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Abstract. We characterize Clifford hypersurfaces and Cartan minimal hypersurfaces
in a sphere by some properties of extrinsic shapes of their geodesics.

1. Introduction. In some cases it is possible to determine the shape
of a Riemannian submanifold by observing extrinsic shapes of geodesics of
the submanifold in an ambient Riemannian manifold. For example, a hyper-
surface Mn isometrically immersed into a standard sphere Sn+1 is totally
umbilic in Sn+1 if and only if every geodesic of M is a circle in Sn+1. Here,
a smooth curve γ parameterized by its arclength on Sn+1 is called a circle

of curvature κ (≥ 0) if it satisfies ∇γ̇∇γ̇ γ̇ = −κ2γ̇, where ∇γ̇ denotes the
covariant differentiation along γ with respect to the Riemannian connection
of Sn+1. It is well known that a circle of constant curvature κ on Sn+1 is
a great circle or a small circle according as κ is zero or positive. The dif-
ferential equation for a circle γ is equivalent to the differential equations
∇γ̇ γ̇ = κY , ∇γ̇Y = −κγ̇ with a field of unit vectors Y along γ.

A hypersurface M in Sn+1 is called isoparametric if all of its princi-
pal curvatures in Sn+1 are constant. The isoparametric hypersurfaces are
a quite interesting object of study in differential geometry. Totally umbilic
hypersurfaces are the simplest examples of isoparametric hypersurfaces. In
his papers [C1, C2], É. Cartan extensively studied isoparametric hypersur-
faces in a standard sphere, and completely classified them in the case they
have less than four principal curvatures. But the classification problem for
all isoparametric hypersurfaces in a sphere is still open (see Problem 34
in [Y]).
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In this paper, by studying extrinsic shapes of geodesics on hypersur-
faces in the ambient space Sn+1, we characterize isoparametric hypersurfaces
with two principal curvatures and isoparametric minimal hypersurfaces with
three principal curvatures.

2. Isoparametric hypersurfaces with two or three principal cur-

vatures. We start by studying extrinsic shapes of geodesics on isoparamet-
ric hypersurfaces in a standard sphere with less than four principal curva-
tures. Let M be a hypersurface of a standard sphere Sn+1(c) of curvature
c through an isometric immersion and N a unit normal vector field on M .
The Riemannian connections ∇̃ of Sn+1(c) and ∇ of M are related by the
following formulas of Gauss and Weingarten: For vector fields X and Y
tangent to M we have

∇̃XY = ∇XY + 〈AX, Y 〉N , ∇̃XN = −AX,

where 〈 , 〉 denotes the Riemannian metric on M induced from the standard
metric 〈 , 〉 on Sn+1(c), and A : TM → TM is the shape operator of M
in Sn+1(c). An eigenvector and an eigenvalue of the shape operator A are
called a principal curvature vector and a principal curvature, respectively.

For a curve γ on a hypersurface M we can consider γ as a curve on
Sn+1(c). In order to distinguish them we call the latter curve the extrinsic

shape of γ. When γ is a geodesic we see by the Gauss formula that its
extrinsic shape satisfies ∇̃γ̇ γ̇ = 〈Aγ̇, γ̇〉N . Thus we find the following:

Lemma.

(1) The extrinsic shape of a geodesic γ on a hypersurface M is a geodesic

if and only if 〈Aγ̇, γ̇〉 ≡ 0.
(2) The extrinsic shape of a geodesic γ on a hypersurface M is a circle

of positive curvature if and only if γ̇ is principal and 〈Aγ̇, γ̇〉 is a

nonzero constant function.

When M is an isoparametric hypersurface in Sn+1(c), it is well known
that each distribution Vλ of eigenspaces is integrable, and each of its leaves
is totally geodesic in the hypersurface M and totally umbilic in the ambient
space Sn+1(c) (see [CR]). Thus every geodesic on such leaves is a geodesic as
a curve on M and is a circle as a curve on Sn+1(c). Its curvature 〈Aγ̇(0), γ̇(0)〉
is a principal curvature. Thus we have

Proposition 1. Let γ be a geodesic on an isoparametric hypersurface in

a standard sphere. If the initial vector is principal with principal curvature λ,
then the extrinsic shape of γ is a circle. Its curvature as a circle is λ.

Isoparametric hypersurfaces in Sn+1(c) with two constant principal cur-
vatures are called Clifford hypersurfaces. For a pair (c1, c2) of positive num-
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bers satisfying 1/c1 +1/c2 = 1/c and a positive integer r with 1 ≤ r ≤ n−1,
we denote by Mr,n−r = Mr,n−r(c1, c2) a naturally embedded hypersurface in
Sn+1(c) which is isometric to Sr(c1) × Sn−r(c2). It has two constant prin-
cipal curvatures λ1 = c1/

√
c1 + c2 and λ2 = −c2/

√
c1 + c2, whose multi-

plicities are r and n− r, respectively. A Clifford hypersurface Mr,n−r(c1, c2)
is minimal in Sn+1(c) if and only if c1 = nc/r and c2 = nc/(n − r). Let
TMr,n−r = Vλ1

⊕Vλ2
be the decomposition into distributions of eigenspaces

corresponding to eigenvalues λ1, λ2.

Proposition 2. Let γ be a geodesic on Mr,n−r(c1, c2).

(1) The extrinsic shape of γ is a geodesic if and only if the initial vector

is of the form γ̇(0) = (
√

c2w1 +
√

c1w2)/
√

c1 + c2 with wi ∈ Vλi

(i = 1, 2).
(2) If the initial vector is neither principal nor of the form in (1), then

the extrinsic shape is not a circle.

Proof. Since Mr,n−r has parallel shape operator, we find

d

ds
〈Aγ̇(s), γ̇(s)〉 = 〈(∇γ̇A)γ̇(s), γ̇(s)〉 = 0.

Thus we may study geodesics at their initial point. We denote the initial
vector by γ̇(0) = a1w1 + a2w2 with unit vectors wi ∈ Vλi

(i = 1, 2) and
nonnegative constants a1, a2 satisfying a2

1 + a2
2 = 1. In this case we have

〈Aγ̇(0), γ̇(0)〉 = a2
1λ1 + a2

2λ2. We hence obtain 〈Aγ̇, γ̇〉 ≡ 0 if and only if
a1 =

√
c2/

√
c1 + c2 and a2 =

√
c1/

√
c1 + c2, and get the conclusion.

Isoparametric hypersurfaces with three constant principal curvatures are
usually called Cartan hypersurfaces. If we denote by mi the multiplicity of a
principal curvature λi, it is known that these three principal curvatures have
the same multiplicity (i.e. m1 = m2 = m3). When a Cartan hypersurface is
minimal, it is congruent to one of the following hypersurfaces:

M3 = SO(3)/(Z2 + Z2) → S4(c),

M6 = SU(3)/T 2 → S7(c),

M12 = Sp(3)/Sp(1) × Sp(1) × Sp(1) → S13(c),

M24 = F4/Spin(8) → S25(c).

Principal curvatures of a Cartan minimal hypersurface are
√

3c, 0,−
√

3c.

3. Characterizations of Clifford hypersurfaces and Cartan min-

imal hypersurfaces. In this section we characterize Clifford hypersurfaces
and Cartan minimal hypersurfaces by extrinsic shapes of their geodesics.
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Theorem 1. A connected hypersurface Mn in Sn+1(c) is locally con-

gruent to a Clifford hypersurface Mr,n−r with some r if and only if there

are a function d : M → N, a constant α (0 < α < 1) and an orthonormal

basis {v1, . . . , vn} of TxM at each point x ∈ M satisfying the following two

conditions:

(i) All geodesics on M with initial vector vi (1 ≤ i ≤ n) are small circles

in Sn+1(c).
(ii) All geodesics γij on M with initial vector αvi +

√
1 − α2 vj (1 ≤ i ≤

dx < j ≤ n) are great circles in Sn+1(c).

In this case d is a constant function with d ≡ r and

M = Mr,n−r(c/α2, c/(1 − α2)).

Proof. (⇒) For a Clifford hypersurface Mr,n−r we decompose its tangent
bundle TMr,n−r into subbundles of principal vectors Vλ1

⊕Vλ2
. If we take an

orthonormal basis {v1, . . . , vn} of TxMr,n−r at each point x ∈ Mr,n−r in such
a way that {v1, . . . , vr} is an orthonormal basis of Vλ1

and {vr+1, . . . , vn} is
an orthonormal basis of Vλ2

, we find by Proposition 2 that they satisfy the
required conditions.

(⇐) Consider an open dense subset

U =

{
x ∈ M

∣∣∣∣
the multiplicity of each principal curvature of M in

Sn+1(c) is constant on some neighborhood Ux of x

}

of M . Our discussion below owes much to [KM]. For an orthonormal ba-
sis {v1, . . . , vn} of TxM at x ∈ U which satisfies the conditions, we take
geodesics γi (1 ≤ i ≤ n) on M with initial vector vi. Since the extrinsic
shape of γi is a circle of positive curvature, if we denote its curvature by κi,
then we find by the formulas of Gauss and Weingarten that

−κ2
i γ̇i = ∇̃γ̇i

∇̃γ̇i
γ̇i = −〈Aγ̇i, γ̇i〉Aγ̇i + 〈(∇γ̇i

A)γ̇i, γ̇i〉N .

Comparing the tangential components of the left-hand and right-hand sides
of this equality, we obtain 〈Aγ̇i, γ̇i〉Aγ̇i = κ2

i γ̇i, so that 〈Avi, vi〉Avi = κ2
i vi

at the point x. Hence we have Avi = κivi or Avi = −κivi for 1 ≤ i ≤ n,
which means that the tangent space TxM decomposes as

TxM = {v ∈ TxM | Av = −k1v} ⊕ {v ∈ TxM | Av = k1v}
⊕ · · · ⊕ {v ∈ TxM | Av = −kgv} ⊕ {v ∈ TxM | Av = kgv},

where 0 < k1 < . . . < kg and g is the number of distinct positive κi (i =
1, . . . , n). We decompose TxM in that way at each point x ∈ U . Then each
kj turns out to be a smooth function on Ux for each x ∈ U .

We shall show kj is locally constant. We consider an arbitrary point
y ∈ Ux. Let {v1, . . . , vn} be the orthonormal basis of TyM satisfying (i). If
kj is the curvature of the extrinsic shape of geodesic with initial vector vij ,
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we find by (i) that vijkj = 0. In order to study vlkj for other vl, we extend
{v1, . . . , vn} to principal curvature unit vector fields {V1, . . . , Vn} on some
neighborhood Wy (⊆ Ux) satisfying ∇Vij

Vij (y) = 0 and (Vij )y = vij (for

details, see p. 76 in [KM]). For simplicity, we only treat the case Avij = kjvij .
Thanks to the Codazzi equation 〈(∇XA)Y, Z〉 = 〈(∇Y A)X, Z〉, we find

〈(∇vij
A)vl, vij 〉 = 〈(∇vl

A)vij , vij 〉 = 〈(∇Vl
A)Vij , Vij 〉(y)

= 〈∇Vl
(kjVij ) − A∇Vl

Vij , Vij 〉(y)

= 〈(Vlkj)Vij + (kjI − A)∇Vl
Vij , Vij (y)〉 = vlkj ,

〈vl, (∇vij
A)vij 〉 = 〈Vl, (∇Vij

A)Vij 〉(y)

= 〈Vl,∇Vij
(kjVij ) − A∇Vij

Vij 〉(y)

= 〈vl, (vijkj)vij 〉 = 0.

Since A is symmetric, we see that 〈(∇vij
A)vl, vij 〉 = 〈vl, (∇vij

A)vij 〉, hence

vlkj = 0. Thus the differential of kj vanishes at y and kj is constant on Ux.
Hence every principal curvature of M is locally constant on the open dense
subset U of the connected hypersurface M . This, together with the fact that
all principal curvatures are continuous functions on M , shows that every
hypersurface satisfying (i) is isoparametric in the ambient space Sn+1(c).

Consider a fixed point x0. The above argument shows that every vi is
principal. If we denote its principal curvature by λi, then by (ii) we have
αλi +

√
1 − α2 λj = 0 for 1 ≤ i ≤ dx0

< j ≤ n. Hence M has just two
distinct principal curvatures, and we obtain our result.

Remark. In Theorem 1, we only need the second condition at some
point x ∈ M .

Theorem 2. Let Mn be a connected hypersurface of Sn+1(c). Suppose

that at each point x in M there exists an orthonormal basis {v1, . . . , vm} of

the orthogonal complement of kerA in TxM (m = rank A) such that

(i) all geodesics with initial vector vi (1 ≤ i ≤ m) are small circles in

Sn+1(c),
(ii) they have the same curvature κx.

Then Mn is locally congruent either to a totally umbilic hypersphere, a Clif-

ford hypersurface Mr,n−r(2c, 2c), 1 ≤ r ≤ n − 1, or a Cartan minimal hy-

persurface.

Proof. A totally geodesic hypersphere satisfies the conditions trivially.
By the discussion in the proof of Theorem 1, a hypersurface Mn satisfy-
ing the hypothesis has at most three distinct constant principal curvatures
κ,−κ, 0. This yields the result.
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