 2^{X}: p \in X\right\}$. This implies that f is almost continuous. Thus (c) implies (a) and, similarly, (b) implies (a).

The first result we obtain is that if a function $f: X \rightarrow Y$ and its induced function 2^{f} are weakly Darboux, then f is continuous. Thus, for the class of weakly Darboux functions, (a) and (c) together imply (b). The second result says that if X is locally connected and the functions f and $C(f)$ are weakly Darboux, then f is continuous, and the third result says that if X is not locally connected, then it is possible to construct a proper almost continuous function $f: X \rightarrow[0,1]$ such that $C(f)$ is almost continuous. Thus (a) and (b) together do not imply (c).

Almost continuity of 2^{f}. Throughout this paper X denotes a continuum with metric d. The symbol \mathbb{N} denotes the set of positive integers. Given $\varepsilon>0, p \in X$ and $A \subset X$, let $B(\varepsilon, p)=\{q \in X: d(p, q)<\varepsilon\}$ and $N(\varepsilon, A)=\bigcup\{B(\varepsilon, a) \subset X: a \in A\}$. An order arc in 2^{X} is a continuous function $\alpha:[0,1] \rightarrow 2^{X}$ such that $\alpha(s) \subset \alpha(t)$ if $0 \leq s \leq t \leq 1$. Conditions for the existence of order arcs are given in Theorem 15.3 of [2]. A Whitney map is a continuous function $\mu: 2^{X} \rightarrow[0,1]$ such that $\mu(X)=1, \mu(\{p\})=0$ for each $p \in X$ and, if $A, B \in 2^{X}$ and $A \subsetneq B$, then $\mu(A)<\mu(B)$. It is known that every continuum X admits Whitney maps (see [2, Thm. 13.4]).

The following lemma is well known (see [3, Corollary to Proposition 3]). We include it here for completeness.

Lemma 1. If $f: X \rightarrow Y$ is almost continuous, then f is weakly Darboux.

Proof. Let $A \in C(X)$. We need to show that $f(A)$ is connected. Suppose to the contrary that $f(A)$ is not connected. Let K, L be nonempty separated subsets of $f(A)$ such that $f(A)=K \cup L$. Since Y is metric, there exist disjoint open subsets V and W such that $K \subset V$ and $L \subset W$. Fix points $a, b \in A$ such that $f(a) \in K$ and $f(b) \in L$. Consider the set

$$
\begin{aligned}
\mathcal{U}= & {[(X-A) \times Y] \cup[(X-\{a\}) \times W] \cup[(X-\{b\}) \times V] } \\
& \cup[(X-\{a, b\}) \times(W \cup V)] .
\end{aligned}
$$

Clearly, \mathcal{U} is an open subset of $X \times Y$ which contains $\Lambda(f)$. Since f is almost continuous, there exists a continuous function $g: X \rightarrow Y$ such that $\Lambda(g) \subset \mathcal{U}$.

Given a point $p \in A$, by the definition of $\mathcal{U}, g(p) \in W \cup V$. Moreover, $(a, g(a)) \in \mathcal{U}$ implies that $g(a) \in V$. Similarly, $g(b) \in W$. Therefore, $g(A)$ is a connected subset of $W \cup V$ and $g(A) \cap W \neq \emptyset \neq g(A) \cap V$. This is a contradiction. Hence $f(A)$ is connected.

Lemma 2. Let $\alpha:[0,1] \rightarrow 2^{X}$ be an order arc. Suppose that $F: 2^{X} \rightarrow 2^{Y}$ is weakly Darboux and such that $A \subset B$ implies $F(A) \subset F(B)$. Then the function $F \circ \alpha:[0,1] \rightarrow 2^{Y}$ is continuous.

Proof. Let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be a sequence in $[0,1]$ converging $t \in[0,1]$. We need to check that $\lim F\left(\alpha\left(t_{n}\right)\right)=F(\alpha(t))$. It is enough to consider the case in which the sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ is strictly monotone.

CASE 1: $0<t_{1}<t_{2}<\cdots$. In this case, $F\left(\alpha\left(t_{1}\right)\right) \subset F\left(\alpha\left(t_{2}\right)\right) \subset \cdots$. This implies that $\lim F\left(\alpha\left(t_{n}\right)\right)=\operatorname{cl}_{Y}\left(\bigcup\left\{F\left(\alpha\left(t_{n}\right)\right): n \in \mathbb{N}\right\}\right)$. Hence $\lim F\left(\alpha\left(t_{n}\right)\right) \subset F(\alpha(t))$ because each $F\left(\alpha\left(t_{n}\right)\right)$ is contained in $F(\alpha(t))$. If $\lim F\left(\alpha\left(t_{n}\right)\right) \neq F(\alpha(t))$, fix a point $\quad p \in F(\alpha(t))-\lim F\left(\alpha\left(t_{n}\right)\right)$. Consider the following sets in $2^{Y}: \mathcal{K}=\left\{A \in 2^{Y}: A \subset \lim F\left(\alpha\left(t_{n}\right)\right)\right\}$ and $\mathcal{L}=\left\{A \in 2^{Y}: p \in A\right\}$. It is easy to see that \mathcal{K} and \mathcal{L} are disjoint closed subsets of 2^{Y} such that $F(\alpha([0, t))) \subset \mathcal{K}$ and $F(\alpha(t)) \in \mathcal{L}$. This contradicts the connectedness of $F(\alpha([0, t]))$ and proves that $\lim F\left(\alpha\left(t_{n}\right)\right)=F(\alpha(t))$.

CASE 2: $1>t_{1}>t_{2}>\cdots$. In this case, $\lim F\left(\alpha\left(t_{n}\right)\right)=\bigcap\left\{F\left(\alpha\left(t_{n}\right)\right):\right.$ $n \in \mathbb{N}\}$ and $\lim F\left(\alpha\left(t_{n}\right)\right) \supset F(\alpha(t))$. If $\lim F\left(\alpha\left(t_{n}\right)\right) \neq F(\alpha(t))$, a contradiction can be obtained by considering the sets $\mathcal{K}=\left\{A \in 2^{Y}: \lim F\left(\alpha\left(t_{n}\right)\right)\right.$ $\subset A\}$ and $\mathcal{L}=\{F(\alpha(t))\}$. Thus $\lim F\left(\alpha\left(t_{n}\right)\right)=F(\alpha(t))$.

This completes the proof of the lemma.
Proceeding as in Lemma 2, one can prove the following lemma.
Lemma 3. Let $\alpha:[0,1] \rightarrow C(X)$ be an order arc. Suppose that $F:$ $C(X) \rightarrow C(Y)$ is weakly Darboux and such that $A \subset B$ implies $F(A)$ $\subset F(B)$. Then the function $F \circ \alpha:[0,1] \rightarrow C(Y)$ is continuous.

Theorem 1. Suppose that $f: X \rightarrow Y$ and $2^{f}: 2^{X} \rightarrow 2^{Y}$ are weakly Darboux. Then f is continuous.

Proof. Let $F=2^{f}$. Suppose that f is not continuous. Then there exist points $p \in X, q \in Y$ and a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ in X such that $\lim p_{n}=p$, $\lim f\left(p_{n}\right)=q$ and $q \neq f(p)$. Let $\varepsilon=d_{Y}(f(p), q)>0$. Notice that $f(X)$ is nondegenerate.

Fix a Whitney map $\mu: 2^{Y} \rightarrow[0,1]$. Since the set $\left\{B \in 2^{Y}: \operatorname{diam}(B) \geq\right.$ $\varepsilon / 3\}$ is closed in 2^{Y} and it does not intersect $\mu^{-1}(0)$, there exists $r>0$ such that $r<\mu(F(X))$ and, if $B \in \mu^{-1}(r)$, then $\operatorname{diam}(B)<\varepsilon / 3$. Fix $\eta>0$ such that $\eta<\varepsilon$ and $\operatorname{diam}(B)>\eta$ for each $B \in \mu^{-1}(r)$. Since $\lim f\left(p_{n}\right)=q$, we may assume that $f\left(p_{n}\right) \in B(\eta / 3, q)$ for each $n \in \mathbb{N}$.

For each $n \in \mathbb{N}$, fix an order arc $\alpha_{n}:[0,1] \rightarrow C(X)$ with $\alpha_{n}(0)=\left\{p_{n}\right\}$ and $\alpha_{n}(1)=X$. By Lemma 2, the function $\mu \circ F \circ \alpha_{n}:[0,1] \rightarrow[0,1]$ is continuous. Since $\mu\left(F\left(\alpha_{n}(0)\right)\right)=\mu\left(F\left(\left\{p_{n}\right\}\right)\right)=\mu\left(\left\{f\left(p_{n}\right)\right\}\right)=0$ and $\mu\left(F\left(\alpha_{n}(1)\right)\right)=\mu(F(X))>r$, there exists $t_{n} \in[0,1]$ such that $\mu\left(F\left(\alpha_{n}\left(t_{n}\right)\right)\right)$ $=r$. Since $r>0, F\left(\alpha_{n}\left(t_{n}\right)\right)$ is a nondegenerate subcontinuum of Y. Notice that, by the choice of $r, \operatorname{diam}\left(F\left(\alpha_{n}\left(t_{n}\right)\right)\right)<\varepsilon / 3$. Since $f\left(p_{n}\right) \in f\left(\alpha_{n}\left(t_{n}\right)\right) \subset$ $F\left(\alpha_{n}\left(t_{n}\right)\right)$ and $f\left(p_{n}\right) \in B(\varepsilon / 3, q)$, it follows that

$$
F\left(\alpha_{n}\left(t_{n}\right)\right) \subset B(2 \varepsilon / 3, q)
$$

Since $C(X)$ is compact, we may assume that the sequence $\left\{\alpha_{n}\left(t_{n}\right)\right\}_{n=1}^{\infty}$ converges to an element $A \in C(X)$. Let

$$
P=\left\{p, p_{1}, p_{2}, \ldots\right\} \quad \text { and } \quad E=A \cup \alpha_{1}\left(t_{1}\right) \cup \alpha_{2}\left(t_{2}\right) \cup \cdots
$$

Then $P, E \in 2^{X}$ and $P \subset E$. Let $\beta:[0,1] \rightarrow 2^{X}$ be given by

$$
\beta(t)= \begin{cases}P \cup\left(\bigcup_{i=1}^{n-1} \alpha_{i}\left(t_{i}\right)\right) \cup \alpha_{n}\left(2^{n}\left(t-\left(1-\frac{1}{2^{n-1}}\right)\right) t_{n}\right) \\ E & \text { if } t \in\left[1-1 / 2^{n-1}, 1-1 / 2^{n}\right], n \in \mathbb{N} \\ E & \text { if } t=1\end{cases}
$$

It is easy to check that β is well defined, continuous in $[0,1)$ and has the property that if $s \leq t$, then $\beta(s) \subset \beta(t)$.

To see that β is continuous at 1 , take a sequence $s_{1}<s_{2}<\cdots$ in $[0,1]$ such that $\lim s_{m}=1$. Since $\beta\left(s_{1}\right) \subset \beta\left(s_{2}\right) \subset \cdots$, we have $\lim \beta\left(s_{m}\right)=$ $\operatorname{cl}\left(\bigcup\left\{\beta\left(s_{m}\right): m \in \mathbb{N}\right\}\right)$. Hence $\lim \beta\left(s_{m}\right) \subset E$ as each $\beta\left(s_{m}\right)$ is a subset of E. Since $\lim \alpha_{n}\left(t_{n}\right)=A$, we have $A \subset \operatorname{cl}\left(\bigcup\left\{\alpha_{n}\left(t_{n}\right): n \in \mathbb{N}\right\}\right)$. Given $n \in \mathbb{N}$, there exists $m_{0} \in \mathbb{N}$ such that $1-1 / 2^{n}<s_{m_{0}}$. Thus $\alpha_{n}\left(t_{n}\right) \subset \beta\left(1-1 / 2^{n}\right) \subset \beta\left(s_{m_{0}}\right) \subset \lim \beta\left(s_{m}\right)$. Therefore, $E \subset \lim \beta\left(s_{m}\right)$. We have shown that $\beta(1)=E=\lim \beta\left(s_{m}\right)$. This completes the proof that β is continuous. Hence β is an order arc in 2^{X} such that $\beta(0)=P$ and $\beta(1)=E$.

By Lemma 2, the function $F \circ \beta:[0,1] \rightarrow 2^{Y}$ is continuous. Hence $F(\beta(1))=\lim F\left(\beta\left(1-1 / 2^{n}\right)\right)$. Given $n \in \mathbb{N}$,

$$
\begin{aligned}
F\left(\beta\left(1-1 / 2^{n}\right)\right) & =F\left(P \cup \alpha_{1}\left(t_{1}\right) \cup \cdots \cup \alpha_{n}\left(t_{n}\right)\right) \\
& \subset \operatorname{cl}\left(f\left(\left\{p, p_{1}, p_{2}, \ldots\right)\right) \cup F\left(\alpha_{1}\left(t_{1}\right)\right) \cup \cdots \cup F\left(\alpha_{n}\left(t_{n}\right)\right)\right. \\
& \subset f(\{p\}) \cup \operatorname{cl}\left(f\left(\left\{p_{1}, p_{2}, \ldots\right)\right) \cup F\left(\alpha_{1}\left(t_{1}\right)\right) \cup \cdots \cup F\left(\alpha_{n}\left(t_{n}\right)\right)\right. \\
& \subset\{f(p)\} \cup \operatorname{cl}(B(2 \varepsilon / 3, q)) .
\end{aligned}
$$

Hence, $F(\beta(1)) \subset\{f(p)\} \cup \operatorname{cl}(B(2 \varepsilon / 3, q))$. That is,

$$
F(E) \subset\{f(p)\} \cup \operatorname{cl}(B(2 \varepsilon / 3, q)) .
$$

Since $A \subset E$, we have $F(A) \subset F(E) \subset\{f(p)\} \cup \operatorname{cl}(B(2 \varepsilon / 3, q))$. By the choice of $\varepsilon,\{f(p)\}$ and $\mathrm{cl}(B(2 \varepsilon / 3, q))$ are closed in Y and disjoint. By hypothesis, $F(A)$ is connected. Since $p \in A, f(p) \in F(A)$. Thus, $F(A)=\{f(p)\}$.

Define $\gamma:[0,1] \rightarrow 2^{X}$ by

$$
\gamma(t)= \begin{cases}A \cup P \quad \text { if } t=0, \\ A \cup P \cup \alpha_{n}\left(2^{n}\left(t-\frac{1}{2^{n}}\right) t_{n}\right) \cup \bigcup_{i=n+1}^{\infty} \alpha_{i}\left(t_{i}\right) \\ & \text { if } t \in\left[1 / 2^{n}, 1 / 2^{n-1}\right], n \in \mathbb{N} .\end{cases}
$$

Since $\lim \alpha_{n}\left(t_{n}\right)=A$, we have $\gamma(t) \in 2^{X}$ for each $t \in[0,1]$. It is easy to check that γ is well defined, continuous in (0,1] and has the property that if $s \leq t$, then $\gamma(s) \subset \gamma(t)$.

To prove that γ is continuous at 0 , take a sequence $s_{1}>s_{2}>\cdots$ in $[0,1]$ such that $\lim s_{m}=0$. Given $\delta>0$, let $N \in \mathbb{N}$ be such that $\alpha_{n}\left(t_{n}\right) \subset N(\delta, A)$ for each $n \geq N$. Fix $M \in \mathbb{N}$ such that $s_{M}<1 / 2^{N}$. Given $m \geq M$, we have $s_{m}<1 / 2^{N}$, thus $\gamma\left(s_{m}\right) \subset \gamma\left(1 / 2^{N}\right) \subset N(\delta, A \cup P)$. Since $A \cup P \subset \gamma\left(s_{m}\right) \subset$ $N\left(\delta, \gamma\left(s_{m}\right)\right)$, we conclude that $D\left(\gamma\left(s_{m}\right), A \cup P\right)<\delta$. We have shown that $\lim \gamma\left(s_{m}\right)=A \cup P=\gamma(0)$. Hence, γ is continuous at 0 .

We have proved that γ is an order arc from $\gamma(0)=A \cup P$ to $\gamma(1)=E$. By Lemma $2, F \circ \gamma:[0,1] \rightarrow 2^{Y}$ is a continuous function. Thus

$$
\begin{aligned}
\lim F\left(\gamma\left(1 / 2^{n}\right)\right) & =F(\gamma(0))=F(A \cup P)=\operatorname{cl}(f(A)) \cup \operatorname{cl}(f(P)) \\
& \subset\{f(p)\} \cup \operatorname{cl}(B(\eta / 3, q)) .
\end{aligned}
$$

Therefore,

$$
\lim F\left(\gamma\left(1 / 2^{n}\right)\right) \subset\{f(p)\} \cup B(\eta / 2, q) .
$$

On the other hand, $F\left(\alpha_{n+1}\left(t_{n+1}\right)\right) \subset F\left(\gamma\left(1 / 2^{n}\right)\right), F\left(\alpha_{n+1}\left(t_{n+1}\right)\right)$ is connected (see [2, Corollary 15.4]) and $\mu\left(F\left(\alpha_{n+1}\left(t_{n+1}\right)\right)\right)=r$. Notice that, by the choice of $\eta, \operatorname{diam}\left(F\left(\alpha_{n+1}\left(t_{n+1}\right)\right)\right)>\eta$. This implies that $F\left(\alpha_{n+1}\left(t_{n+1}\right)\right)$ $\nsubseteq B(\eta / 2, q)$, and moreover, $f\left(p_{n+1}\right) \in F\left(\alpha_{n+1}\left(t_{n+1}\right)\right) \cap B(\eta / 2, q)$. Hence, $\operatorname{bd}(B(\eta / 2, q)) \cap F\left(\alpha_{n+1}\left(t_{n+1}\right)\right) \neq \emptyset$. This implies that

$$
\operatorname{bd}(B(\eta / 2, q)) \cap \lim F\left(\alpha_{n+1}\left(t_{n+1}\right)\right) \neq \emptyset .
$$

Hence, $\operatorname{bd}(B(\eta / 2, q)) \cap \lim F\left(\gamma\left(1 / 2^{n}\right)\right) \neq \emptyset$. This contradicts the inclusion $\lim F\left(\gamma\left(1 / 2^{n}\right)\right) \subset\{f(p)\} \cup B(\eta / 2, q)$ proved above and completes the proof of the theorem.

Corollary 1. Suppose that $f: X \rightarrow Y$ and $2^{f}: 2^{X} \rightarrow 2^{Y}$ are almost continuous functions. Then f is continuous.

Almost continuity of $C(f)$

Theorem 2. Suppose that X is locally connected and the functions $f: X \rightarrow Y$ and $C(f): C(X) \rightarrow C(Y)$ are weakly Darboux. Then f is continuous.

Proof. Let $F=C(f)$. In order to prove that f is continuous take a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ in X converging to a point $p \in X$.

For each $n \in \mathbb{N}$, let $\mathcal{A}_{n}=\left\{A \in C(X): p, p_{n} \in A\right\}$. Since \mathcal{A}_{n} is a nonempty and compact subset of $C(X)$, there exists $A_{n} \in \mathcal{A}_{n}$ such that $D\left(\{p\}, A_{n}\right)=\min \left\{D(\{p\}, A): A \in \mathcal{A}_{n}\right\}$. Then $p, p_{n} \in A_{n}$.

We claim that $\lim A_{n}=\{p\}$. Let $\varepsilon>0$. Since X is locally connected, there exists an open and connected subset U of X with $\operatorname{diam}\left(\mathrm{cl}_{X}(U)\right)<\varepsilon$ and $p \in U$. Thus $D\left(\{p\}, \operatorname{cl}_{X}(U)\right)<\varepsilon$. Let $N \in \mathbb{N}$ be such that $p_{n} \in U$ for each $n \geq N$. Then $D\left(\{p\}, A_{n}\right) \leq D\left(\{p\}, \mathrm{cl}_{X}(U)\right)<\varepsilon$ for each $n \geq N$. Therefore, $\lim A_{n}=\{p\}$.

For each $n \in \mathbb{N}$, let $B_{n}=A_{n} \cup A_{n+1} \cup \cdots$. Clearly, $B_{n} \in C(X)$, p, p_{n} $\in B_{n}, \lim B_{n}=\{p\}$ and $B_{1} \supset B_{2} \supset \cdots$. Let $\alpha:[0,1] \rightarrow C(X)$ be an order arc such that $\alpha(1 / n)=B_{n}$ for each $n \in \mathbb{N}$ and $\alpha(0)=\{p\}$ (such an order arc can be constructed using Theorem 15.3 of [2]).

By Lemma 3, the map $C(f) \circ \alpha:[0,1] \rightarrow C(Y)$ is continuous. Thus $\lim C(f)(\alpha(1 / n))=\{f(p)\}$. Since $f\left(p_{n}\right) \in C(f)(\alpha(1 / n))$ for each $n \in \mathbb{N}$, $\lim f\left(p_{n}\right)=f(p)$. Therefore, f is continuous.

Corollary 2. Suppose that X is locally connected and the functions $f: X \rightarrow Y$ and $C(f): C(X) \rightarrow C(Y)$ are almost continuous. Then f is continuous.

Theorem 3. Let X be a non-locally connected continuum. Then there exists a proper almost continuous function $f: X \rightarrow[0,1]$ such that $C(f)$ is almost continuous.

Proof. Let H be the harmonic fan defined as a subset of the complex plane by

$$
H=\{z \in \mathbb{C}:|z| \leq 2 \text { and } \operatorname{Arg}(z) \in\{0,1 / 1,1 / 2,1 / 3, \ldots\}\}
$$

and set

$$
H_{n}=\{z \in H: \operatorname{Arg}(z) \in\{0,1 / 1,1 / 2, \ldots, 1 / n\}\}
$$

By [1], there exists a continuous surjection $g: X \rightarrow H$. For each $n \in \mathbb{N}$, define $r_{n}: H \rightarrow H_{n}$ by

$$
r_{n}(z)= \begin{cases}z & \text { if } z \in H_{n} \\ |z| & \text { if } z \in H-H_{n} .\end{cases}
$$

Let $h: H \rightarrow[0,1]$ be given by

$$
h(z)= \begin{cases}0 & \text { if }|z| \geq 1 \text { and } \operatorname{Arg}(z)=0, \\ ||z|-1| & \text { otherwise }\end{cases}
$$

Finally, put $f=h \circ g$.
The following observations are easy to prove:
(a) r_{n} is a continuous retraction.
(b) h is not continuous.
(c) $h \circ r_{n}$ is continuous.
(d) If $M \subset H$ is connected, then $h(M)$ is connected. Hence, f is weakly Darboux.
(e) The function f is not continuous. Indeed, for each $k \in \mathbb{N}$, fix a point $a_{k} \in g^{-1}(2(\cos (1 / k)+i \sin (1 / k)))$. By compactness of X there exists a subsequence $\left\{a_{k_{n}}\right\}_{n=1}^{\infty}$ tending to a point $a \in X$. Then, for each $n \in \mathbb{N}, f\left(a_{k_{n}}\right)=1$, and

$$
f(a)=h\left(\lim _{n \rightarrow \infty}\left(2\left(\cos \left(1 / k_{n}\right)+i \sin \left(1 / k_{n}\right)\right)\right)\right)=h(2)=0 .
$$

The following observations are also easy to check.
For a connected subset A of X we have:
(i) If $A \cap g^{-1}(0) \neq \emptyset \neq A \cap g^{-1}(\{z:|z| \geq 1\})$, then $f(A)=[0,1]$ and $\left(h \circ r_{n} \circ g\right)(A)=[0,1]$ for all $n \in \mathbb{N}$.
(ii) If $A \subset g^{-1}(\{z:|z| \leq 1\})$, then $\left(h \circ r_{n} \circ g\right)(A)=f(A)$ for all $n \in \mathbb{N}$.
(iii) If $A \cap g^{-1}(0)=\emptyset$, then $g(A)$ is contained in some convex segment contained in H. Hence, there exists $k \in \mathbb{N}$ such that $\left(h \circ r_{n} \circ g\right)(A)=$ $f(A)$ for all $n \geq k$.

We are ready to show that $C(f)$ is almost continuous. Let U be an open subset of $C(X) \times C([0,1])$ containing the graph of $C(f)$. Note that each function $h \circ r_{n} \circ g$ is continuous. We claim that the graph of some map $C\left(h \circ r_{n} \circ g\right)$ is contained in U. Suppose to the contrary that, for each $n \in \mathbb{N}$, there exists $A_{n} \in C(X)$ such that $\left(A_{n},\left(h \circ r_{n} \circ g\right)\left(A_{n}\right)\right) \notin U$. In particular, $\left(h \circ r_{n} \circ g\right)\left(A_{n}\right) \neq f\left(A_{n}\right)$. By (i)-(iii) we know that $A_{n} \cap g^{-1}(0)=\emptyset$ and $g\left(A_{n}\right) \subset H-H_{n}$ since otherwise $f\left(A_{n}\right)=\left(h \circ r_{n} \circ g\right)\left(A_{n}\right)$. By compactness of $C(X)$ we may assume that the sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ converges to some $A \in C(X)$. By continuity of g, we see that $g(A)$ is contained in the limit convex segment of H. Therefore,

$$
\left(A,\left(h \circ r_{1} \circ g\right)(A)\right)=(A,(h \circ g)(A))=(A, f(A)) \in U .
$$

By continuity of $C\left(h \circ r_{1} \circ g\right)$, it follows that there exists $k \in \mathbb{N}$ such that $\left(A_{n},\left(h \circ r_{1} \circ g\right)\left(A_{n}\right)\right) \in U$ for all $n \geq k$. Since $g\left(A_{n}\right) \subset H-H_{n}$, we have $r_{1}\left(g\left(A_{n}\right)\right)=r_{n}\left(g\left(A_{n}\right)\right)$. Hence $\left(A_{n},\left(h \circ r_{n} \circ g\right)\left(A_{n}\right)\right) \in U$ for all $n \geq k$. This contradicts the choice of the sets A_{n} and completes the proof that $C(f)$ is almost continuous.

Finally, since $\{\{p\} \in C(X): p \in X\}$ is closed in $C(X)$, by [3, Proposition 2], it follows that f is almost continuous.

Acknowledgments. The author wishes to thank K. Omiljanowski for suggesting a shorter proof for Theorem 3. He also wishes to thank the referee for his comments.

REFERENCES

[1] D. P. Bellamy, Continuous mappings between continua, in: Topology Conference, 1979 (Greensboro, NC, 1979), Guilford College, Greensboro, NC, 1980, 101-111.
[2] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and Recent Advances, Monogr. Textbooks Pure Appl. Math. 216, Dekker, New York, 1999.
[3] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263.

Instituto de Matematicas
UNAM
Circuito Exterior, Ciudad Universitaria
04510 México, D.F., Mexico
E-mail: illanes@matem.unam.mx

Received 6 April 2005;
revised 3 August 2005

[^0]: 2000 Mathematics Subject Classification: Primary 54B20.
 Key words and phrases: almost continuous functions, continuum, hyperspaces, induced functions.

