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DIFFERENTIABLE Lp-FUNCTIONAL CALCULUS FOR CERTAIN

SUMS OF NON-COMMUTING OPERATORS

BY

MICHAEL GNEWUCH (Leipzig)

Abstract. We consider a special class of sums of non-commuting positive operators
on L2-spaces and derive a formula for their holomorphic semigroups. The formula enables
us to give sufficient conditions for these operators to admit differentiable Lp-functional
calculus for 1 ≤ p ≤ ∞. Our results are in particular applicable to certain sub-Laplacians,
Schrödinger operators and sums of even powers of vector fields on solvable Lie groups with
exponential volume growth.

1. Introduction. Our investigation is stimulated by a multiplier theo-
rem of S. Mustapha stating the following (for a more detailed discussion see
Section 3):

Consider a semidirect product G of the real line R and a stratified nilpo-
tent Lie group N , where R is acting on N via natural dilations. Then G
is a solvable Lie group with exponential volume growth. Let ∆ be a (dis-
tinguished type of) left invariant sub-Laplacian on G, and let Lp(G) be
the Lp-space on G with respect to the right invariant Haar measure. Let
κ > 2, and let Hκ(R) be the L2-Sobolev space of order κ on R. Mustapha
showed in [27] that for continuous, compactly supported f ∈ Hκ(R) the
restriction of f(∆) to L2 ∩ Lp(G) extends to a bounded operator on Lp(G)
for all 1 ≤ p ≤ ∞. Roughly speaking: it suffices to control a finite number
of derivatives of f to get Lp-boundedness for f(∆). (In this situation we
say that ∆ admits differentiable Lp-functional calculus, and f is called an
Lp-multiplier for ∆.)

This multiplier theorem has many predecessors, starting with the classi-
cal results of Mikhlin and Hörmander in the Euclidean setting (cf. [18]). So
it is well known that sub-Laplacians on connected Lie groups with polyno-
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mial volume growth (including all connected nilpotent Lie groups) always
have differentiable Lp-functional calculus [1]. But for a sub-Laplacian on a
solvable Lie group with exponential volume growth the validity of such a
theorem is a priori not clear. In fact there are sub-Laplacians on exponen-
tial groups known that do not admit differentiable Lp-functional calculus as
defined above—they are of the so-called holomorphic Lp-type [5, 17, 23].

A particularly interesting facet of the result of S. Mustapha is the order
κ of the Sobolev space that is independent of the “size” of the group, which,
e.g., can be expressed by the Euclidean dimension of G or the homogeneous
dimension Q of N . Actually, W. Hebisch proved in [16] a multiplier theorem
that is identical with the one of Mustapha, except for the order of the
Sobolev space, which is Q/2 + 5/2 + ε instead of 2 + ε. And indeed, in the
conditions of the multiplier theorems for solvable groups that have been
proven so far there regularly appears some quantity describing the size of
the underlying group (see, e.g., [1, 2, 4, 6, 7, 11, 14, 18, 24, 25, 26]). In this
respect, the result of Mustapha seems remarkable.

One aim of this paper is to present a different proof strategy for Musta-
pha’s multiplier theorem than the one used in [27]: Our approach is purely
analytic and relies on bounded functional calculus and Bessel functions in-
stead of on stochastic methods like Brownian motion.

Another aim is to extend the multiplier theorem to a larger class of
operators. We define this class in a more abstract way, but it includes several
interesting differential operators on the Lie groups mentioned above. These
particular operators are not necessarily hypoelliptic, left invariant and of
second order like the sub-Laplacians considered by Mustapha.

The article is organized as follows: In Section 2 we consider operators

T = −∂2
r ⊗ I + e2νr ⊗ L, ν ∈ R \ {0},

on L2(R×X), where X is an arbitrary σ-finite measure space, ∂r the deriva-
tive with respect to the parameter r ∈ R, I the identity operator on L2(X),
e2νr the multiplication operator ϕ(r) 7→ e2νrϕ(r) on L2(R) and L a pos-
itive selfadjoint operator on L2(X). The operator T can be realized as a
selfadjoint operator, and we deduce a representation of the holomorphic
semigroup (e−zT )ℜ(z)>0 of T in terms of (e−tL)t≥0. From this it is almost
straightforward to derive our central multiplier result, Theorem 2.2.

In Section 3 we present differential operators on Lie groups which satisfy
the conditions of our multiplier theorem. There we also discuss the result of
S. Mustapha in detail.

The appendix (Section 4) provides a selfadjointness theorem for gener-
alized sub-Laplacians and Schrödinger operators on Lie groups. “General-
ized” means here that the operators are not required to satisfy the so-called
Hörmander condition, i.e., they are not necessarily hypoelliptic. The result
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is probably known, but we are not aware of any explicit reference. Since we
use the theorem a few times in the main text, we decided to give a proof
(whose idea is actually simple).

2. The general multiplier result. Let (X, dx) be a σ-finite measure
space and L a positive selfadjoint operator on L2(X) with domain D(L).
Let dr be the Lebesgue measure on R and dr ⊗ dx the product measure on
R × X. Let ν ∈ R \ {0} be fixed. We denote the function r 7→ e2νr on R

briefly by e2νr. For κ ≥ 0 let

Hκ(R) := {f ∈ L2(R) : (1 + | · |)κf̂ ∈ L2(R)}
be the Sobolev space of order κ on R, and put

A := H2(R) ∩ {f ∈ L2(R) : e2νrf ∈ L2(R)}.
The positive operator −∂2

r +e2νrL is defined on A ⊗D(L) ⊆ L2(R×X) and
its closure is denoted by T . It is clear that T has a selfadjoint extension,
namely its Friedrichs’ extension. In fact T itself is already a selfadjoint
operator, as we shall prove in Proposition 2.10.

The precise definition of an Lp-multiplier that we use throughout this
article is the following: Let p ∈ [1,∞]. We call a bounded function f : R → C

an Lp-multiplier for T if there exists a positive constant C such that

‖f(T )ϕ‖Lp(R×X) ≤ C‖ϕ‖Lp(R×X) for all ϕ ∈ L2 ∩ Lp(R ×X).

Notice that in the case p = ∞ this definition does not necessarily imply
that f(T ) can be extended to a bounded operator on the whole space
L∞(R × X), since, for a non-trivial measure dx, L2 ∩ L∞(R × X) is not
dense in L∞(R ×X). On the other hand, if f(T ) is given explicitly, e.g., by
integration against a suitable kernel function, then it is often easy to extend
f(T ) to a bounded operator on L∞(R ×X) in a canonical way.

Before we state the main results of this section, some remarks concerning
notation: We use the abbreviations sh, ch and th for the hyperbolic functions
sinh, cosh and tanh respectively. ℜ(z) stands for the real part, ℑ(z) for the
imaginary part and z∗ for the complex conjugate of the complex number z.
For f ∈ L2(R ×X) and s ∈ R let fs denote the function x 7→ f(s, x) on X.

2.1. Results of Section 2. First we give a representation of the holo-
morphic semigroup of T in terms of the semigroup of L with positive time
parameter.

Theorem 2.1. Let z ∈ C with ℜ(z) > 0 and f ∈ L2(R ×X). Then

(1) e−zT f(r, x)

=

(\
R

∞\
0

|ν|Ψν2z(ξ) exp

(
−ch(ν(r − s))

ξ

)
exp

(
−ξe

ν(r+s)

2ν2
L

)
fs dξ ds

)
(x)
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for almost all (r, x) ∈ R×X, where the function Ψz : ]0,∞[ → C is given by

(2) Ψz(ξ) =
ξ−2

√
4π3z

exp

(
π2

4z

)∞\
0

sh(ϑ) sin

(
πϑ

2z

)
exp

(
−ϑ

2

4z
− ch(ϑ)

ξ

)
dϑ.

There exists a Cz > 0, only depending on z, with |Ψz(ξ)| ≤ Czξ
−2 for all

ξ > 0.

With the help of Theorem 2.1 it is easy to prove estimate (3), which is
the key inequality for our main multiplier result:

Theorem 2.2. Let p ∈ [1,∞]. If there exists a constant C > 0 such that

‖e−tLψ‖Lp(X) ≤ C‖ψ‖Lp(X) for each t > 0 and every ψ ∈ L2 ∩ Lp(X), then

(3) ‖e−(̺+iσ)Tϕ‖Lp(R×X)

≤ C(2 + |ν|√̺) exp

(
π2

4ν2̺

)(
1 +

|σ|
̺

)3/2

‖ϕ‖Lp(R×X)

for all ̺ > 0, σ ∈ R and ϕ ∈ L2 ∩ Lp(R × X). Moreover , for every κ > 2
each continuous f ∈ Hκ(R) with compact support is an Lq-multiplier for T
if q satisfies 1/q = s+ (t− s)/p for some s, t ∈ [0, 1] with s+ t = 1.

The following theorem states our multiplier result in terms of heat or
evolution kernels rather than in terms of semigroups:

Theorem 2.3. Assume that L has a measurable evolution kernel (pt)t>0,
i.e., e−tLψ(x) =

T
X pt(x, y)ψ(y) dy for almost all x ∈ X. If the opera-

tors (Λt)t>0 defined by ψ 7→
T
X |pt(·, y)|ψ(y) dy are bounded on L2(X) with

‖Λt‖L2(X)→L2(X) ≤ κ, κ independent of t > 0, then T has an evolution

kernel (Pz)ℜ(z)>0, given by

(4) Pz((r, x), (s, y))

=

∞\
0

|ν|Ψν2z(ξ) exp

(
−ch(ν(r − s))

ξ

)
pξeν(r+s)/2ν2(x, y) dξ

for almost all ((r, x), (s, y)) ∈ (R ×X)2.

If there is in addition a constant C > 0 with ‖pt(·, x)‖L1(X) ≤ C for all

t > 0 and x ∈ X, then for each z ∈ C with ℜ(z) > 0 and every g ∈ R ×X,

(5) ‖Pz(·, g)‖L1(R×X) ≤ C(2 + |ν|
√
ℜ(z)) exp

(
π2

4ν2ℜ(z)

)(
1 +

|ℑ(z)|
ℜ(z)

)3/2

.

In particular , for every ε > 0 and every p ∈ [1,∞], each compactly sup-

ported , continuous f ∈ H2+ε(R) is an Lp-multiplier for T .

Remark 2.4. (i) The exponent 3/2 of 1 + |ℑ(z)|/ℜ(z) in (3) and (5) is
optimal in the sense that there exists an operator T = −∂2

r + e2rL with

‖e−(1+iσ)T‖L1(R×X)→L1(R×X) ∼ (1 + |σ|)3/2.
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This was shown in [27] for a sub-Laplacian T on some solvable Lie group G,
given by R acting on R

2 via natural dilations (cf. Section 3). S. Mustapha
used a concrete formula from [3] for the heat kernel Φz of T to demonstrate
that ‖Φ1+iσ‖L1(G) ∼ (1 + |σ|)3/2.

(ii) One observes that the term C exp(π2/4ν2ℜ(z))(2+ |ν|
√
ℜ(z)) in (3)

and (5) tends to infinity as |ν| tends to zero. That reflects the fact that for
operators of the form −∂2

r + L in general one cannot achieve estimates like
(3) and (5). If, e.g., L is the Laplacian on R

n, then −∂2
r +L is the Laplacian

on R
n+1 and its heat kernel Φz satisfies

‖Φ1+iσ‖L1(Rn+1) ∼ (1 + |σ|)(n+1)/2.

Thus for n > 2 an estimate like (5) does not hold for Pz(·, 0) = Φz.

2.2. Proof of the results. For a ≥ 0 we consider the operatorA = A(a) :=
−∂2

r + ae2νr defined on the space of test functions C∞
c (R). We denote its

closure again by A(a). Then A(a) is selfadjoint with domain

D(A(a)) =

{
H2(R) if a = 0,

A if a > 0
(see, e.g., Theorem 4.1).

Guideline for the proof of Theorems 2.1 and 2.2. The multiplier state-
ment in Theorem 2.2 follows from estimate (3) by utilizing the spectral
theorem and the Fourier inversion formula: We have

f(T ) =
1

2π

\
R

F̂ (ξ)e−(1−iξ)T dξ,

where F := f ·exp. Hence we get for ϕ ∈ L2∩Lp(R×X), with v(ξ) := 1+ |ξ|
and K := C(2 + |ν|) exp(π2/4ν2),

‖f(T )ϕ‖Lp(R×X) ≤
1

2π

\
R

|F̂ (ξ)| ‖e−(1−iξ)Tϕ‖Lp(R×X) dξ

≤ K

2π

\
R

|F̂ (ξ)|v(ξ)3/2 dξ ‖ϕ‖Lp(R×X)

≤ K

2π
‖v−1/2−ε‖L2(R)‖v2+εF̂‖L2(R)‖ϕ‖Lp(R×X).

To apply a duality argument, we use the following statement: For all q, q′ ∈
[1,∞] with 1/q + 1/q′ = 1, and for all ξ ∈ Lq(R ×X), we have

(6) ‖ξ‖Lq(R×X) = sup{|〈ξ, τ〉| : τ ∈ L2 ∩ Lq′(R ×X), ‖τ‖Lq′ (R×X) = 1}.
Hölder’s inequality shows that the right hand side of (6) is bounded from
above by the left hand side. For q ∈ ]1,∞[ equality follows from the theorem
of Hahn–Banach, the fact that Lq′ is isometrically isomorphic to the dual
space of Lq and the fact that L2 ∩ Lq′ is dense in Lq′ . In the remaining
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cases q = 1,∞ the σ-finiteness of the measure space R×X allows us to con-
struct sequences (ηn) in L2∪Lq′(R×X) satisfying |〈ξ, ηn〉| → ‖ξ‖Lq(R×X) as
n→ ∞. (These constructions are straightforward. Nevertheless, the details
can be found in [10, §1.1].) From (6) we get, with a simplified notation,

sup{‖f(T )ψ‖Lp′ : ψ ∈ L2 ∩ Lp′ , ‖ψ‖Lp′ = 1}
= sup{|〈f(T )ψ, τ〉| : ψ ∈ L2 ∩ Lp′ , τ ∈ L2 ∩ Lp, ‖ψ‖Lp′ = 1 = ‖τ‖Lp}

= sup{|〈ψ, f∗(T )τ〉| : ψ ∈ L2 ∩ Lp′ , τ ∈ L2 ∩ Lp, ‖ψ‖Lp′ = 1 = ‖τ‖Lp}

= sup{‖f∗(T )τ‖Lp : τ ∈ L2 ∩ Lp, ‖τ‖Lp = 1} ≤ K

2π

\
R

|F̂ (ξ)|v(ξ)3/2 dξ,

since (f∗ · exp)∧(ξ) = F̂ (−ξ)∗.
The full multiplier statement follows now from the interpolation theorem

of Riesz–Thorin.

Inequality (3) is more or less a direct consequence of identity (1), as
we shall show later. Therefore the crucial part of the proof is to verify (1).
Actually it is sufficient to establish (1) for ν = 1, since the general case can
then be derived using the change of variables s := νr. We therefore only
consider the case ν = 1 to make formulas a little shorter.

The formal idea to establish (1) is the following: Instead of looking di-

rectly at e−zT = e−z(−∂2
r+e2rL), we first consider the family of operators

e−z(−∂2
r+ae2r) = e−zA(a), a ∈ [0,∞[. These operators have an integration

kernel qz(a, ·, ·), i.e.,

e−zA(a)ϕ =
\
R

qz(a, ·, s)ϕ(s) ds for any ϕ ∈ L2(R),

which can be calculated easily. After deriving a suitable representation of qz,
we are able to replace the variable a again by the operator L in the sense of
bounded functional calculus, and we get

e−zTϕ⊗ ψ =
\
R

(qz(L, ·, s)ψ)ϕ(s) ds for any ϕ ∈ L2(R), ψ ∈ L2(X).

On the next pages we realize this proof idea in a mathematically rigorous
manner. The first step is to calculate the kernel qz(a, ·, ·) of e−zA(a), a ≥ 0.

Lemma 2.5. Let a ∈ [0,∞[ and z ∈ C with ℜ(z) > 0. For n ∈ N let the

curve γn : R → C be defined by γn(θ) = (θ + i2−n)2.

(i) We have

(7) e−zA(a) = − 1

2πi

\
γn

e−zλ(λ−A(a))−1 dλ;
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here the parameterized integrand s 7→ γ′n(s)e−zγn(s)(γn(s)−A(a))−1 is

an L1-mapping from R into the space of bounded linear operators on

L2(R).
(ii) If ϕ ∈ C∞

c (R), then for almost all r ∈ R,

(8) e−zA(a)ϕ(r) = − 1

2πi

\
γn

e−zλ((λ−A(a))−1ϕ)(r) dλ.

Proof. Formulas like (7) are well known in the literature (see, e.g., [28,
§1.7]). From (7) it follows that, for almost all r ∈ R,

e−zA(a)ϕ(r) = − 1

2πi

( \
γn

e−zλ(λ−A(a))−1ϕdλ
)
(r).

Since ϕ is smooth, one can change the order of integration and point eval-
uation in r. Thus (8) holds.

Equation (8) indicates that we can calculate qz if we have a concrete
formula for the resolvent of A(a). We found such a formula in [20] (it is
also stated in [29, Ex. 4.15]): For a > 0 and θ ∈ C we define the function
ka

θ : R
2 → C by

ka
θ (r, s) =

{−I−iθ(
√
a er)Kiθ(

√
a es) for s ≥ r,

−I−iθ(
√
a es)Kiθ(

√
a er) for s < r,

where I and K are the so-called Bessel functions of imaginary argument.
(Our reference for Bessel functions is [22].) Furthermore, we define ϑ(θ) to
be the complex number with ϑ(θ)2 = θ and arg(ϑ(θ)) ∈ [0, π[. Then for
λ ∈ C \ [0,∞[ and ϕ ∈ C∞

c (R) we have

(9) (λ−A(a))−1ϕ(r) =
\
R

ka
ϑ(λ)(r, s)ϕ(s) ds for almost all r ∈ R.

Before we calculate qz, we want to prove another auxiliary lemma:

Lemma 2.6. There exists a C > 0 such that for all a > 0, r, s ∈ R and

all z ∈ C with ℑ(z) ≥ 0,

|ka
z (r, s)| ≤ Ca−1/4e−(r+s)/4.

Proof. Because of symmetry we can confine ourselves to the case r ≥ s.
If J0 denotes the Bessel function of first type and order 0, we have

Kiz(
√
a er)I−iz(

√
a es) =

1

2

∞\
r−s

J0(
√

2aer+s
√

ch(σ) − ch(r − s))eizσ dσ.

J0 is bounded on [0,∞[ and there exists a C > 0 with |J0(x)| ≤ C/
√
x for

all x ∈ [0,∞[. Therefore

|Kiz(
√
a er)I−iz(

√
a es)| ≤ C

2
(2a)−1/4e−(r+s)/4

∞\
r−s

(ch(σ)−ch(r−s))−1/4 dσ.
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With the substitution τ := ch(σ), dσ = (τ2 − 1)−1/2 dτ we get
∞\

r−s

(ch(σ) − ch(r − s))−1/4 dσ =

∞\
ch(r−s)

(τ − ch(r − s))−1/4 dτ√
τ2 − 1

=

∞\
0

τ−1/4 dτ√
(τ + ch(r − s))2 − 1

≤
∞\
0

τ−3/4 dτ√
τ + 2

<∞.

Proposition 2.7. Let a > 0, z ∈ C with ℜ(z) > 0 and ϕ ∈ C∞
c (R).

Then

(10) e−zA(a)ϕ(r) =
\
R

qz(a, r, s)ϕ(s) ds for almost all r ∈ R,

where

qz(a, r, s) := − 1

πi

\
R

θe−zθ2
ka

θ (r, s) dθ.

Proof. Lemma 2.5(ii) and (9) imply, for ϕ ∈ C∞
c (R),

e−zA(a)ϕ(r)

= − 1

2πi

\
γn

e−zλ
\
R

ka
ϑ(λ)(r, s)ϕ(s) ds dλ

= − 1

πi

\
R

\
R

(θ + i2−n) exp(−z(θ + i2−n)2)ka
θ+i2−n(r, s)ϕ(s) ds dθ

for almost all r and every n ∈ N. For fixed r ∈ R the integrand of the last
term converges as n→ ∞ pointwise to the function

(θ, s) 7→ θe−zθ2
ka

θ (r, s)ϕ(s).

From

|(θ + i2−n) exp(−z(θ + i2−n)2)ka
θ+i2−n(r, s)ϕ(s)|

≤ C

a1/4
(1 + |θ|) exp(−ℜ(z)(θ2 − 1) + 2|ℑ(z)θ|) e−(r+s)/4|ϕ(s)|

(see Lemma 2.6) and the dominated convergence theorem we get

e−zAϕ(r) = − 1

πi

\
R

\
R

θe−zθ2
ka

θ (r, s)ϕ(s) ds dθ.

Hence Fubini’s theorem yields (10) for test functions.

Proposition 2.8. Let z ∈ C with ℜ(z) > 0 and Ψz as in (2). For all

a > 0 and all r, s ∈ R we have

(11) qz(a, r, s) =

∞\
0

Ψz(ξ) exp

(
−ch(r − s)

ξ

)
exp

(
−ξe

r+s

2
a

)
dξ.
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Proof. Let a > 0. From

Kν(ζ) =
π

2

I−ν(ζ) − Iν(ζ)

sin(πν)
, ν /∈ Z, and K−ν = Kν

we get, for r ≥ s,

qz(a, r, s) =
2

π2

∞\
0

θ sh(θπ)e−zθ2
Kiθ(

√
a er)Kiθ(

√
a es) dθ.

Obviously this result still holds if r < s. From the integral representation
[22, (5.10.25)] of Kiθ it follows that for s, r ∈ R,

qz(a, r, s) =
1

2π2

∞\
0

θ sh(θπ)e−zθ2+iθ(r−s)

(∞\
0

exp

(
−v − ae2r

4v

)
v−iθ−1 dv

)

×
(∞\

0

exp

(
−w − ae2s

4w

)
wiθ−1 dw

)
dθ

=
1

2π2

∞\
0

∞\
0

∞\
0

θ sh(θπ) exp(−zθ2 + iθ(r − s) + iθ ln(w/v))

× exp

(
−a

4

(
e2r

v
+
e2s

w

)
− w − v

)
dv

v

dw

w
dθ.

The identity qz(a, r, s) = 1
2(qz(a, r, s)+qz(a, s, r)) shows that we can replace

the factor exp(iθ(r−s+ln(w/v))) of the integrand by cos(θ(r−s+ln(w/v))).
Then, with the substitutions ν := 2ve−r+s, µ := 2wer−s,

qz(a, r, s) =
1

2π2

∞\
0

∞\
0

∞\
0

θ sh(θπ) cos(θ(s− r + ln(µ/ν)))e−zθ2

× exp

(
−a

2
er+s

(
1

ν
+

1

µ

)
− 1

2
(νer−s + µes−r)

)
dν

ν

dµ

µ
dθ.

Using the change of variables

Φ : {(ξ, η) : ξ > 0, |η| < ξ} → ]0,∞[2, (ξ, η) 7→
(

2

ξ + η
,

2

ξ − η

)
=: (µ, ν),

we get

qz(a, r, s) =
1

π2

∞\
0

∞\
0

ξ\
−ξ

θ sh(θπ) cos

(
θ

(
s− r + ln

(ξ − η

ξ + η

)))
e−zθ2

× exp

(
−ae

r+sξ

2
− er−s

ξ − η
− es−r

ξ + η

)
dη dξ

ξ2 − η2
dθ

=
1

π2

∞\
0

∞\
0

1\
−1

θ sh(θπ) cos

(
θ

(
s− r + ln

(
1 − w

1 + w

)))
e−zθ2

× exp

(
−ae

r+sξ

2
− 1

ξ

(
er−s

1 − w
+

es−r

1 + w

))
dw dξ

ξ(1 − w2)
dθ,
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where in the last step we employed the change of variables w = η/ξ. If we
define u := arth(w), then ln((1 − w)/(1 + w)) = −2 arth(w) = −2u and
1 − w2 = 1 − th(u)2 = ch(u)−2. Furthermore, we get

er−s

1 − w
+

es−r

1 + w
= 2 ch(u) ch(r − s+ u).

This leads to

qz(a, r, s) =
1

π2

∞\
0

∞\
0

∞\
−∞

θ sh(θπ) cos(θ(s− r − 2u))e−zθ2

× 1

ξ
exp

(
−ae

r+sξ

2
− 2

ξ
ch(u) ch(r − s+ u)

)
du dξ dθ.

With ϑ := 2u+ r − s we have the identity

2 ch(u) ch(r − s+ u) = ch(r − s) + ch(ϑ).

That implies

qz(a, r, s) =
1

π2

∞\
0

∞\
0

(∞\
0

θ sh(θπ) cos(θϑ)e−zθ2
dθ

)

× 1

ξ
exp

(
−ae

r+sξ

2
− 1

ξ
(ch(r − s) + ch(ϑ))

)
dϑ dξ.

With partial integration and [13, Eq. 4.133] we get for z ∈ ]0,∞[,
∞\
0

θ sh(θπ) cos(θϑ)e−zθ2
dθ

=

√
π

2
√
z

exp

(
π2 − ϑ2

4z

)(
π

2z
cos

(
πϑ

2z

)
− ϑ

2z
sin

(
πϑ

2z

))

=

√
π

2
√
z

exp

(
π2

4z

)
∂ϑ

(
exp

(
− ϑ2

4z

)
sin

(
πϑ

2z

))
.

As all terms in the preceding calculation are holomorphic in z, this identity
holds for all z ∈ C with ℜ(z) > 0. After partial integration with respect to
the ϑ-variable we finally get formula (11).

Corollary 2.9. Let z ∈ C with ℜ(z) > 0, and define qz(a, r, s) for

a = 0 via (11). Then qz is continuous on [0,∞[ × R
2, and there exists a

Cz > 0, depending only on z, with

(12) |qz(a, r, s)| ≤ Cz ch(r − s)−1 for all a ≥ 0 and r, s ∈ R.

Furthermore, identity (10) holds for all a ≥ 0 and all ϕ ∈ L2(R).

Proof. It is easy to see that there exists a Cz > 0, depending only on z,
with |Ψz| ≤ Czξ

−2. This implies

|qz(a, r, s)| ≤ Cz

∞\
0

ξ−2 exp

(
−ch(r − s)

ξ

)
dξ = Cz ch(r − s)−1.
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The continuity of qz now follows from the dominated convergence theo-
rem.

Let a > 0. Since (12) holds, both sides of (10) define bounded linear
operators on L2(R), which then have to be equal on the whole space L2(R).

Let now a = 0. From (12) and the dominated convergence theorem we
have, for ϕ, ψ ∈ L2(R) and a′ > 0,

〈e−zA(a′)ϕ, ψ〉 =
\
R

\
R

qz(a
′, r, s)ϕ(s)ψ(r)∗ ds dr

→
\
R

\
R

qz(0, r, s)ϕ(s)ψ(r)∗ ds dr for a′ ց 0.

As e−zA(a′)ϕ → e−zA(0)ϕ for a′ ց 0 (see, e.g., [31, Thm. 9.17]), (10) holds
also for a = 0 and arbitrary ϕ ∈ L2(R).

Now let z ∈ C with ℜ(z) > 0 and r, s ∈ R. According to (12) the function
a 7→ qz(a, r, s) is bounded on [0,∞[, and in the sense of bounded functional
calculus we obtain

(13) qz(L, r, s) =

∞\
0

Ψz(ξ) exp

(
−ch(r − s)

ξ

)
exp

(
−ξe

r+s

2
L

)
dξ.

The integrand on the right hand side of (13) is an L1-mapping from ]0,∞[
with values in the space of bounded linear operators on L2(X).

Proposition 2.10. The positive operator T is selfadjoint and its holo-

morphic semigroup (e−zT )ℜ(z)>0 is given by

(14) e−zT f(r, x) =
(\

R

qz(L, r, s)fs ds
)
(x)

for all f ∈ L2(R ×X) and almost all (r, x) ∈ R ×X.

Proof. According to the spectral theorem, L is unitarily equivalent to
an operator of multiplication on some L2(Y ), where Y is another σ-finite
measure space. It is therefore sufficient to consider the case where Lψ = mψ
for some measurable m : X → [0,∞[. For z ∈ C with ℜ(z) > 0 let us define
the operator S(z) by

S(z)f(r, x) =
\
R

qz
(
m(x), r, s

)
f(s, x) ds

for f ∈ L2(R × X). It is easy to see from the properties of the holomor-
phic semigroups (e−zA(a))ℜ(z)>0, a ≥ 0, and their kernels qz(a, r, s) that

(S(z))ℜ(z)>0 is a semigroup of operators on L2(R ×X) and that the map-

ping z 7→ 〈S(z)f, g〉L2(R×X) is holomorphic for all f, g ∈ L2(R × X). Since
the semigroup (S(t))t≥0 is selfadjoint, the same holds for its infinitesimal
generator −G. It is straightforward to show that A ⊗ D(L) ⊆ D(G) and
that T = G on A ⊗ D(L). Thus T = G|D(T ).
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To conclude the proof, we only have to verify that T is a selfadjoint
operator, since then T = G and e−zT = S(z). One can surely realize that
in several ways; here we want to sketch the following approach: We prove
that D(T ) is a core of G (which implies T = G). For this it is sufficient
to show that D(T ) is invariant under (S(t))t≥0 [8, Thm. 1.9]. The technical
problem here is that our description of D(T ) is somewhat abstract, namely
that D(T ) is the completion of A ⊗ D(L) with respect to the graph norm
of T . To handle this, we define some “discrete approximation” of S(t): For
k = 1, . . . , 22n put an,k = n−1 + k2−n and V (n, k) = m−1([an,k, an,k+1[).
Furthermore, let an,0 = 0 and V (n, 0) = m−1({0}). We define the operator
πn on L2(R) ⊗ L2(X) by

πnη ⊗ ξ =
22n∑

k=0

e−tA(an,k)η ⊗ 1V (n,k)ξ,

where 1V (n,k) is the characteristic function of V (n, k). It is not hard to see
that the range of πn is contained in D(T ). Moreover, the properties of qt
and the theorem of dominated convergence ensure that limn→∞ πnη ⊗ ξ =
S(t)η ⊗ ξ for all η ∈ L2(R), ξ ∈ L2(X).

We now prove limn→∞ T (πnϕ ⊗ ψ) = S(t)(Tϕ ⊗ ψ) for all ϕ ∈ A ,
ψ ∈ D(L), which then establishes S(t)(A ⊗ D(L)) ⊆ D(T ). Since a semi-
group and its generator commute on the domain of the generator, we get
for k = 0:

T (e−tA(0)ϕ⊗ 1V (n,0)ψ) = −(e−tA(0)ϕ)′′ ⊗ 1V (n,0)ψ

= e−tA(0)(−ϕ′′) ⊗ 1V (n,0)ψ = (e−tA(0) ⊗ 1V (n,0))(Tϕ⊗ ψ),

and for k > 0:

T (e−tA(an,k)ϕ⊗ 1V (n,k)ψ) = (e−tA(an,k) ⊗ 1V (n,k))(Tϕ⊗ ψ)

+ (e−tA(an,k)ϕ′′ − (e−tA(an,k)ϕ)′′) ⊗ (1 −m/an,k)1V (n,k)ψ.

From this it follows almost directly that

lim
n→∞

T (πnϕ⊗ ψ) = lim
n→∞

πn(Tϕ⊗ ψ) = S(t)(Tϕ⊗ ψ).

Let us now consider an arbitrary f ∈ D(T ). Then there exists a sequence
(fn) in A ⊗ D(L) with fn → f and Tfn → Tf . Since S(t) is bounded,
we have S(t)fn → S(t)f . From what we have shown so far it follows that
TS(t)fn = S(t)Tfn → S(t)Tf . Thus the sequence (S(t)fn) in D(T ) con-
verges to S(t)f in the graph norm of T . This finally proves S(t)(D(T )) ⊆
D(T ) for all t ≥ 0.

Proof of Theorem 2.1. The result follows from Proposition 2.10 and iden-
tity (13).
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Proof of Theorem 2.2. Let ϕ ∈ L2 ∩ Lp(R ×X). From Proposition 2.10
and (13) it follows that

‖e−zTϕ‖Lp(R×X)

≤
∥∥∥
\
R

∞\
0

∣∣∣Ψz(ξ) exp

(
−ch(r − s)

ξ

)∣∣∣∣ ‖e
−ξer+sL/2ϕs‖Lp(X) dξ ds

∥∥∥∥
Lp(R, dr)

≤ C

∥∥∥∥
\
R

∞\
0

∣∣∣∣Ψz(ξ) exp

(
−ch(s)

ξ

)∣∣∣∣ ‖ϕs+r‖Lp(X) dξ ds

∥∥∥∥
Lp(R, dr)

≤ C

(\
R

∞\
0

∣∣∣∣Ψz(ξ) exp

(
−ch(s)

ξ

)∣∣∣∣ dξ ds
)
‖ϕ‖Lp(R×X).

It was shown in [27, Sec. 3] that\
R

∞\
0

∣∣∣∣Ψz(ξ) exp

(
−ch(s)

ξ

)∣∣∣∣ dξ ds

≤ (2 +
√

ℜ(z))eπ2/4ℜ(z)(1 + |ℑ(z)|/ℜ(z))3/2.

That proves (3). As demonstrated earlier, (3) implies the multiplier state-
ment of Theorem 2.2. Hence the proof of Theorem 2.2 is complete.

Remark 2.11. In a similar manner to the proof of Theorem 2.2 one can
try to use representation (1) to obtain (under certain conditions on L) also
bounds for ‖e−zT‖Lp(R×X)→Lq(R×X), p 6= q. In [12] we derived, e.g., some

sort of ultracontractivity result for e−zT . Depending on L, such a result may
be of interest for some operators T = T (L).

Proof of Theorem 2.3. Let the first assumptions on (pt)t>0 and (Λt)t>0

hold. Let η, τ ∈ L2(R×X). We want to be able to write the integrals appear-
ing in 〈e−zTη, τ〉L2(R×X) in any order, so first we show that the theorem of
Fubini–Tonelli is applicable: Using the Cauchy–Schwarz inequality we get,
with a constant Mz depending only on z,\
R

\
R

∞\
0

\
X

\
X

∣∣∣∣Ψz(ξ) exp

(
−ch(r − s)

ξ

)
pξer+s/2(x, y)η(s, y)τ(r, x)

∣∣∣∣dy dx dξ ds dr

≤
\
R

\
R

∞\
0

∣∣∣∣Ψz(ξ) exp

(
−ch(r − s)

ξ

)∣∣∣∣|〈Λξer+s/2|ηs|, |τr|〉L2(X)| dξ ds dr

≤ κ
\
R

(∞\
0

∣∣∣∣Ψz(ξ) exp

(
−ch(s)

ξ

)∣∣∣∣ dξ
)(\

R

‖ηs+r‖L2(X)‖τr‖L2(X) dr
)
ds

≤ κMz‖η‖L2(R×X)‖τ‖L2(R×X).

The theorem of Fubini–Tonelli ensures now the existence of the integral
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in (4) for almost all ((r, x), (s, y)) ∈ (R ×X)2. From (13) and (14) we get

〈e−zTη, τ〉L2(R×X) =
\
X

\
R

( \
X

\
R

Pz((r, x), (s, y))η(s, y) ds dy
)
τ(r, x)∗ dr dx.

Thus Pz is the integration kernel of e−zT .

Let now in addition ‖pt(·, x)‖L1(X) be bounded independently of x and t.
Then (5) can be proven in a similar way to (3). As (5) implies (3) for p = 1,
the multiplier statement in Theorem 2.3 follows from Theorem 2.2.

3. Differential operators on solvable Lie groups with exponen-

tial volume growth. Let n be a real stratified nilpotent Lie algebra, i.e.,
there exist subspaces V1, . . . , Vq of n with n = V1⊕· · ·⊕Vq and [Vi, Vj ] ⊆ Vi+j

(convention: Vk = 0 if k > q), and V1 generates the whole Lie algebra n.
(For stratified nilpotent Lie groups and algebras we refer to [9].) Let the
derivation D on n be defined by Dvj = jvj for all vj ∈ Vj and the group
homomorphism θ : R → Aut(n) by θ(r) = erD. Furthermore, let N be the
set n endowed with the Campbell–Hausdorff multiplication; thus N is, up
to isomorphism, the uniquely determined connected and simply connected
nilpotent Lie group with Lie algebra n. The exponential mapping expN is
the identity In on n. The Lebesgue measure dn on the Euclidean space n is
a biinvariant Haar measure on N . If Q denotes the trace of D (the so-called
homogeneous dimension of N), then\

N

f(erDn) dn = e−rQ
\
N

f(n) dn for all f ∈ L1(N).

We define the solvable Lie group G by G := N ⋊θ R (“R is acting on
N via natural dilations”). If dr denotes the Lebesgue measure on R, then
dg := dn⊗dr is a right invariant Haar measure on G. The modular function
m on G is given by m(n, r) = erQ, hence G has exponential volume growth
(see [30, §IX.1]).

In the section “Improvements and open problems” of [16] W. Hebisch
asked whether the evolution kernel Pz of a sum of even powers of vec-
tor fields or of a Schrödinger operator T on G satisfies an estimate like
‖P1+iξ(·, 1G)‖L1(G) ≤ C(1 + |ξ|(Q+4)/2). (In [16] Hebisch derived such an in-
equality for sub-Laplacians on G. This result is obviously not as good as the
estimate (5) above, which is independent of the homogeneous dimension of
X := N and was shown by Mustapha in [27] in the case of sub-Laplacians
(cf. Subsection 3.1 below). But the methods of Hebisch have the advantage
to extend to a reasonably larger class of Lie groups [11].)

For some special cases we can give a positive answer (independent of
the homogeneous dimension of N) by employing Theorem 2.2. We use the
following notation: For X ∈ n define vector fields XN on N and XG on G
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by

XNψ(x) =
d

dt
ψ(x · expN (tX ))|t=0 for ψ ∈ C1(N),

XGϕ(x, r) =
d

dt
ϕ((x, r) · expG(tX ))|t=0 for ϕ ∈ C1(G).

Furthermore, put XG
0 := ∂r. Then XG

0 is a left invariant vector field on G.

3.1. Sub-Laplacians. Let X1, . . . ,Xm ∈ V1 satisfy Hörmander’s condi-

tion, i.e., generate n as a Lie algebra. The operator −
∑m

j=1(XN
j )2 is defined

on C∞
c (N); let L denote its closure. Then L is positive and selfadjoint on

L2(N) (see, e.g., Theorem 4.1), and hypoelliptic [19]. The semigroup of L
is given by convolution from the right with a smooth heat kernel φt, t > 0,
which satisfies ‖φt‖L1(N) = 1:

e−tLϕ = ϕ ∗ φt.

Thus L induces a semigroup of contractions on L1(N), i.e.,

‖e−tLϕ‖L1(N) ≤ ‖ϕ‖L1(N)‖φt‖L1(N) = ‖ϕ‖L1(N).

Therefore the sub-Laplacian T := −∑m
j=0(XG

j )2 on G, which is of the form

T = −∂2
r + e2rL, meets the conditions of Theorem 2.2. Consequently, each

compactly supported continuous f ∈ Hκ(R), κ > 2, is an Lp-multiplier with
respect to T for any p ∈ [1,∞].

This multiplier result was verified by S. Mustapha in [27]. Mustapha
derived the representation (4) for the heat kernel of T by using stochastic
methods and a formula from [32].

3.2. Non-hypoelliptic sums of squares of vector fields. Here X1, . . . ,Xm

∈ V1 are not required to satisfy Hörmander’s condition. Thus the closure L
of −

∑m
j=1(XN

j )2 is still positive and selfadjoint (see again Theorem 4.1), but
in general not hypoelliptic. Although we cannot expect L to have a smooth
heat kernel, it still induces a semigroup of contractions on L1(N), because

e−tLϕ =
\
N

ϕ ◦ ̺x dpt(x),

where ̺x is the right translation on N by x and (pt)t>0 is a convolution semi-
group of probability measures on N (see [21]). Therefore T := −

∑m
j=1(XG

j )2

still meets the conditions of Theorem 2.2. Again each compactly supported
continuous f ∈ Hκ(R), κ > 2, is an Lp-multiplier with respect to T for every
p ∈ [1,∞].

Theorem 2.2 and this subsection show that the hypoellipticity of the
sub-Laplacians plays no crucial role in Mustapha’s multiplier result.



120 M. GNEWUCH

3.3. Schrödinger operators. Let X1, . . . ,Xm ∈ V1 and f̃1, . . . , f̃m ∈
C1(N,R). We consider

L̃ := −
m∑

j=1

(XN
j + if̃j)

2.

Moreover, define f0 := 0 and fj := f̃j ⊗ er for j = 1, . . . ,m. The operator

T := −
m∑

j=0

(XG
j + ifj)

2

is of the form T = −∂2
r + e2rL̃. Furthermore, L̃ and T are essentially selfad-

joint (see Theorem 4.1), and we denote their closures again by L̃ and T . (If

{X1, . . . ,Xm} spans V1, then L̃ and T are called Schrödinger operators.)

Now let L be the main part of L̃, i.e., L = −∑m
j=1(XN

j )2. Then

‖e−tL̃ϕ‖L1(N) ≤
∥∥e−tL|ϕ|

∥∥
L1(N)

≤ ‖ϕ‖L1(N)

for any ϕ ∈ L1∩L2(N) since |e−tL̃ϕ| ≤ e−tL|ϕ| pointwise almost everywhere
(see, e.g., [15, Lemma 1.3] and its proof or, for a detailed proof of the whole
statement, [10, Lemma 3.21]). Hence Theorem 2.2 implies once again that
each f ∈ Cc ∩Hκ(R), κ > 2, is an Lp-multiplier with respect to T for every
p ∈ [1,∞].

Notice that, in contrast to sub-Laplacians, the operators T defined in
this subsection are not left invariant.

3.4. Rockland operators on N . A left invariant differential operator L
on N is called homogeneous of degree d ∈ N if L(ϕ◦θ(r)) = edr(Lϕ)◦θ(r) for
all ϕ ∈ C∞

c (N) and all r ∈ R. If in addition for every non-trivial irreducible
unitary representation π of N the operator dπ(L) is injective on the space
of C∞-vectors of π (i.e., the set of elements ϕ of the representation space
Hπ, where N ∋ x 7→ π(x)ϕ is a C∞-function), then L is called a Rockland

operator. (For Rockland operators see [9].)
We consider here a Rockland operator L which is positive and formally

selfadjoint on C∞
c (N). Then L|C∞

c (N) is essentially selfadjoint and its closure

will again be denoted by L. The operator L induces a semigroup on L2(N)
by e−tLf = f ∗ φt, t > 0, where φt is in C∞∩L1(N) and satisfies ‖φt‖L1(N) =
‖φ1‖L1(N) =: C for all t > 0.

In the notation of Theorem 2.3 we have pt(x, y) = φt(y
−1x), which im-

plies

‖pt(·,m)‖L1(N) =
\
N

|φt(m
−1n)| dn =

\
N

|φt(n)| dn = C.

By setting

(L̃f)(n, r) := erd(Lf( ·, r))(n)
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we obtain a left invariant differential operator L̃ on G. If we define the
operator T on G by T = −∂2

r + L̃, then T = −∂2
r + erdL. From Theorem 2.3

we get, for the convolution kernel (Φz)ℜ(z)>0 of e−zT ,

Φz(n, r) = Pz((n, r), 1G) =

∞\
0

νΨν2z(ξ) exp(−ch(νr)/ξ)φξeνr/2ν2(n) dξ,

where ν := d/2 and 1G is the neutral element of G. Furthermore,

‖Φ1+iξ‖L1(G) ≤ Cν(1 + |ξ|)3/2,

with Cν independent of ξ, and all compactly supported, continuous f ∈
H2+ε(R), ε > 0, are Lp-multipliers of T for any p ∈ [1,∞].

The last example is a special case of the preceding class of differential
operators:

3.5. Sums of even powers of vector fields. Let X1, . . . ,Xm ∈ n generate
the Lie algebra n, and let k1, . . . , km ∈ N. Moreover, let the differential
operator

L :=

m∑

j=1

(−1)kj (XN
j )2kj

on C∞
c (N) be homogeneous of degree 2ν, ν = max{kj : 1 ≤ j ≤ m}. (Hence

Xj ∈ Vl implies lkj = ν.) Then L is a positive Rockland operator. If we
define the sum of even powers of vector fields T on G by

T = −∂2
r +

m∑

j=1

(−1)kj (XG
j )2kj ,

then T = −∂2
r + e2νrL. We have the results of Subsection 3.4 for d = 2ν.

Subsection 3.5 stresses that a differential operator T does not have to be
of second order to satisfy the conditions of our multiplier theorem.

4. Appendix: A selfadjointness theorem. Let G be a real Lie group
with a countable number of connected components, g its Lie algebra, dg a
right invariant Haar measure on G and L2 = L2(G, dg). Let 〈·, ·〉 be the
scalar product and ‖ · ‖ the norm on L2. We shall identify each X ∈ g with
a left invariant vector field by

X f(g) =
d

dt
f(g · exp(tX ))

∣∣∣∣
t=0

,

where exp denotes the exponential function with respect to G and g.
Let J be a finite index set, Xj , j ∈ J , left invariant vector fields, and Vj ,

j ∈ J , real-valued, continuously differentiable functions on G. The operator

T := −
∑

j∈J

(Xj + iVj)
2

is well defined on C∞
c = C∞

c (G), the space of test functions on G.



122 M. GNEWUCH

For f ∈ L2 and for operators Φ,Φ∗ defined on C∞
c with 〈Φϕ,ψ〉 =

〈ϕ,Φ∗ψ〉 for all ϕ, ψ ∈ C∞
c we shall say that Φf exists in a weak sense if

there is a function f̃ ∈ L2 with 〈f, Φ∗ϕ〉 = 〈f̃ , ϕ〉 for all ϕ ∈ C∞
c . In this

case we define Φwf := f̃ , so the domain of the operator Φw is given by

D(Φw) = {f ∈ L2 : Φf exists in a weak sense}.
A helpful tool for the proof of our selfadjointness theorem is the convo-

lution of two (suitable) functions ϕ, ψ on G, defined by

ϕ ∗ ψ(x) =
\
G

ϕ(xg−1)ψ(g) dg.

We call a sequence (ϕn) in C∞
c a Dirac sequence if ϕn ≥ 0,

T
ϕn dg = 1 for

all n ∈ N, and for each neighborhood U of the unit element of G there exists
an n0 ∈ N with supp(ϕn) ⊆ U for every n ≥ n0.

We shall also utilize a sequence (ψn) in C∞
c that approximates the char-

acteristic function of G in the following way:

(i) For any n ∈ N, 0 ≤ ψn ≤ 1.
(ii) (ψ−1

n ({1})) is an increasing sequence of sets with
⋃
ψ−1

n ({1}) = G.
(iii) For each left invariant differential operator L there exists a C > 0,

independent of n, with |Lψn| ≤ C for all n.

It is easy to see that such a sequence exists. (A construction can be found
in [10, Lemma 2.28].)

Furthermore, we will make use of the theory of quadratic forms of self-
adjoint operators and the well known theorem about Friedrichs’ extension.
This can, e.g., be found in [8, Ch. 4] and [31, §5.5].

Theorem 4.1. T is essentially selfadjoint on C∞
c ⊆ L2. Its selfadjoint

closure T is given by Tw. The domain of the quadratic form of Tw is

Q(Tw) =
⋂

j∈J

D((Xj + iVj)w)

and the inclusion D(Tw) ⊆ Q(Tw) holds.

Proof. From the definition of the adjoint operator T ∗ of T on L2 it is
clear that T ∗ = Tw. As T is positive and symmetric on C∞

c , there exists
Friedrichs’ extension S of T with D(S) = D(Tw) ∩ Q(S). Here the domain
Q(S) of the quadratic form of S is the set of all f ∈ L2(G) for which there
exists a sequence (fn) in C∞

c with L2- lim fn = f such that ((Xj + iVj)fn)
is an L2-Cauchy sequence for each j ∈ J .

Obviously we have T ⊆ S = S∗ ⊆ T ∗. Our aim is to show that T = S,
because that would imply T = T ∗ = Tw. Before we do so, we verify that
Q(S) is equal to Λ :=

⋂
j∈J D((Xj + iVj)w). Since it is easy to see that

Q(S) ⊆ Λ, we just have to prove

Statement (a). Λ ⊆ Q(S).



DIFFERENTIABLE L
p
-FUNCTIONAL CALCULUS 123

To verify Statement (a), we first consider a compactly supported function
f ∈ Λ and a Dirac sequence (ϕn). Then (ϕn ∗ f) is a sequence in C∞

c with
‖f − ϕn ∗ f‖ → 0 for n → ∞. Let j ∈ J . From f ∈ Λ and Vjf ∈ L2 it
follows that f ∈ D((Xj)w). Therefore the left invariance of Xj leads us to
Xj(ϕn ∗ f) = ϕn ∗ (Xj)wf , and

‖(Xj + iVj)wf − (Xj + iVj)(ϕn ∗ f)‖
≤ ‖(Xj + iVj)wf − ϕn ∗ (Xj + iVj)wf‖ + ‖ϕn ∗ Vjf − Vj(ϕn ∗ f)‖.

The first term on the right vanishes as n→ ∞. In general for continuous ϑ
on G and compactly supported f̃ ∈ L2 we have

(15) ‖ϕn ∗ ϑf̃ − ϑ(ϕn ∗ f̃)‖ ≤
∥∥ϕn ∗ |f̃ |

∥∥ sup{|ϑ(x−1g) − ϑ(g)|},
where the supremum is taken over all x∈supp(ϕn) and g∈supp(ϕn) supp(f̃).
The expression on the right hand side in (15) tends to zero as n → ∞. It
follows that f is an element of Q(S).

Let us now consider a general f ∈ Λ, and let (ψn) be an approximating
sequence for the characteristic function of G as described above. It is trivial
that ψnf ∈ Λ with

(Xj + iVj)w(ψnf) = ψn(Xj + iVj)wf + (Xjψn)f.

Since supp(ψnf) is compact, we have ψnf ∈ Q(S). Obviously ψnf → f and

‖(Xj + iVj)w(f − ψnf)‖ ≤ ‖(1 − ψn)(Xj + iVj)wf‖ + ‖(Xjψn)f‖.
The choice of (ψn) implies ‖(Xj + iVj)w(f−ψnf)‖ → 0 as n→ ∞. It follows
that f ∈ Q(S), i.e., Statement (a) holds.

Statement (b). D(S) ⊆ D(T ).

Our strategy is similar to the proof of Statement (a): First let f ∈ D(S)
be compactly supported. Then Vjf ∈ L2 and f ∈ D((Xj)w) for each j ∈ J ,
because f is contained in Q(S) = Λ (recall that D(S) ⊆ Q(S)). Moreover, f
is contained in D(Tw) ∩D((VjXj)w), and V 2

j f, (XjVj)f ∈ L2 for each j ∈ J ,

which implies f ∈ D((
∑

j∈J X
2
j )w).

Let us again consider a Dirac sequence (ϕn). The sequence (fn) with
fn := ϕn ∗ f is a sequence in C∞

c such that fn → f in L2. We obtain

‖Tw(f − fn)‖
≤ ‖Twf − ϕn ∗ Twf‖ +

∑

j∈J

(2‖ϕn ∗ (VjXj)wf − Vj(ϕn ∗ (Xj)wf)‖

+ ‖ϕn ∗ (V 2
j − i(XjVj))f − (V 2

j − i(XjVj))ϕn ∗ f‖).
With (15) we observe that Tfn → Twf in L2, which means f ∈ D(T ) and
Tf = Twf .

Now let f be an arbitrary element in D(S), and let (ψn) be as in the
proof of Statement (a). Obviously ψnf ∈ D(S) for each n ∈ N. As ψnf has
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compact support, we have ψnf ∈ D(T ). Moreover, ψnf → f in L2 and

‖Twf − T (ψnf)‖
≤ ‖(1 − ψn)Twf‖ +

∑

j∈J

(‖(X 2
j ψn)f‖ + 2‖(Xjψn)(Xj + iVj)wf‖).

From our definition of (ψn) it follows that ‖Twf − T (ψnf)‖ → 0 as n→ ∞.
As D(T ) is closed with respect to the graph norm of T , f is an element of
D(T ). This proves Statement (b), which implies T = S.
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