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Abstract. We characterize Clifford hypersurfaces and Cartan minimal hypersurfaces
in a sphere by some properties of extrinsic shapes of their geodesics.

1. Introduction. In some cases it is possible to determine the shape
of a Riemannian submanifold by observing extrinsic shapes of geodesics of
the submanifold in an ambient Riemannian manifold. For example, a hyper-
surface M" isometrically immersed into a standard sphere S™*! is totally
umbilic in "t if and only if every geodesic of M is a circle in S™*1. Here,
a smooth curve ~ parameterized by its arclength on S™*! is called a circle
of curvature k (> 0) if it satisfies V4 V44 = —k?5, where V denotes the
covariant differentiation along « with respect to the Riemannian connection
of 8"*1 Tt is well known that a circle of constant curvature x on S"*1! is
a great circle or a small circle according as k is zero or positive. The dif-
ferential equation for a circle v is equivalent to the differential equations
Vv = kY, ViY = —r7 with a field of unit vectors Y along .

A hypersurface M in S"t! is called isoparametric if all of its princi-
pal curvatures in S”*! are constant. The isoparametric hypersurfaces are
a quite interesting object of study in differential geometry. Totally umbilic
hypersurfaces are the simplest examples of isoparametric hypersurfaces. In
his papers [C1, C2], E. Cartan extensively studied isoparametric hypersur-
faces in a standard sphere, and completely classified them in the case they
have less than four principal curvatures. But the classification problem for
all isoparametric hypersurfaces in a sphere is still open (see Problem 34
in [Y]).
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In this paper, by studying extrinsic shapes of geodesics on hypersur-
faces in the ambient space S"1, we characterize isoparametric hypersurfaces
with two principal curvatures and isoparametric minimal hypersurfaces with
three principal curvatures.

2. Isoparametric hypersurfaces with two or three principal cur-
vatures. We start by studying extrinsic shapes of geodesics on isoparamet-
ric hypersurfaces in a standard sphere with less than four principal curva-
tures. Let M be a hypersurface of a standard sphere S™"*!(c) of curvature
c through an isometric immersion and N a unit normal vector field on M.
The Riemannian connections V of S"*!(¢) and V of M are related by the
following formulas of Gauss and Weingarten: For vector fields X and Y
tangent to M we have

VxY =VxY + (AX, V)N, VN = —AX,

where ( , ) denotes the Riemannian metric on M induced from the standard
metric (, ) on S"T!(c), and A : TM — TM is the shape operator of M
in S"*1(c). An eigenvector and an eigenvalue of the shape operator A are
called a principal curvature vector and a principal curvature, respectively.
For a curve v on a hypersurface M we can consider v as a curve on
S"F1(c). In order to distinguish them we call the latter curve the extrinsic
shape of v. When ~ is a geodesic we see by the Gauss formula that its
extrinsic shape satisfies V54 = (A%, 4)N. Thus we find the following:

LEMMA.

(1) The extrinsic shape of a geodesic vy on a hypersurface M is a geodesic
if and only if (A¥,%) = 0.

(2) The extrinsic shape of a geodesic v on a hypersurface M is a circle
of positive curvature if and only if  is principal and (A%,%) is a
nonzero constant function.

When M is an isoparametric hypersurface in S"*1(c), it is well known
that each distribution V) of eigenspaces is integrable, and each of its leaves
is totally geodesic in the hypersurface M and totally umbilic in the ambient
space S"T1(c) (see [CR]). Thus every geodesic on such leaves is a geodesic as
a curve on M and is a circle as a curve on S" "1 (c). Its curvature (A%(0),4(0))
is a principal curvature. Thus we have

PROPOSITION 1. Let~y be a geodesic on an isoparametric hypersurface in
a standard sphere. If the initial vector is principal with principal curvature X,
then the extrinsic shape of v is a circle. Its curvature as a circle is X.

Isoparametric hypersurfaces in S"*!(c) with two constant principal cur-
vatures are called Clifford hypersurfaces. For a pair (cy, ca) of positive num-
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bers satisfying 1/¢14+1/co = 1/c and a positive integer r with 1 <r <n-—1,
we denote by M, ,,—, = M, ,,_r(c1, c2) a naturally embedded hypersurface in
S+ (¢) which is isometric to S"(c1) x S""(ca). It has two constant prin-
cipal curvatures \; = ¢1/y/c1 + 2 and Ao = —ca/\/c1 + c2, whose multi-
plicities are r and n —r, respectively. A Clifford hypersurface M, ,_,(c1,c2)
is minimal in S"T!(c) if and only if ¢; = ne/r and ¢y = ne/(n — r). Let
TM;—r = Vi, ® V), be the decomposition into distributions of eigenspaces
corresponding to eigenvalues Aq, Ao.

PROPOSITION 2. Let v be a geodesic on M, ,—r(c1,c2).

(1) The extrinsic shape of v is a geodesic if and only if the initial vector
is of the form §(0) = (/w1 + J/crwa)/v/c1 + ca with w; € V),
(i=1,2).

(2) If the initial vector is neither principal nor of the form in (1), then
the extrinsic shape is not a circle.

Proof. Since M, ,,—, has parallel shape operator, we find

L (43945 = (T34)3(5).4(5)) = 0.

Thus we may study geodesics at their initial point. We denote the initial
vector by ¥(0) = ajw; + apws with unit vectors w; € V), (i = 1,2) and
nonnegative constants aj,as satisfying af + a3 = 1. In this case we have
(A%(0),4(0)) = a3\ + a3X2. We hence obtain (A%,4) = 0 if and only if
a1 = +/¢2/\/c1 + ¢z and az = \/c1/\/c1 + ¢2, and get the conclusion. =

Isoparametric hypersurfaces with three constant principal curvatures are
usually called Cartan hypersurfaces. If we denote by m; the multiplicity of a
principal curvature );, it is known that these three principal curvatures have
the same multiplicity (i.e. m1 = mg = mg3). When a Cartan hypersurface is
minimal, it is congruent to one of the following hypersurfaces:

M? =S0(3)/(Zs + Zs) — S*(c),
MS =8U(3)/T? — S7(c),
M'? = Sp(3)/Sp(1) x Sp(1) x Sp(1) — §'%(¢),
M?* = F,/Spin(8) — S%(c).
Principal curvatures of a Cartan minimal hypersurface are v/3¢, 0, —v/3c.
3. Characterizations of Clifford hypersurfaces and Cartan min-

imal hypersurfaces. In this section we characterize Clifford hypersurfaces
and Cartan minimal hypersurfaces by extrinsic shapes of their geodesics.
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THEOREM 1. A connected hypersurface M™ in S™""1(c) is locally con-
gruent to a Clifford hypersurface M, ,,—, with some r if and only if there
are a function d : M — N, a constant a (0 < a < 1) and an orthonormal
basis {v1,...,vn} of ToM at each point x € M satisfying the following two
conditions:

(i) All geodesics on M with initial vector v; (1 < i < n) are small circles
in S"TL(c).

(ii) All geodesics ~;; on M with initial vector av; + V1 — a?v; (1 <i <
dy < j <n) are great circles in S"*1(c).

In this case d is a constant function with d =r and
M = M, ,_(c/a? c/(1—a?)).

Proof. (=) For a Clifford hypersurface M, ,,_, we decompose its tangent
bundle T'M,. ,,—, into subbundles of principal vectors Vy, ©V),. If we take an
orthonormal basis {v1,...,v,} of Ty M, ,_, at each point z € M, ,,—, in such
a way that {v1,...,v,} is an orthonormal basis of V), and {v,41,...,v,} is
an orthonormal basis of V),, we find by Proposition 2 that they satisfy the
required conditions.

(«=) Consider an open dense subset

the multiplicity of each principal curvature of M in
U= {x eM ‘ pHCY P P }

S"F1(c) is constant on some neighborhood U, of x

of M. Our discussion below owes much to [KM]. For an orthonormal ba-
sis {v1,...,v,} of T, M at z € U which satisfies the conditions, we take
geodesics v; (1 < i < n) on M with initial vector v;. Since the extrinsic
shape of ~; is a circle of positive curvature, if we denote its curvature by k;,
then we find by the formulas of Gauss and Weingarten that
—r%i = Va4, Vi = = (A%, %) A% + (V4. 4) %, ) N

Comparing the tangential components of the left-hand and right-hand sides
of this equality, we obtain (A5;,5;)A%; = m?%, so that (Av;,v;)Av; = m?vi
at the point x. Hence we have Av; = k;v; or Av; = —kv; for 1 < i < n,
which means that the tangent space T, M decomposes as

T,M={veT,M|Av=—-kv}®{veTl,M|Av = kwv}
@ d{vel,M|Av= -k} ®{veTl,M|Av = k4v},

where 0 < k1 < ... < k4 and g is the number of distinct positive x; (i =
1,...,n). We decompose T, M in that way at each point = € U. Then each
k; turns out to be a smooth function on U, for each x € U.

We shall show k; is locally constant. We consider an arbitrary point
y € U,. Let {v1,...,v,} be the orthonormal basis of T, M satisfying (i). If
k; is the curvature of the extrinsic shape of geodesic W1th initial vector v;,
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we find by (i) that v;;k; = 0. In order to study v;k; for other v;, we extend
{v1,...,0,} toO prlnc1pal curvature unit vector fields {Vi,...,V,,} on some
neighborhood W, (C U,) satisfying Vv, Vi, (y) = 0 and (V;-j)y = vj; (for
details, see p. 76 in [KM]). For simplicity, we only treat the case Av;;, = kjv;; .
Thanks to the Codazzi equation (VxA)Y,Z) = (VyA)X, Z), we find

(Vo A)vi, vi;) = (Vo A)vig, vip) = (Vi A)Vig, Vi) (y)
Vvi(kViy) = AV Vi, Vi) (y)
(Vikj)Vi; + (kI = A)Vy,Viy, Vi (y)) = vik;,
» (Vv A)Vij) ()
Wy, (Vi) — AV, Vi )(v)
= (v, (vi;kj)vi;) = 0.
Since A is symmetric, we see that <(Vvi]. Ay, vi;) = (v, (Vvij A)v;,), hence

=
=
<Ulv (vvij A)Uij> <
=

l
l

vk; = 0. Thus the differential of £; vanishes at y and k; is constant on U,.
Hence every principal curvature of M is locally constant on the open dense
subset U of the connected hypersurface M. This, together with the fact that
all principal curvatures are continuous functions on M, shows that every
hypersurface satisfying (i) is isoparametric in the ambient space S™*!(c).

Consider a fixed point xg. The above argument shows that every wv; is
principal. If we denote its principal curvature by \;, then by (ii) we have
ali+V1—a?X; =0for 1 <i <dy < j < n. Hence M has just two
distinct principal curvatures, and we obtain our result. m

REMARK. In Theorem 1, we only need the second condition at some
point x € M.

THEOREM 2. Let M™ be a connected hypersurface of S"*1(c). Suppose
that at each point x in M there exists an orthonormal basis {vi,...,vm} of
the orthogonal complement of ker A in T, M (m = rank A) such that

(i) all geodesics with initial vector v; (1 < i < m) are small circles in
Sn-‘,—l(c)7
(ii) they have the same curvature k.

Then M™ is locally congruent either to a totally umbilic hypersphere, a Clif-
ford hypersurface M, ,,—r(2¢,2¢), 1 < r < n—1, or a Cartan minimal hy-
persurface.

Proof. A totally geodesic hypersphere satisfies the conditions trivially.
By the discussion in the proof of Theorem 1, a hypersurface M™ satisfy-
ing the hypothesis has at most three distinct constant principal curvatures
K, —kK,0. This yields the result. =
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